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ABSTRACT

The present study was designed to assess the seasonal perturbations in key antioxidant parameters: ferric reducing 
antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging activity, lipid per oxidation 
(LPO), uric acid and reduced glutathione (GSH) assay along with expression profile of genes that regulate the 
antioxidant pathway: manganese superoxide dismutase (SOD2), Glutathione Peroxidase 1 (GPX1) and apoptosis 
pathway: B-cell lymphoma 2 (BCL2) and Bcl-2-associated X protein (BAX) in the two crucial indicine cattle breeds- 
Sahiwal and Kankrej. The study was carried out in the hot-arid region of Rajasthan across four seasons, wherein, 
the meteorological parameters were recorded across seasons to calculate the prevailing temperature-humidity index 
(THI) to assess the extent of heat load on cows. The study revealed huge diurnal variations in the temperature across 
four seasons, while the THI during summer and hot-humid seasons was well in excess of 80, highlighting significant 
heat stress on cows. All the key antioxidant parameters, except GSH registered an increase with the incremental THI. 
The transcriptional profile of SOD2 and GPX1 mRNA expression revealed significantly higher expression during 
the higher THI months of both summer and hot-humid seasons. The expression pattern of BAX and BCL2 mRNA 
in PBMCs of Sahiwal cows revealed an initial induction during the month of summer season with significantly 
higher expression, followed by a decline by the hot-humid season. The findings highlight a crucial role played by 
antioxidant defence and genes regulating apoptosis pathway in thermotolerance of indicine cattle breeds.
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Heat stress is a key abiotic stressor that negatively 
impacts animal productivity and welfare, globally (Collier 
et al. 2017). As the surface temperature in India has 
recorded an increasing trend, it presents a formidable 
challenge for the animal sector. The increase in intensity 
and frequency of heat waves in India will put dairy 
animals under substantial thermal stress (IPCC 2022). The 
already stretched resources of agriculture and livestock in 
the country are threatened due to unpredictable climate 
patterns, further worsening thermal stress on animals, 
especially dairy cows. Better understanding of the effects 
of climate on the animals and their subsequent response, 
will help in better management decisions, at the same time 
enhancing animal welfare (Polsky and von Keyserlingk 
2017).

Heat stress in animals have been associated with 

increased free radicals, especially, reactive oxygen species 
(ROS) production. Antioxidants are the very first line of 
defence against the deleterious effects of ROS, and related 
free radicals that are main culprits of cellular damage. 
The role of antioxidants in protecting the cells against 
various shocks can’t be stressed enough, especially when it 
comes to the attack of reactive oxygen species (ROS) and 
free radicals (Lallawmkimi 2010, Yatoo et al. 2014). The 
changes in antioxidant defence parameters of vertebrates 
in relation to the season indicates a composite disclosure 
of impact of various biotic and abiotic factors on the 
physiological state of animals (Chainy et al. 2016). The 
cows reared in the hot arid ambience of western Rajasthan 
are perpetually exposed to huge diurnal temperature 
fluctuations and stressful environment round the year with 
scorching summer, highly hot-humid and short monsoon, 
and very cold winters (Gujar et al. 2022). Hence, this study 
was an attempt to understand the key adaptations of two 
important indicine cattle breeds, the Sahiwal and Kankrej 
cows at cellular levels that aids in thermotolerance in harsh 
desert environment in a comprehensive manner. 
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MATERIALS AND METHODS

Location and climatic conditions: This study was 
conducted over a period of one year (2019-20) spanning 
across four seasons (winter, spring, hot summer, hot-humid) 
in Sahiwal and Kankrej cattle, the two major native cattle 
breeds of India maintained in the cattle yard of livestock 
research station (LRS), Kodamdesar, about 32 km away 
from the city of Bikaner, Western Rajasthan, India. The 
LRS is situated at an altitude of 201 meters above the mean 
sea level in the Thar Desert. Since the place is located in 
the arid region, it is subjected to extremes climate with 
scorching summer having temperatures as high as 45°C 
and beyond; and a very chilly winter where temperature 
drops to around 5ºC or below, with very little precipitation.

Experimental animals and management: A total of 30 
apparently healthy animals of Sahiwal (n=15) and Kankrej 
(n=15) breeds were randomly selected and kept loose in an 
open paddock throughout the day and night. There were 
provisions for shelter along one side of the paddocks that 
served the need of animal to rest during day or night time. 
The animals were housed in tie-barn with individual tying 
system in a row at the time of milking, feeding, and during 
blood sample collection. 

Sampling procedure: At each sampling day, every 
season, the temperature and humidity values of farm 
microenvironment was recorded twice, morning (8:00-
10:00 am) and afternoon (1:30-3:30 pm) time points for 
three consecutive days using digital thermo-hygrometer 
and temperature humidity index (THI) was calculated 
using the formula:

THI = (1.8 × Tdb +32) ˗ (0.55-0.0055×RH) ×  
(1.8×Tdb-26), (NRC, 1971)

Where, Tdb, dry bulb temperature in °C and RH, relative 
humidity (%).

The blood samples were collected during the afternoon 
period every season, from each animal under study. 
For serum isolation, 7-8 ml blood was collected from 
both Sahiwal (n=15) and Kankrej (n=15) cows in plain 
vacutainer tubes (without any anticoagulant), after proper 
restraining of the animals. The samples were carefully 

drawn by puncturing the jugular vein of the animals. All 
the sampling and restraining of animals was done as per 
the guidance and approval of Institute Animal Ethical 
Committee (IAEC). The tubes were centrifuged at 3000 
rpm for 15 min at 4˚C for serum and stored at -40°C until 
further analysis was done. 

Estimation of antioxidant parameters: The serum 
samples of Sahiwal and Kankrej cows representing 
four seasons were processed in duplicates to assess the 
different antioxidant parameters. The absorbance in 
different protocols in this study was recorded in Microplate 
reader (Tecan-i-control Infinite 200 PRO, Männedorf, 
Switzerland).

Parameters studied
Ferric reducing/antioxidant power (FRAP) assay for 

total antioxidant capacity (TAC): The protocol originally 
described by Benzie and Strain (1999) was used with little 
customization.

DPPH (2,2-di(4-tert-octylphenyl)-1- icrylhydrazyl) 
assay for measurement of scavenging activity: It was 
determined as the percentage of DPPH• scavenged 
by serum as per the procedure originally described by 
Chrzczanowicz et al. (2008) with minor modifications.

Lipid peroxidation assay (LPO): The LPO assay was 
carried out according to the protocol of Buege and Aust 
(1978) with few modifications. 

Reduced glutathione (GSH) assay: Serum GSH 
concentration was measured as per Moron et al. (1979) 
with some minor modifications.

Uric acid assay: For estimation of uric acid, a kit based 
on phosphotungstate method (M/s Span diagnostic) was 
used. 

Transcriptional analysis of heat shock protein and 
apoptotic genes

Blood collection: Blood samples (7-8 ml) were collected 
from Sahiwal (n=5) and Kankrej (n=5) cows in each season 
in EDTA-vacutainer tubes to isolate RNA from peripheral 
blood mononuclear cells (PBMCs). 

Isolation of peripheral blood mononuclear cells 
(PBMCs): A total of 40 PBMCs (5 samples × 4 seasons × 2 

Table 1. Primer sequences and other details for reference genes (RGs)

Gene Sequence Region Product length Accession No.
ACTB F GCGTGGCTACAGCTTCACC 677-730 54 NM_173979.3

R TTGATGTCACGGACGATTTC
B2M F CTGCTATGTGTATGGGTTCC 169-309 141 NM_173893.3

R GGAGTGAACTCAGCGTG
GAPDH F TGGAAAGGCCATCACCATT 275-327 53 NM_001034034.2

R CCCACTTGATGTTGGCAG
RPS9 F CCTCGACCAAGAGCTGAAG 128-191 64 NM_001101152.2

R CCTCCAGACCTCACGTTTGT
RPS15 F GAATGGTGCGCATGAATGT 29-129 101 NM_001037443.2

R GACTTTGGAGCACGGCCTA
RPS23 F CCCAATGATGGTTGCTTGAA 287-387 101 NM_001034690.2

R CGGACTCCAGGAATGTCAC
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breeds) were isolated from whole blood for gene expression 
profiling. PBMCs was extracted using Hisep LSM 1084 
reagent following manufacturer’s protocol.

Total RNA extraction and primers: Total RNA extraction 
was done using Trizol reagent (RDP Trio™, Himedia) 
as per the manufacture’s protocol. The details of primers 
for reference genes and target genes are provided in  
Tables 1 and 2.

Complementary DNA (cDNA) synthesis: RNA of high 
purity, with mean optical density (O.D) ~ 2.084±0.014, 
were used for synthesis of cDNA. Briefly, 200 ng of total 
RNA was reverse transcribed into cDNA using RevertAidTM 
First Strand cDNA Synthesis Kit (Thermo Scientific™, 
USA) at 25°C for 5 min, followed by 50°C for 60 min and 
finally 70°C for 15 min following manufacturer’s method. 

Real time quantitative PCR: Maxima SYBR Green/
ROX qPCR Master Mix (Thermo Scientific, Massachusetts, 
United States) was used in Applied Biosystem Step 
One Plus instrument (ABI, Thermo Fischer Scientific, 
California, USA) and procedure was carried out as per 
manufacturer’s method. 

Statistical analysis: The raw data pertaining to 
antioxidant parameters was subjected to one way ANOVA 

and Tukey’s post-hoc comparison test with p<0.05 value 
considered as significant in SPSS version 24. For analysis 
of qPCR data, the most stable RGs for normalization of 
data was selected based on output of geNorm, Normfinder, 
Bestkeeper, and refFinder software. The expression data 
was normalized using the best stable reference genes as 
per the relative quantification 2-ΔΔCT method described by 
Livak and Schmittgen (2001). Finally, the fold change in 
expression of individual genes was calculated to determine 
whether a particular gene was up-regulated or down-
regulated in PBMCs samples of two cattle breeds across 
seasons.

RESULTS AND DISCUSSION

The prevailing meteorological parameters and THI are 
presented in Fig. 1. Data pertaining to the microclimatic 
attributes revealed significant diurnal variation in 
temperature across all four seasons. The THI was highest 
(95.39±0.56) during the afternoon of hot-humid season, 
followed by summer noon (87.23±0.37). The THI across 
both summer and hot-humid season was well beyond the 
thermal comfort zone established for dairy cows.

The role of antioxidants in protecting the cells against 

Table 2. Primer sequences and other details for target genes 

Gene Primer Sequence Region Product Size Accession No.
Gpx F TTCGAGAAGTTCCTGGTG 587-688 102 NM_174076.3

R GGACAGCAGGGTTTCAAT
SOD2 F CGCTGGAGAAGGGTGATC 284-383 100 NM_201527.2

R AGATTTGTCCAGAAGATGCTGTGA
Bax F TTTGCTTCAGGGTTTCATCC 75-320 246 NM_173894.1

R CAGTTGAAGTTGCCGTCAGA
Bcl2 F ATGTGTGTGGAGAGCGTCAA 439-639 201 NM_001166486.1

R CAGACTGAGCAGTGCCTTCA

Fig. 1. Prevailing climatic conditions across four seasons at Livestock research station (LRS), Kodamdesar.
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various shocks can’t be stressed enough, especially when it 
comes to the attack of reactive oxygen species (ROS) and 
free radicals. The changes in antioxidant defence parameters 
of vertebrates in relation to the season indicates a composite 
disclosure of impacts of various biotic and abiotic factors on 
the physiological state of animals (Chainy et al. 2016). The 
data pertaining to various antioxidant parameters recorded 
in Sahiwal and Kankrej cows during winter, spring, summer 
and hot-humid seasons have been presented in Table 3.  
Statistical analysis revealed significantly higher DPPH 
scavenging activity (p<0.05) during the spring, winter, 
and hot-humid seasons in both Sahiwal and Kankrej cows 
(Fig. 2a). DPPH scavenging activity of biological fluids 
has been used as a crucial parameter for evaluation of the 

antioxidant capacity in terms of their radical scavenging 
capability. In Sahiwal cattle, the DPPH scavenging activity 
reduced with increase in the temperature (spring and hot 
summer), however, its value increased during hot-humid 
season. Overall, the DPPH scavenging activity was 
significantly lower (p<0.05) during spring and summer 
seasons compared to winter and hot-humid seasons. The 
DPPH scavenging activity in Kankrej cows followed a 
similar trend, however, the induction began in summer 
season, and recovery was evident by hot-humid season. 
Similar trend in DPPH activity was reported by Cecchini 
and Fazio (2020) who found an initial decrease in the 
DPPH scavenging activity when stress was encountered, 
followed by recovery as the body acclimatized. Similarly, 

Table 3. Mean±SEM of various antioxidant parameters of Sahiwal and Kankrej cows across four seasons

Season Breed Winter Spring Summer Humid
DPPH Scavenging activity (%) Sahiwal 73.58±0.67 b 66.22±2.16abx 57.65±1.29ax 73.15±0.60b

Kankrej 73.56±0.59b 73.08±0.74by 63.55±1.66ay 73.49±0.32b

FRAP (µM/L) Sahiwal 370.04±9.89b 385.87±9.12b 437.18±22.47ax 458.09±19.55a

Kankrej 392.15±11.79b 422.31±13.74a 459.08±16.20ay 434.53±11.87a

MDA Sahiwal 9.98±0.55b 9.45±0.66b 14.98±0.96a 14.52±0.79a

Kankrej 10.0±0.40b 9.95±0.82b 13.29±0.68a 14.02±0.58a

GSH (µM/L) Sahiwal 158.63±15.99ax 927.18±27.79bx 240.43±13.86a 196.68±22.25ax

Kankrej 138.03±16.85ay 659.47±15.25by 188.15±16.19a 129.31±12.17ay

Uric acid (mg/dl) Sahiwal 3.10±0.05 a 3.36±0.06 a 3.32±0.12ax 5.39±0.16b

Kankrej 3.61±0.09a 3.43±0.11a 3.27±0.09ay 5.16±0.09b

Mean bearing different superscripts (a,b,c,d) in a row vary significantly p<0.05. Mean bearing different superscripts (x,y,z) in a 
column vary significantly p<0.05.

Fig. 2. Graphs showing different antioxidant parameters: (a) Serum DPPH scavenging activity of Sahiwal and Kankrej cows across 
four seasons; (b) Serum FRAP of Sahiwal and Kankrej cows across four seasons; (c) Serum GSH levels of Sahiwal and Kankrej cows 
across four seasons; (d) Serum uric acid concentration of Sahiwal and Kankrej cows across four seasons; (e) Serum MDA concentration 
of Sahiwal and Kankrej cows across four seasons. [Note-bars bearing different alphabets (a,b,c) shows significant difference in Sahiwal 
cows while bars bearing different symbols ($,#) shows significant difference in Kankrej cows for serum uric acid levels between seasons].
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Giri et al. (2018) also reported a decreased serum DPPH 
scavenging activity in serum of Jersey cows when they 
were exposed to substantial cold stress. However, data 
pertaining to seasonal modulations in DPPH scavenging 
activity of serum in livestock species is still lacking. Earlier 
studies on DPPH scavenging activity were mostly centred 
on food items including animal products. Recently there 
have been few studies that employed the evaluation of 
DPPH scavenging activity in blood plasma/serum to assess 
TAC in animals (Lamo et al. 2020). The FRAP assessment 
is also a widely used method employed to evaluate the 
TAC in animals.  The FRAP values were significantly 
higher (p<0.05) during the hot-humid and summer seasons 
in both Sahiwal and Kankrej breeds, compared to Spring 
season (Fig. 2b). Between breed analysis revealed a 
statistically higher (p<0.05) FRAP in Kankrej cows during 
summer season, but other seasons did not reveal any breed 
influence. The variation during summer season might 
be due to difference in thermal adaptability. The TAC of 
Sahiwal cows in terms of their serum FRAP was found to 
be significantly higher (p<0.05) during the hotter months 
of summer and hot-humid seasons, compared to winter 
and spring seasons. Similarly, the FRAP values in Kankrej 
cows were significantly higher (p<0.05) during the hotter 
months of summer and hot-humid seasons, compared to 
winter and spring seasons. On breed-wise comparison, 
the FRAP values were significantly higher in Kankrej 
cows during summer season compared to Sahiwal cows. 
However, no significant breed interaction was evident in 
FRAP values of Sahiwal and Kankrej cows across hot-
humid, winter, and spring seasons. The trends evident in 
FRAP values in our study concurs with the earlier reports 
of Kumar et al. (2019) who reported an increased FRAP 
in Hariana Bos indicus cows as the THI increased to 84. 
Similar to our findings, Cecchini and Fazio (2020) also 
reported increased FRAP in stressed hen. The FRAP 
is mainly determined by endogenous antioxidants like 
ascorbic acid (vitamin C), α-tocopherol (vitamin E), 
uric acid, bilirubin, and polyphenolic compounds while 
disregarding thiol compounds like GSH (an important 
cellular antioxidant) and high molecular mass compounds 
like albumin (Benzie and Devaki 2018). The increase in 
FRAP can be attributed to the response of animal body 
to an increased oxidative challenge as the THI increases. 
The animals cope with increased attack of pro-oxidants by 
increasing the various antioxidant molecules and enzymes 
(Mirzad et al. 2017), that translates into an increased TAC. 
Contradictory to present findings, there have been reports 
of a decreased FRAP in cows when they were subjected 
to thermal stress conditions (Aengwanich et al. 2011, Giri  
et al. 2018). However, the disagreement in FRAP values 
may be on the account of difference in antioxidant capability 
of the cow breeds under study, as animals that are able to 
ward of oxidative challenge on account of a better evolved 
antioxidant system will in turn have higher TAC/FRAP. 

The two important endogenous antioxidants, GSH and 
Uric acid (Fig. 2c and 2d) in serum samples of the two 

cattle breeds investigated were also evaluated. The GSH 
levels were evaluated in both Sahiwal and Kankrej cows, 
across four seasons. The GSH levels revealed a decreasing 
trend with the increase in THI in both Sahiwal and Kankrej 
cows. This concurs with the findings of Sakatani et al. 
(2012) who reported significantly lower GSH levels in 
Japanese black cows during summer season, compared 
to thermoneutral season. Interestingly, the GSH values 
were significantly higher during the spring season in both 
Sahiwal and Kankrej cows, compared to all the three 
seasons of winter, summer and hot-humid ambience. The 
lowered values of GSH during stressful periods have been 
reported in several studies in animals (Bozuklukhan et al. 
2017, El-Mandrawy and Alam 2018, Yeotikar et al. 2019). 
The understanding of GSH metabolism suggest a shift 
towards oxidation, wherein GSH gets oxidized to produce 
GSSG, as a response of animal body to deal with free 
radical attack (Lakritz et al. 2002). It is a well-established 
fact that GSH is a potent free radical scavenger. However, 
the GSH level is under the control of numerous factors that 
works in tandem, the feed quality and availability being 
one of them (Nečasová et al. 2019). The availability of 
quality green feed during spring season also translated 
into higher GSH levels in both Sahiwal and Kankrej cows.  
The present study noted significant breed interaction in 
GSH levels across winter, spring and hot-humid seasons, 
with significantly higher levels in Sahiwal cows across 
all three seasons. This concurs with the reports of Kumar  
et al. (2019) who found variation in GSH levels according 
to breed, while working with different Indian goat breeds. 
Uric acid, another potent endogenous radical scavenger was 
also evaluated in both Sahiwal and Kankrej cows, across all 
four seasons. The uric acid levels were significantly higher 
during hot-humid season in both Sahiwal and Kankrej 
cows. While no significant difference was evident in uric 
acid levels during summer season. This is in line with the 
findings of Giri et al. (2018) and Sakatani et al. (2012) 
who found higher uric acid levels when cows were under 
thermal stress. Recent metabolomic insights into candidate 
markers of HS revealed significant fold increase in uric acid 
of heat stressed Holstein cows (Fan et al. 2018). Rathwa 
et al. (2017) also reported a higher Uric acid level during 
summer season in indicine sheep breed. Similarly, higher 
uric acid levels were reported in the urine of Xuanhan 
yellow cattle compared to crossbred cows and yaks, 
concomitant with lower allantoin levels (Liao et al. 2018). 
The higher level of uric acid under stressful conditions is 
believed to be associated with higher purine metabolism, as 
uric acid is a by-product of purine metabolism the uric acid 
values increases concomitantly. Whenever the animal body 
encounters oxidative stress that manifests into higher ROS, 
uric acid gets converted to allantoin, however animals 
capable of coping with OS challenge register higher uric 
acid that helps in warding off the OS by scavenging the 
free radicals. 

The extent of lipid peroxidation in terms of MDA 
was also evaluated in both Sahiwal and Kankrej cattle 
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breeds, across all four seasons. The susceptibility of lipids, 
particularly the unsaturated fatty acids to free radical 
damage makes the assessment of lipid peroxidation in 
terms of their biomarkers like MDA, and related TBARS 
a crucial indicator of oxidative stress in various living 
systems (Georgieva 2005). The MDA values in our study 
revealed a significant increase in both Sahiwal and Kankrej 
cows (Fig. 2e), as the animal body transitioned from 
thermoneutral season to hotter months of summer and 
hot-humid seasons.  This is in line with reports of Sengar  
et al. (2017), Aengwanich et al. (2011) and Bernabucci  
et al. (2002) who found significantly higher MDA levels 
in heat stressed cows. Furthermore, studies centred around 
the seasonal modulations in lipid peroxidation has found a 
concomitant increase in MDA levels as the THI increased 
(Sakatani et al. 2012, Chaudhary et al. 2015, Lakhani  
et al. 2018), indicating a positive correlation between OS 
and lipid peroxidation. The increased attack of free radicals 
that increases the extent of lipid peroxidation explains the 
higher MDA values during the higher THI months, that is 
associated with OS during summer and hot-humid months. 
However, no significant breed interaction was noticed in 
the extent of lipid peroxidation in this study. 

Among the antioxidant defence mechanisms evolved 
in animals, Superoxide dismutase enzyme is the first line 
of defence in fighting of the oxidative challenge posed by 
free radicals during stress. In this study, the expression of 
SOD2 that translates into the mitochondrial Mn-SOD was 
significantly (p<0.05) higher during the summer and hot-
humid months in the PBMCs of both Sahiwal and Kankrej 
cows (Fig. 3a). Concurring with our findings, ~3-fold and 
~2-fold increase in SOD2 mRNA expression was seen in 
heat stressed dermal fibroblasts of Tharparkar and Karan 

Fries cows, respectively (Singh et al. 2020). Similar 
induction of SOD2 mRNA following heat stress challenge 
was observed in heat stressed bovine granulosa cells that 
persisted with increased temperature of heat stress treatment 
(Khan et al. 2020). Furthermore, Mustafi et al. (2009) also 
reported overexpression of MnSOD during chronic heat 
stress in hamster lung. Along the same line, both CuSOD 
(SOD1) and MnSOD (SOD2) expression increased several 
folds in the heat stressed skeletal muscles of crossbred 
gilts (Ganesan et al. 2017). As increased activity of SOD 
is associated with heat stress (Gill et al. 2017, Abbas  
et al. 2020), this translates into higher induction of gene 
encoding SOD to fight the oxidative challenge posed 
by free radicals, that is one of the consequences of heat 
stress in animals. Contradictory to these, Madhusoodan  
et al. (2020) reported a significant decrease in SOD mRNA 
expression in the hepatic tissue of Salem black goats, which 
indicated the lack of heat shock response on the account of 
low HS. Similar to SOD2, the mRNA expression of GPX1 
was also significantly (p<0.05) higher during the higher 
THI months of summer and hot-humid seasons (Fig. 3b). 
GPx is one of the key members of antioxidant defence 
triad and especially crucial for protection of mitochondria 
against peroxide free radicals. Higher activity of GPx has 
been associated with heat stress in Indian crossbred cows 
(Sengar et al. 2017, Jeelani et al. 2019). Interestingly, both 
SOD2 and GPX1 showed a significant downregulation 
post heat stress in the skeletal muscles of Merino × Poll 
Dorset crossbred ewes following chronic heat stress, 
which indicates the difference in response to HS (Chauhan  
et al. 2014). The trends in GPX1 mRNA expression in this 
study coincides with the significant decrease in GSH levels 
with the increased GPX1 mRNA abundance, indicating the 

Fig. 3. Graphs showing (a) Expression profile of SOD2 mRNA across four seasons in Sahiwal and Kankrej PBMCs; (b) Expression 
profile of GPX1 mRNA across four seasons in Sahiwal and Kankrej PBMCs; (c) Expression profile of BAX mRNA across four in 
Sahiwal and Kankrej PBMCs; (d) Expression profile of Bcl-2 mRNA across four seasons in Sahiwal and Kankrej PBMCs.
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oxidation of GSH to GSSG by GPX1 in order to neutralize 
the peroxide molecules. 

The expression pattern of genes involved in apoptosis 
pathway helps in assessing the sensitivity of cells to 
programmed cell death. The members of Bcl-2 protein 
family are key mediator of caspase-mediated cell death, 
which includes the pro-apoptotic Bax and anti-apoptotic 
Bcl-2 as key members (Donovan and Cotter 2004, Sharpe 
et al. 2004, Li et al. 2011). In this study, the BAX mRNA 
expression registered a significant increase during summer 
season in Sahiwal PBMCs, however, the expression of BAX 
though higher, was statistically not significant in Kankrej 
PBMCs (Fig. 3c). Following induction in summer season, 
there was a downward trend in BAX mRNA expression 
in hot-humid season. Interestingly, the BCL2 mRNA 
expression also revealed an upward trend during summer, 
however, the induction was non-significant in the PBMCs 
of Sahiwal cows. On the other hand, the BCL2 mRNA 
expression was significantly higher during summer and hot-
humid seasons in the PBMCs of Kankrej cows (Fig. 3d). 
This is in agreement with the findings of Xi et al. (2017) 
who reported concomitant increase in both BAX and BCL2 
expression in boar testes exposed to heat stress of 42°C for 
three hours. Similarly, the BAX and BCL2 expression was 
significantly higher in the PBMCs of Sahiwal cows during 
summer season (Somal et al. 2015). On the same line, both 
BAX and BCL2 expression registered significant increase in 
the heat stressed bovine granulosa cells (Li et al. 2016). The 
Bax/Bcl ratio acts as a fine trigger involved in stimulation 
of apoptosis through caspases (Yuan et al. 2012) and their 
relative concentration determines the fate of cells during 
stressful periods (Setroikromo et al. 2007). BCL2 is a pro-
survival protein and prevents apoptosis (Hardwick and 
Soane 2013), under physiological harmony it also binds 
to pro-apoptotic counterparts like BAX. Stressful situation 
disturbs this fine balance and BAX is released which is 
known to alter the mitochondrial membrane permeability 
in the favour of apoptosis (Korsmeyer 1999). 

In conclusion, the present study highlights the crucial 
role played by antioxidant defence system in heat 
stress tolerance of cows reared in harsh tropical desert 
environment. The transcription profile of crucial genes 
implicated in antioxidant pathway and apoptosis pathway 
revealed key modulations based on outside environment, 
that highlights molecular adaptation in the indicine breeds. 
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