

Indian Journal of Animal Sciences **93** (7): 663–669, July 2023/Article https://doi.org/10.56093/ijans.v93i7.132586

Systematic review and meta-analysis on brucellosis seroprevalence in ruminants (1970 – 2020) of India

MICHAEL V LALRINZUALA¹, VINODHKUMAR O R¹™, SHIKHA TAMTA¹, D K SINGH, C LALSANGZUALA¹, DAMINI KHAWASKAR¹, ROTLUANGKIMI¹, B R SINGH¹ and D K SINHA¹

ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243 122 India

Received: 24 January 2023; Accepted: 16 May 2023

ABSTRACT

Brucellosis is one of the most common contagious and neglected bacterial zoonotic diseases. The disease has been reported in ruminants in almost all Indian states. But there is a lack of comprehensive information on the seroprevalence of brucellosis in the Indian subcontinent. A systematic review and meta-analysis on the seroprevalence of brucellosis among ruminants of India was conducted from the published articles (January 1970 - June 2020) by including 172 studies screened from 567 publications. The estimated brucellosis seroprevalence of cattle, buffalo, sheep, goat, yak and mithun was 14% (95% CI: 12% - 16%), 8% (95% CI: 6% - 9%), 8% (95% CI: 7% - 10%), 8% (95% CI: 7% - 9%), 16% (95% CI: 7% - 28%) and 26% (95% CI: 12% - 42%), respectively. Sub-group analysis was performed based on diagnostic tests, regions, publication year, and sample size. The estimated seroprevalence of brucellosis in cattle and goats was found to be higher in the central region compared to other regions. Similarly, the western region showed a higher seroprevalence for brucellosis in buffalo and sheep. Given the estimated animal population of 2021, the meta-analysis estimated that the total number of seropositive animals would be 26.95 million cattle (95% CI: 23.09–30.78), 8.78 million buffaloes (95% CI: 6.59–9.89), 5.94 million sheep (95% CI: 5.20–7.43), 11.91 million goats (95% CI: 10.42–13.40), 9.6 thousand yaks (95% CI: 0.0042–0.0168), and 100 thousand mithun (95% CI: 0.05–0.16). Further, the comprehensive picture of the brucellosis seroprevalence may help the decision-making authorities in formulating better prevention and control strategies for brucellosis in India.

Keywords: Brucella, India, Meta-analysis, Ruminants, Seroprevalence, Systematic review

Brucellosis is one of the most contagious re-emerging bacterial diseases in the world (Schaeffer et al. 2021). It was first identified in India in 1942 and causes abortion in pregnant animals and reduced fertility (Khan and Zahoor 2018, Renukaradhya et al. 2002). Globally, it is one of the most prevalent zoonotic diseases with a substantial social and economic burden (Dean et al. 2012). Brucellosis in animals is an important source of human infection (Li et al. 2013). The two routes of Brucella infection are direct (contact with infected animal or secretions) and indirect contact (consumption of infected under pasteurized milk or raw milk and dairy products). Brucellosis transmission to humans through meat consumption is very uncommon (Olsen and Palmer 2014, Migisha et al. 2018). Metaanalysis may give rise to the development of new research procedures, and address the policymakers to find better prevention and control strategies for various infectious diseases (Fagard et al. 1996). It is the gold standard for evidence-based research with the highest clinical relevance. It has been conducted successfully in finding the prevalence

Present address: ¹ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh. [™]Corresponding author email: vinodhkumar.rajendran@gmail.com

of other infectious diseases like bluetongue (Rupner et al. 2020), classical swine fever (Patil et al. 2018, Malik et al. 2020) and Peste des petits ruminants (Barman et al. 2020) in India. Meta-analysis studies on the prevalence of brucellosis have been carried out in Tanzania (Alonso et al. 2016), China (Ran et al. 2018, Ran et al. 2019), Middle East region (Abedi et al. 2020), for analyzing the treatments in human brucellosis (del Pozo et al. 2012), to identify the seasonal pattern of the disease (Moosazadeh et al. 2016), and to identify the susceptibility of Brucella meta to antibiotics (Khademi et al. 2018). In India, Barman et al. (2020) performed a meta-analysis to determine the prevalence of brucellosis in the North-East region among the different species of livestock. Several seroprevalence studies in India were carried out either on non-random samples or on suspected samples, making the results biased to determine the incidence and prevalence in the general population. Hence, a meta-analysis on brucellosis seroprevalence was undertaken to estimate the pooled seroprevalence of brucellosis in the random population of ruminants in India.

MATERIALS AND METHODS

To estimate the brucellosis seroprevalence a literature

search was performed for the systematic review and meta-analysis covering the published literature of the past 51 years (1st January, 1970 to 30th June, 2020) (Supplementary Table 1). The data was gathered using a computer literature search of electronic databases through Google Scholar, Science Direct, Springer, Krishikosh, PubMed, ICAR-CeRA, and non-electronic material search of the thesis, journals, symposium, abstracts, and ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) annual reports. The keywords used for search on the electronic media were brucellosis, *Brucella*, animals, cattle, buffalo, sheep, goat, yak, mithun, epidemiology, prevalence, and seroprevalence.

The schematic representation for the PRISMA procedure followed in the literature selection in this systematic review and meta-analysis of brucellosis seroprevalence in India is represented in Fig. 1. The quality assessment was carried out using the Joanna Briggs Institute (JBI) critical appraisal checklist for studies reporting seroprevalence data. Inclusion and exclusion criteria are described in Table 1. Following the set criteria, two independent investigators (MVL and DKS) screened these studies manually and a third investigator (VOR) resolved any disagreement between the two investigators.

The extraction and coding of the study details such as the author, state, publication year, type of test, the total

number of samples tested, number of positive samples, and geographical region were done in Microsoft excel spreadsheets. For each species, studies were further divided into various sub-groups based on diagnostic tests, region, publication year, and sample size. The states which reported the seroprevalence of brucellosis were categorized into the Northern region (Jammu & Kashmir, Himachal Pradesh, Punjab, Haryana, Delhi, Uttarakhand, and Uttar Pradesh), Southern Region (Andhra Pradesh, Telangana, Karnataka, Kerala, and Tamil Nadu), Western region (Rajasthan, Gujarat, Maharashtra and Goa), Central region (Chhattisgarh and Madhya Pradesh), Eastern region (Bihar, Jharkhand, West Bengal, and Odisha), Northeastern region (Sikkim, Assam, Meghalaya, Arunachal Pradesh, Nagaland, Manipur, Mizoram, and Tripura), Andaman & Nicobar Islands, and all India. The sub-groups based on the publication year were done for three publication periods (1970-1986, 1987-2003 and 2004-2020) and based on the sample size were completed for two groups (sample sizes of 1-200 and >200).

Publication bias was assessed by visualizing the symmetry of the funnel plot, rank correlation and Eggers test. Brucellosis seroprevalence was estimated using 92 studies in cattle (sample size=1,23,273), 52 studies in buffalo (sample size = 40,336), 50 studies in sheep (sample size = 51,911), 61 studies in goat (sample size=53,837), 4 studies

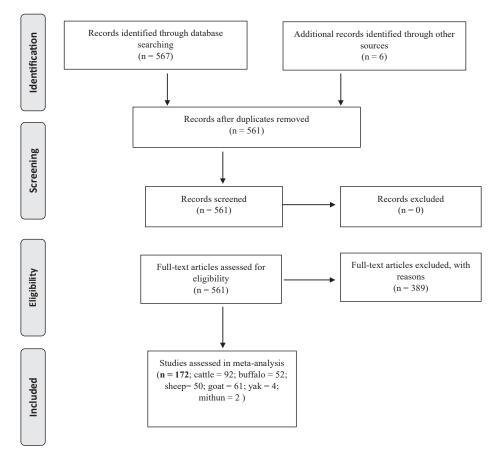


Fig. 1. PRISMA schematic diagram showing the brucellosis seroprevalence studies (January 1970- June 2020) included for meta-analysis.

Table 1. Inclusion and exclusion criteria used for systematic review and meta-analysis on brucellosis seroprevalence in ruminants (1970 - 2020) of India

Inclusion criteria	Exclusion criteria
Studies related to brucellosis with accessible full text.	Studies not related to brucellosis
Studies on brucellosis status in India.	Studies on brucellosis status in countries other than India
Random sampling and sample size mentioned	Purposive sampling and sample size or species were not mentioned
Publication year of the studies (1970 - June, 2020).	Publication year of the studies before 1970 and after June, 2020
Studies that include ruminants only.	Studies which does not include ruminants
Serological diagnosis*	Non- serological diagnosis
Studies specifying the test used for diagnosis, excluding the tests 2-ME and MRT (for bulk milk samples)	Studies not specifying the test used for diagnosis as well as the tests 2-ME and MRT (for bulk milk samples)
Seroprevalence studies about brucellosis	Studies that deal with isolation, serotyping, differentiation of biovars, and review articles that are not related to prevalence of brucellosis

^{*} Studies with single test results and results >1 tests in parallel and sequential testing were included in the meta-analysis and the test giving higher sensitivity was used for estimation of the overall seroprevalence. For diagnostic test-based sub-group analysis, results of the same diagnostic methods employed in each study were combined to estimate the diagnostic test-wise seroprevalence.

in yak (sample size= 760) and 2 studies in mithun (sample size= 170). Baujat plot (Baujat et al. 2002) (Supplementary Fig. 1), Cochran's Q and Higgin's I2 methods were used to assess the study heterogeneity. The meta-analysis was performed using the inverse-variance model (DerSimonian and Laird 1986) and Freeman-Tukey double arcsine transformation (Harris et al. 2008, Nyaga et al. 2014). The pooled estimate was reported as seroprevalence with 95% confidence intervals (CI), and prediction intervals (PI). Using the forest plots (Supplementary Fig. 4), the seroprevalence in each study along with the combined estimated seroprevalence was visualized. To identify the influential studies, a set of case deletion diagnostics such as covariance ratio (COVRATIO), studentized residuals, Cook's distances, the difference in fits values (DFFITS), and leave-one-out estimates, were used (Viechtbauer and Cheung 2010). Sub-group analyses were performed to identify the stratified seroprevalence of brucellosis by different diagnostic tests, regions, publication year, and sample size. However, the sub-group analyses were not conducted for yak and mithun because of fewer studies in each stratum.

The statistical analyses were carried out using the R statistical platform (R Foundation for Statistical Computing, Vienna, Austria version 3.5.1) with "metafor" package (version 2.0-0) and "meta" package (version 4.9-2).

RESULTS AND DISCUSSION

The proportions for brucellosis seroprevalence were estimated with the 172 included studies and the quantitative analyses provided a sample size of 123,273 in cattle, 40,336 in buffaloes, 51,911 in sheep, 53,837 in goats, 760 in yak and 170 in mithun. Three studies in cattle (Chakraborty et al. 2000, Kaushik et al. 2010 and Kushwaha et al. 2015), one in buffalo (Kant et al. 2015), three studies in sheep (Hussain et al. 2017, Padher et al. 2017, Sonekar et al. 2018), and one study in goat (Padher et al. 2017) contributed to the heterogeneity. Except, for the study of

Sonekar *et al.* (2018) on sheep other heterogeneity studies of cattle (3 studies), buffalo (one study), sheep (2 studies), and goat (one study) were identified as influential studies (Supplementary Figs. 2 and 3).

The pooled estimate of brucellosis seroprevalence by random effect (RE) model in cattle was 14% (95% CI: 12% - 16%), and in buffalo was 8% (95% CI: 6% - 9%). The seroprevalence estimate in sheep and goat was 8% (95% CI: 7% - 10%) and 8% (95% CI: 7% - 9%) respectively. The pooled seroprevalence estimate of yak and mithun was 16% (95% CI: 7% - 28%) and 26% (95% CI: 12% - 42%) respectively.

For cattle brucellosis, the estimated region-wise seroprevalence was found to be the highest in the Central region (16%), followed by the Western region (14%) and Andaman & Nicobar Islands (14%). Whereas in buffaloes, the highest seroprevalence was noticed in the Western region (12%), followed by the North-eastern region (9%). Suresh *et al.* (2022) conducted a meta-analysis for the period between 2000 -2020 and estimated brucellosis pooled prevalence of the Central region (19%), Western region (15%), Southern region (12%) and Northern region (11%). The present study meta-analysis between 1970-2020 and the study of Suresh *et al.* (2020) between 2000-2020 indicates the endemicity of brucellosiss in different regions on India.

The national survey done by Isloor *et al.* (1998) found that the seroprevalence of brucellosis in cattle and buffalo was 1.9% and 1.8%, respectively which is much lower when compared to our study. The low level of seroprevalence could be attributed to the use of STAT alone in the estimation of prevalence. By using large random samples, Shome and coworkers (2019) estimated the seroprevalence of 9% in cattle and 5% in buffalo in India. A long-term study indicated the brucellosis seroprevalence of 5% in cattle and 3% in buffaloes (Renukaradhya 2002). Studies reported wide variations in seroprevalence of brucellosis, such as 6.6% in the Central state of Madhya

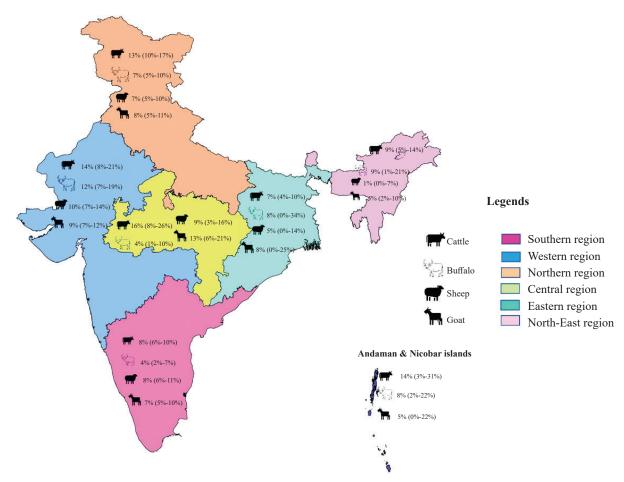


Fig. 2. Region-wise seroprevalence (in percentage with 95% confidence interval) map of brucellosis in cattle, buffalo, goats and sheep.

Pradesh (Mehra et al. 2000), and 60% in the north-eastern state of Assam (Chakraborty et al. 2000).

The region-wise seroprevalence for all the species is depicted in Fig. 2. Period-wise analysis depicted the highest seroprevalence was noticed during 2004-2020 in cattle, buffalo, sheep, and goat. In sheep, the highest seroprevalence was observed in the Western region (10%). While in goats, the highest seroprevalence was noticed in the Central region (13%), followed by the Western region (9 %). The meta-analytic seroprevalence estimate in sheep and goat was 8% (95% CI: 7%-10%) and 8% (95% CI: 7%-9%), respectively. The annual report by NIVEDI (2019) showed the prevalence of brucellosis in goats and sheep nationwide as 5% and 11%, respectively. The present study was in agreement with Shome et al. (2015) who studied the seroprevalence of brucellosis in small ruminants considering all the different Indian regions and found it to be 9% and 6% in sheep and goats, respectively, in agreement with our study. A recent countrywide study by Shome et al. (2021) revealed higher seropositivity in sheep (11.55%) compared to goats (5.37%).

Several diagnostic tests were used in the identification of brucellosis in animals. Variation of brucellosis seroprevalence was noticed in diagnostic test-based subgroup analysis. However, the sample size-wise sub-group analysis observed fewer variations in the brucellosis seroprevalence of ruminants in India.

Hitherto, given the estimated animal population of 2021, the meta-analysis estimated that the total number of seropositive animals would be 26.95 million cattle (95% CI: 23.09–30.78), 8.78 million buffaloes (95% CI: 6.59–9.89), 5.94 million sheep (95% CI: 5.20–7.43), 11.91 million goats (95% CI: 10.42–13.40), 9.6 thousand yaks (95% CI: 0.0042–0.0168), and 100 thousand mithun (95% CI: 0.05–0.16).

The region-wise analysis of different species of ruminants showed that brucellosis seroprevalence was higher in the Western region for buffalo (12%) and sheep (10%), meanwhile the Central region for cattle (16%) and goats (13%). Kanani *et al.* (2018) have also reported a high seroprevalence of 23.57% among sheep in Gujarat, the Western state of India. The increase in the number of samples covering a wide geographical area could be the reason for this high seropositivity. High seroprevalence of brucellosis (31-37.8%) was reported among buffalo in different Western states of India (Soni *et al.* 2014, Kala *et al.* 2018). The use of ELISA as the diagnostic test may be the result of this high seroprevalence. Jain *et al.* (2019), Shome *et al.* (2019), Namrata *et al.* (2016), and Maiti *et al.* (2012) have also reported a high prevalence of brucellosis among

cattle in the Central region of India at 15%, 11%, 25.8%, 31.2%, respectively. The prevalence reported by Jain *et al.* (2019) of 15% is similar to our study. Sai *et al.* (2018) have reported a prevalence (13.6%) similar to our study among goats in the central region of India. Bandyopadhyay *et al.* (2009) studied the seroprevalence of brucellosis in yak using RBPT,STAT and AB-ELISA and the seroprevalence ranged between 18.98 % - 23.79% by these three tests. A study conducted by Rajkhowa *et al.* (2005) in mithuns maintained at the National Research Centre on Mithun, Nagaland, India revealed that the number of animals found positive for brucellosis in AB-ELISA, STAT, RBPT were 34, 20 and 11%, respectively.

Publication period-wise analysis showed that the seroprevalence of brucellosis was highest during 2004-2020 in cattle (15%), buffalo (11%), goats (9%), and sheep (9%). Overall, an increasing trend of brucellosis seroprevalence was observed since 1970. Gill *et al.* (2000) observed an increase in seroprevalence of brucellosis in Punjab state from 1990 to 1999 among ruminants. The absence of a vaccination program among the majority of the Indian farms may be the cause of this increasing trend. Shome *et al.* (2020) also identified the drastic increase in brucellosis seropositivity among small ruminants of Indian states between 2006-2018, similar to this study. This increase in brucellosis seroprevalence is believed to be highly attributed to the lack of vaccination among small ruminants (Pushpa 2005).

In this study, we have found that there is a high variation in the choice of diagnostic test used for brucellosis. This meta-analysis identified approximately 15 different kinds of diagnostic tests used for the estimation of brucellosis seroprevalence. This systematic review identified a few studies that used STAT or RBPT for seroprevalence, both the tests have lower specificity and sensitivity compared with the methods recommended (indirect- ELISA and Fluorescence Polarization Assay) by WHO (Corbel *et al.* 2006, Franco *et al.* 2007). A comparison study based on sensitivity and specificity analysis of various diagnostic tests for brucellosis showed the buffered plate agglutination test (BPAT) to be the best among the conventional tests (Gall and Nielsen 2004). Hence, the selection of a proper diagnostic test is important for brucellosis serosurveillance.

The Brucellosis Control Programme (B-CP), which started in 2010 focused only on selected districts of India, however, the recently implemented National Animal Disease Control Programme (NADCP) focuses on all the districts of India and targets vaccination bovine calves of 4-8 months. This systematic review and meta-analysis on brucellosis seroprevalence may give a comprehensive idea to the decision-making authorities for implementing an efficient brucellosis control programme.

A few limitations of the study are that the risk factors associated with brucellosis seroprevalence were not analyzed due to the scarcity of random sample studies in each species including the risk factors which was not sufficient to perform an effective meta-analysis. Most of

the studies mixed-up the risk factors and risk indicators. This systematic review and meta-analysis indicate that brucellosis is endemic across India, hence widespread surveillance is required for understanding the overall prevalence of brucellosis. Being zoonotic, brucellosis prevalence should be monitored more intensively to gather comprehensive information and to identify the high-risk areas to adopt better prevention and control measures.

ACKNOWLEDGEMENTS

The authors are thankful to the Director and Joint Director (Research), ICAR-Indian Veterinary Research Institute, Izatnagar, India, for providing the necessary facilities for the study.

REFERENCES

Abedi A S, Hashempour-Baltork F, Alizadeh A M, Beikzadeh S, Hosseini H, Bashiry M, Taslikh M, Javanmardi F, Sheidaee Z, Sarlak Z and Mofid V. 2020. The prevalence of *Brucella* spp. in dairy products in the Middle East region: A systematic review and meta-analysis. *Acta Tropica* 202: 105241.

Alonso S, Dohoo I, Lindahl J, Verdugo C, Akuku I and Grace D. 2016. Prevalence of tuberculosis, brucellosis and trypanosomiasis in cattle in Tanzania: A systematic review and meta-analysis. *Animal Health Research Reviews* **17**(1): 16–27.

Bandyopadhyay S, Sasmal D, Dutta T K, Ghosh M K, Sarkar M, Sasmal N K, Bhattacharya M. 2009. Seroprevalence of brucellosis in yaks (*Poephagus grunniens*) in India and evaluation of protective immunity to S19 vaccine. *Tropical Animal Health and Production* **41**: 587–92.

Barman N N, Patil S S, Kurli R, Deka P, Bora D P, Deka G, Ranjitha K M, Shivaranjini C, Roy P and Suresh K P. 2020. Meta-analysis of the prevalence of livestock diseases in North Eastern Region of India. *Veterinary World* **13**(1): 80.

Baujat B, Mahé C, Pignon J P and Hill C. 2002. A graphical method for exploring heterogeneity in meta-analyses: Application to a meta-analysis of 65 trials. *Statistics in Medicine* **21**(18): 2641–52.

Chakraborty M, Patgiri G P and Sarma D K. 2000. Use of rose Bengal plate test, serum agglutination test and indirect ELISA for detecting brucellosis in bovines. *Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases* 21(1): 24–5.

Corbel M J. 2006. Brucellosis in humans and animals. World Health Organization.

Dean A S, Crump L, Greter H, Schelling E and Zinsstag J. 2012. Global burden of human brucellosis: A systematic review of disease frequency. *PLoS Neglected Tropical Diseases* 6(10): 1865.

Deeks J J, Higgins J P, Altman D G and Cochrane Statistical Methods Group. 2019. Analysing data and undertaking metaanalyses. Cochrane Handbook for Systematic Reviews of Interventions 23: 241–84.

Deka R P, Magnusson U, Grace D and Lindahl J. 2018. Bovine brucellosis: Prevalence, risk factors, economic cost and control options with particular reference to India-A review. *Infection Ecology and Epidemiology* 8(1): 1556548.

García del Pozo J and Solera J. 2012. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. *PloS One* **7**(2): 32090.

DerSimonian R and Laird N. 1986. Meta-analysis in clinical

- trials. Controlled clinical trials. 7(3): 177-88.
- Egger M, Smith G D, Schneider M and Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *British Medical Journal* **315**(7109): 629–34.
- Fagard R H, Staessen J A and Thijs L. 1996. Advantages and disadvantages of the meta-analysis approach. *Journal of Hypertension* 14(2): S9.
- FAOSTAT. 2021. Milk total production in India. https://www.fao. org/dairy-production-products/production/en/. Accessed on 1st July 2022.
- Franco M P, Mulder M, Gilman R H and Smits H L. 2007. Human brucellosis. *The Lancet infectious diseases* **7**(12): 775–86.
- Gall D and Nielsen K. 2004. Serological diagnosis of bovine brucellosis: A review of test performance and cost comparison. Revue scientifique et technique (International Office of Epizootics) 23(3): 989–1002.
- Gill J, Kaur S, Joshi D and Sharma J. 2000. Epidemiological studies on brucellosis in farm animals in Punjab state of India and its public health significance. Proceedings of the 9th International Symposium on "*Veterinary Epidemiology and Economics*". Breckenridge, CO, USA, 6-11.
- Harris R J, Deeks J J, Altman D G, Bradburn M J, Harbord R M and Sterne J A. 2008. Metan: Fixed-and random-effects meta-analysis. *The Stata Journal* 8(1): 3–28.
- Hussain T, Shaheen M, Rasool S, Shah S A, Bhat A M, Tahreem S, Kashoo Z A, Mir M S, Magrey A N and Shah O S. 2017. Seroprevalence of brucellosis in ovines of Ganderbal district of Kashmir Valley. *Journal of Entomology and Zoology* Studies 5(6): 536–40.
- Isloor S, Renukaradhya G J and Rajasekhar M. 1998. A serological survey of bovine brucellosis in India. *Revue scientifique et technique (International Office of Epizootics)* **17**(3): 781–5.
- Jain L, Kumar V, Chaturvedi S, Roy G and Barbuddhe S B. 2019. Seroprevalence of brucellosis in bovines of Chhattisgarh, India. *Indian Journal of Animal Research* 53(2): 255–9.
- Kanani A, Dabhi S, Patel Y, Chandra V, Kumar O V and Shome R. 2018. Seroprevalence of brucellosis in small ruminants in organized and unorganized sectors of Gujarat state, India. *Veterinary World* **11**(8):1030.
- Kant N, Kulshreshtha P, Singh R, Mal A, Dwivedi A, Ahuja R, Mehra R, Tehlan M, Ahmed P, Kaushik S and Kumar S. 2018. A study to identify the practices of the buffalo keepers which inadvertently lead to the spread of brucellosis in Delhi. BMC Veterinary Research 14(1): 1–8.
- Kaushik P, Quasim A, Kumar M, Singh D K and Dayal S. 2010. Seroprevalence of bovine brucellosis in and around Patna, Bihar. *Journal of Veterinary Public Health* **8**(2): 135–6.
- Khademi F, Yousefi-Avarvand A, Sahebkar A, Mohammadi-Ghalehbin B, Arzanlou M and Peeridogaheh H. 2018.
 Drug resistance of clinical and environmental isolates of Brucella species in Iran: a meta-analysis. *Reviews in Medical Microbiology* 29(4): 166–72.
- Khan M Z and Zahoor M. 2018. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. *Tropical Medicine and Infectious Disease* **3**(2): 65.
- Kushwaha N, Rajora V S, Mohan A and Gupta T K. 2015. Comparative efficacy of diagnostics used for detection of Brucella antibodies in cattle. *The Indian Veterinary Journal* 92(4): 18–20.
- Li Y J, Li X L, Liang S, Fang L Q and Cao W C. 2013. Epidemiological features and risk factors associated with

- the spatial and temporal distribution of human brucellosis in China. *BMC Infectious Diseases* **13**(1): 1–2.
- Maiti S K, Armo M and Mohan K. 2012. Seroprevalence of Brucellosis (*Brucella abortus*) in Cattle of Chhattisgarh. *Indian Veterinary Journal* **89**(2): 80.
- Malik Y S, Bhat S, Kumar O V, Yadav A K, Sircar S, Ansari M I, Sarma D K, Rajkhowa T K, Ghosh S and Dhama K. 2020. Classical swine fever virus biology, clinicopathology, diagnosis, vaccines and a meta-analysis of prevalence: A review from the Indian Perspective. *Pathogens* 9(6): 500.
- Mehra K N, Dhanesar N S and Chaturvedi V K. 2000. Seroprevalence of brucellosis in bovines of Madhya Pradesh. *Indian Veterinary Journal* 77(7): 571–73.
- Migisha R, Nyehangane D, Boum Y, Page AL, Zúñiga-Ripa A, Conde-Álvarez R, Bagenda F and Bonnet M. 2018. Prevalence and risk factors of brucellosis among febrile patients attending a community hospital in south western Uganda. Scientific Reports 8(1): 1–8.
- Moosazadeh M, Abedi G, Kheradmand M, Safiri S and Nikaeen R. 2016. Seasonal pattern of brucellosis in Iran: A systematic review and meta-analysis: 62–72.
- Namrata S, Brihaspati B and Patel R K. 2016. Comparative seroprevalence study of brucellosis in cattle by Rose Bengal plate test and milk ring test in Vindhya region of Madhya Pradesh. *Environment and* Ecology **34**(4B): 2193–6.
- Nyaga V N, Arbyn M and Aerts M. 2014. Metaprop: A Stata command to perform meta-analysis of binomial data. *Archives of Public Health* **72**(1):1–0.
- Olsen S C and Palmer M V. Advancement of knowledge of Brucella over the past 50 years. 2014. *Veterinary Pathology* **51**(6): 1076–89.
- Padher R R, Nayak J B, Brahmbhatt M N, Patel S M and Chaudhary J H. 2018. Seroprevalence of Brucella melitensis Among small ruminants and humans in Anand region of central Gujarat. *India International Journal of Current Microbiology* and Applied Sciences 7(3): 3522–30.
- Patil S S, Suresh K P, Saha S, Prajapati A, Hemadri D and Roy P. 2018. Meta-analysis of classical swine fever prevalence in pigs in India: A 5-year study. *Veterinary World* 11(3): 297.
- Pushpa R N. 2005. Serosurveillance of brucellosis in bovine and ovine. *Indian Veterinary Journal (India)*.
- Rajkhowa S, Rahman H, Rajkhowa C and Bujarbaruah K M. 2005. Seroprevalence of brucellosis in mithuns (*Bos frontalis*) in India. *Preventive Veterinary Medicine* **69**(1-2): 145–51.
- Ran X, Cheng J, Wang M, Chen X, Wang H, Ge Y, Ni H, Zhang X X and Wen X. 2019. Brucellosis seroprevalence in dairy cattle in China during 2008–2018: A systematic review and meta-analysis. *Acta Tropica* **189**: 117–23.
- Ran X, Chen X, Wang M, Cheng J, Ni H, Zhang X X and Wen X. 2018. Brucellosis seroprevalence in ovine and caprine flocks in China during 2000–2018: A systematic review and meta-analysis. *BMC Veterinary Research* **14**(1): 1–9.
- Renukaradhya G J, Isloor S and Rajasekhar M. 2002. Epidemiology, zoonotic aspects, vaccination and control/eradication of brucellosis in India. *Veterinary Microbiology* **90**(1-4): 183–95.
- Rupner R N, VinodhKumar O R, Karthikeyan R, Sinha D K, Singh K P, Dubal Z B, Tamta S, Gupta V K, Singh B R, Malik Y S and Dhama K. 2020. Bluetongue in India: A systematic review and meta-analysis with emphasis on diagnosis and seroprevalence. *Veterinary Quarterly* **40**(1): 229–42.
- Sai P, Shakya S, Chandrakar C and Ali S L. 2018. Sero-prevalence of Brucellosis in Small Ruminants and Human in Chhattisgarh.

- Journal of Animal Research 8(3): 531-5.
- Shome R, Kalleshamurthy T, Rathore Y, Ramanjinappa K D, Skariah S, Nagaraj C, Mohandoss N, Sahay S, Shome B R, Kuralayanapalya P S and Roy P. 2021. Spatial sero-prevalence of brucellosis in small ruminants of India: Nationwide cross-sectional study for the year 2017–2018. *Transboundary and Emerging Diseases* **68**(4): 2199–208.
- Shome R, Triveni K, Padmashree B S, Sahay S, Krithiga N, Shome B R and Rahman H. 2015. Spatial distribution of brucellosis in small ruminants of India using indigenously developed ELISA kit. *Journal of Pure and Applied Microbiology* 9(3): 2285–91.
- Shome R, Triveni K, Swati S, Ranjitha S, Krithiga N, Shome B R, Nagalingam M, Rahman H and Barbuddhe S B. 2019. Spatial seroprevalence of bovine brucellosis in India—A large random

- sampling survey. Comparative Immunology, Microbiology and Infectious Diseases 65: 124–7.
- Sonekar C P, Kale S, Bhoyar S, Paliwal N, Shinde S V, Awandkar S P, Khan W, Chaudhari SP and Kurkure NV. 2018. Brucellosis in migratory sheep flock from Maharashtra, India. *Tropical Animal Health and Production* **50**(1): 91–6.
- Soni M, Shringi B N, Maherchandani S and Kashyap S K. 2014. Seroprevalence study of bubaline brucellosis in Kota division of Rajasthan using various serodiagnostic tests. *Indian Journal of Animal Sciences* **84**(7): 745–6.
- Suresh K P, Patil SS, Nayak A, Dhanze H, Rajamani S, Shivamallu C, Cull C A and Amachawadi R G. 2022. Prevalence of brucellosis in livestock of African and Asian continents: A systematic review and meta-analysis. *Frontiers in Veterinary Science* 9(9): 923657.