

Cytokine profiling in the acute phase of viral vaccination in Poultry

NARASI R GURJAR¹, BRIJ N SHRINGI¹, MAHENDER MILAND¹, RAM KUMAR¹ and DEEPAK K SHARMA^{2⊠}

College of Veterinary and Animal Science (CVAS) Bikaner, RAJUVAS, Bikaner, Rajasthan 334 001 India

Received: 22 February 2023; Accepted: 24 April 2023

ABSTRACT

In this study, the status of T cell-dependent cytokine gene expressions in the acute phase (3-day post-infection and 5-day post-infection) of infection with vaccine virus strains of New castle disease virus (NDV) (R2B and Lasota), Avian infectious bronchitis virus (AIBV) (Massachusetts H120), and Infectious Bursal Disease virus (IBDV) in SPF chicken of seven day age was evaluated. The birds were divided into four groups, each having six birds. Each group of birds was inoculated with the prescribed dose of different vaccines at 7 days of age. Blood was collected before inoculation (uninfected), at the 3rd and 5th day post-inoculation. Presence of virus in peripheral blood confirmed by real-time reverse-transcription PCR assay and quantitation of cytokine was performed in peripheral blood by real time PCR assay. It was observed that the infection with different vaccine strains of viruses in poultry modulates cytokine expression in order to elicit antiviral immune responses. AIBV and NDV viruses markedly up-regulate *IL*-2, *IL*-12, *p*40, *IL*-4, *IL*-5, and *IL*-13 whereas, IBDV induces prolonged up-regulation of *IFN*-γ, *IL*-10 genes.

Keywords: Cytokine, IFN-γ, IL-2, IL-4, IL-5, IL-12, IL-13, Immunity, Poultry viruses and p40

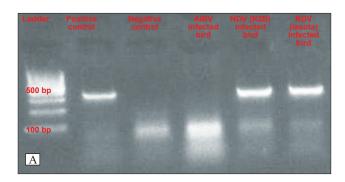
The widespread distribution of Avian infectious bronchitis (IB), Newcastle disease (ND), and the epidemics of avian influenza (AI) that have occurred over the last ten years have resulted in heavy economic losses.

Cytokines are low molecular weight proteins that are secreted by many different types of cells (Chen *et al.* 2017, Ginting *et al.* 2017, Liu *et al.* 2018). Their main function is to orchestrate the functional activities of the cells of the immune system. The CD4+ helper T (Th) cells play crucial roles in immune responses. The CD4+ T cells have been classified as either Th1 or Th2 based on their cytokine profiles. Th1 cells have been involved to enhance the clearance of intracellular pathogens and are defined on the basis of their production of *IFN-\gamma*. Th2 cells are critical for the control of certain parasitic infections through the production of the clustered group of cytokines *IL-4*, *IL-5*, and *IL-13* (Bao and Reinhardt 2015).

During viral infection, Chickens are able to elicit immune response either by stimulating Th1-cell-mediated immunity or Th2-dependent humoral immunity (Bhuiyan *et al.* 2021). Though, cytokine secretion from these cells can correlate with adaptive immune responses against different viruses. Therefore, the present study was planned to investigate the expression level of Th1 dependent (Cell-mediated immunity) cytokines (*IFN*-γ, *IL*-2 and *IL*-12p40

Present address: ¹Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science (CVAS) Bikaner, RAJUVAS, Bikaner, Rajasthan. ³Department of Veterinary Microbiology, College of Veterinary Science, Navania, Udaipur, Rajasthan. ⊠Corresponding author email: ds132207@gmail.com

genes) and Th2 dependent (Humoral immunity) cytokines (*IL-4*, *IL-5*, *IL-10* and *IL-13* genes.) during the acute phase of infection against vaccine strains of NDV, AIBV and IBV.


MATERIALS AND METHODS

Institutional animal ethical committee permission: IAEC of CVAS, Bikaner granted permission vide letter no –CVAS/IAEC/2021-22/28-28 dated 8/5/2021.

Chickens and virus: Zero-day old specific pathogen-free (SPF) white leghorn chickens (Gallus gallus domesticus) purchased from Kewal Ramani hatcheries private Ltd. Ajmer (Rajasthan) were housed in the Rajasthan University of Veterinary and Animal Sciences, Bikaner (Rajasthan) poultry farm isolators with water and feed freely available.

The all-vaccine virus strain [NDV ((R2B (10⁶ EID₅₀) and Lasota, both live attenuated), AIBV @ dose rate 10^{3.5} EID₅₀ of massachusettsh120, Live attenuated virus), and IBDV (killed virus) were provided by the Venkateshwara hatcheries Pvt. Ltd. (Ventri Biologicals, Vaccine division dist. Pune, India). The birds were divided into four groups, each having six birds. Each group of birds was inoculated with the prescribed dose as mentioned above of different vaccines at 7 days of age. Blood was collected before inoculation (uninfected) and at the 3rd or 5th-day postinoculation (dpi).

RNA isolation and cDNA synthesis: Total RNA was extracted from the blood by using the Trizol method (Sigma chemicals Pvt Ltd Mumbai India) as per the manufacturer protocol. The extracted RNA was checked for its concentration and purity by bio-spectrophotometer (Nenodrop, Thermo Scientific Pvt. Ltd, Mumbai, India).

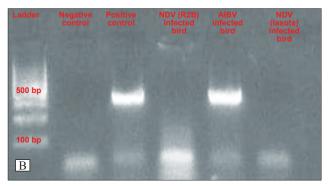


Fig. 1. Detection of viruses in peripheral blood t 3 dpi by PCR. A. NDV (RB2 and Lasota), B. AIBV.

The purified RNA was stored at -20°C for further use. The cDNA was synthesized from the isolated RNA using the RevertAidTM First Strand cDNA Synthesis kit (Thermo Scientific Pvt. Ltd, Mumbai, India) as per the manufacturer protocol.

Determination of the presence of virus in peripheral blood: The presence of virus, i.e. NDV, AIBV, and IBDV in peripheral blood were confirmed by performing PCR using previously described primers (Sumi *et al.* 2012, Jain *et al.* 2013 and Alsahami *et al.* 2018).

Real-time PCR: The amount of cytokine gene mRNA (cDNA) in peripheral blood was measured by quantitative real-time PCR (qRT-PCR) using gene-specific primer and house-keeping control gene (GAPDH) as previously described (Liu et al. 2010). The levels of cytokine genes expressed as threshold cycle (Ct) values, were normalized with the GAPDH housekeeping control gene. Relative fold-change in viral DNA copy number was determined by ^{ΔΔ}Ct method (Liu et al. 2010).

Statistical analysis: The student's t-test was used to detect significant differences between infected and control groups. A P-value ≤ 0.05 was considered significant.

RESULTS AND DISCUSSION

In the present study, we evaluated the status of Th2 dependent (Humoral immunity) cytokine (*IL-4, IL-5, IL-10* and *IL-13*) and Th1 (Cell-mediated immunity) cytokine (*INF-gamma, IL-2* and *IL-12*) in chick during 3rd and 5th-day post-infection of the vaccine strain of four different poultry viruses.

The presence of target vaccine strain of viruses in peripheral blood at 3-day post-infection: Before cytokine expression evaluation we have determined the presence of viral genome in peripheral blood by performing PCR (Fig 1). In contrast, inactivated IBDV can't able to replicate in birds therefore we unable to detect the IBDV genome in IBDV inoculated birds. This is in agreement with the previous observation made by Abdul-Careem who studied virus replication and cytokine gene expression following virus infection and found a significant association between higher viral RNA levels and cytokine transcript concentration in various tissues (Abdul-Careem et al. 2008).

Th1-cytokines expression during the acute phase of different vaccine strain virus infection: The Infection of different viruses resulted in transcriptional changes of mRNA encoding, IL-2, IL-12p40 and IFN- γ during the acute phase of the disease. Differences in cytokine expression were given as fold-change using the chicken GAPDH gene for normalization.

IL-2 gene expression: R2B and AIBV up-regulated the expression of IL-2 gene at 3 dpi whereas Lasota strain induced a marginal increase in IL-2 mRNA transcripts level. In contrast to it, IBDV infection, down-regulated the expression of the IL-2 gene in comparison with uninfected birds (Fig 2a; Table 1). IL-2 stimulates the proliferation of chicken T lymphocytes and NK cells, which potentiate antiviral responses and decreased viral titers in blood, spleens, oral and cloacal secretions on 4–5 dpi (Susta et al. 2015).

IL-12p40 gene expression: All viruses markedly upregulated the expression *IL-12p40* gene at 3 dpi and after that, they start to downtrend during the course (Fig. 2b; Table 1). Similar up-regulation of *IL-12p40* gene expression in the early phase of viral infection was reported in influenza virus and adenovirus (Jouanguy *et al.* 1999).

IFN- γ gene expression: Following inoculation, the R2B, Lasota strains of NDV, AIBV and IBDV up-regulated the IFN- γ gene expression at 5 dpi. In contrast, IBDV induced a strong increase in INF-gamma 3 dpi which got stabilize

Table 1. Th1 cytokine expression during acute phase of different vaccine strains

Th1/CMI	3 Days				5 Days			
response	NDV		AIBV	IBDV	NDV		AIBV	IBDV
	R2B	Lasota			R2B	Lasota		
IL-4	1.17 ± 0.18	1.57 ± 0.18	1.02±0.19	5.61±3.73	16.97 ± 5.62	14.06±0.75	8.18 ± 0.74	2.21±0.64
IL-5	3.09 ± 0.61	1.47 ± 0.18	3.03 ± 0.02	0.94 ± 3.73	2.75 ± 3.73	1.37 ± 5.73	1.35 ± 7.73	0.5 ± 6.73
IL-10	0.02 ± 0.16	0.025 ± 0.33	0.002 ± 0.36	16.97±2.25-	4.55 ± 0.06	3.59 ± 0.26	4.13±1.85-	2.15 ± 1.23
IL-13	2.17 ± 0.18	1.27 ± 0.18	2.02 ± 0.19	3.77 ± 0.43	2.47 ± 0.18	1.47 ± 0.18	3.59 ± 0.26	

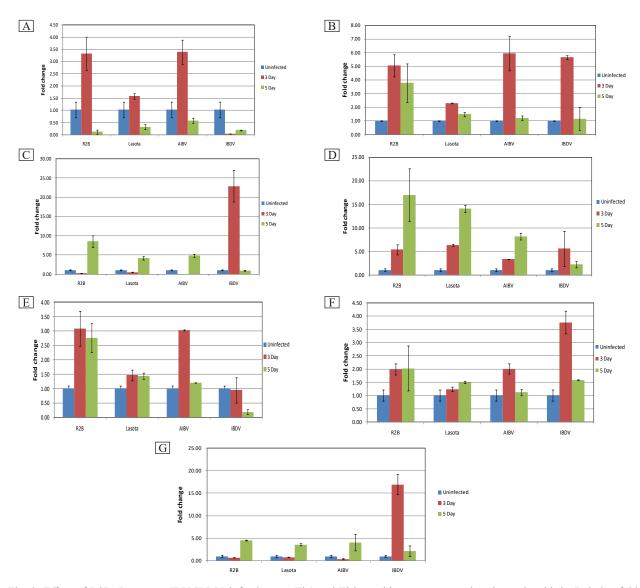


Fig. 2. Effect of R2B, Lasota, AIBV IBDV, infection on Th1 and Th2 cytokine gene expression, in poultry birds. Relative fold-change (compared to mock-infected) in mRNA levels was determined by qPCR, IL-2(A) and IL-12(B), INF gamma (C), IL-4(D), IL-5(E), IL-13(F), IL-10(G) is shown. Error bars indicate SD.

at 5 dpi in expression in comparison with uninfected birds (Fig.2c; Table 1). Production of IL-12 and INF-gamma is critical to host defense against intracellular pathogens (Jouanguy et~al.~1999), indicating that it is possible to observe simultaneous up-regulation of INF-gamma and IL-10 in response to IBDV infection. The observed increase in IFN- γ expression in IBDV-infected bursa presumably reflects the inflammatory response and it is consistent with earlier published results suggesting that cell-mediated responses are initiated to resolve infections (Li et~al.~2009 and Eldaghayes et~al.~2006).

Th2-cytokine expression during different virus infections: Temporal expression patterns of IL-4, IL-5, IL-10, and IL-13 genes were evaluated in the peripheral blood of chickens infected with different viruses in comparison with uninfected birds.

IL-4 gene expression: The up regulation of *IL-4 gene* expression following infection with R2B and Lasota strain

of NDV and AIBV after IBDV and AIBV inoculation (Fig. 2d; Table 2) was observed. *IL-4* has been shown to direct B cells to produce the anti-allergen IgE, to inhibit Th1 cell function, and to prevent the production of *IL-2*, *IL-12*, and *INF-gamma* that are necessary for the development of cytotoxic T cells (Becker 2004). However, our study observed the suppression of transcriptional activities of Th1 cytokines.

IL-5 gene expression: R2B and Lasota strain of NDV and AIBV up-regulated the IL-5 gene expression, contrary to it in IBDV infected birds, it did not up-regulated (Fig. 2e; Table 2). In previous reports, expression levels of IL-5 were significantly up-regulated in IBDV infection (Liu et al. 2012), whereas it was markedly decreased in REV infection (Xue et al. 2013).

IL-13 gene expression: Following inoculation with NDV (both R2B and Lasota strain) the expression of *IL-13* genes was up-regulated and peaked at 5dpi. In contrast in AIBV

Th1/CMI	3 Days				5 Days			
response	NDV		AIBV	IBDV	NDV		AIBV	IBDV
	R2B	Lasota	-		R2B	Lasota	-	
IL-2	3.32±0.68	1.59+11	3.38±0.50	0.23±0.28	0.2±0.72	0.30±0.13	0.58±.40	0.2±0.36
IL-12p40	5 ± 0.68	$2.29\pm0.$	5 ± 0.98	5 ± 0.88	3.36 ± 0.68	1.57 ± 0.23	1.23 ± 0.73	1.13 ± 0.33
IFN-γ	0.2 ± 0.16	0.25 ± 0.33	0.02 ± 0.36	22.86 ± 4.10	8.51 ± 1.49	4.81 ± 0.37	4.16 ± 0.42	0.94 ± 0.11

Table 2. Th2 cytokine expression during acute phase of different vaccine strains

and IBDV, it peaked at 3 dpi and then stabilized at 5 dpi. IBDV and AIBV up-regulated the *IL-13* gene expression at 3dpi (Fig. 2f; Table 2). Previously, expression levels of *IL-13* have significantly up-regulated in REV and IBDV infection (Liu *et al.* 2012, Xue *et al.* 2013).

IL-10 gene expression: IL-10 gene expression was upregulated following inoculation with R2B and Lasota strain of NDV, AIBV at 5 dpi. In contrast, IBDV induced upregulation of *IL-10* gene expression at 3dpi and it started to decline at 5 dpi (Fig. 2g; Table 2). IL-10 is a potent stimulator of NK cells (Albert et al. 1998), a function that might contribute to the clearance of the pathogen and facilitate antigen acquisition from dead cells for cross-priming activated antigen-presenting cells (APCs), providing a link between the innate and the adaptive immune responses (Mocellin et al. 2003). The expression of IL-10 in the bursa following IBDV infection has not been studied previously. In the present study, our results indicated that IL-10 expression was markedly increased and similar to the extent of up-regulated expression of IFN-y following infection by the H or T strain. This is consistent with the fact that IL-10 plays a dual role in infectious diseases (Mocellin et al. 2003) and is in agreement with the observation made recently by Abdul-Careem (Abdul-Careem et al. 2008).

It was observed that inoculation with different vaccine strains of viruses in poultry induce up-regulation and down regulation of several Th1-cytokine expression (*IFN-γ, IL-2* and *IL-12p40* genes) and Th2-cytokines expression (*IL-4, IL-5, IL-10*, and *IL-13* genes). AIBV and NDV viruses markedly up-regulated *IL-2, IL-12p40*, *IL-4, IL-5* and *IL-13* whereas, IBDV induced prolonged up-regulation of *IFN-γ* and *IL-10* genes. Though the cytokines up-regulation and down-regulation are closely associated with virus replication, pathogenesis, and immunity, yet, further studies are necessary to elucidate their exact function in virus-induced pathogenesis and immunity.

ACKNOWLEDGEMENT

Authors want to acknowledge Prof Dr S K Garg, Vice Chancellor, RAJUVAS, Bikaner, Rajasthan for financial support for the study.

REFERENCES

Abdul-Careem, M F, Hunter D B, Lambourne M D, Read L R, Parvizi P and Sharif S. 2008. Expression of cytokine genes following pre- and post-hatch immunization of chickens with herpesvirus of turkeys. *Vaccine* **26**(19): 2369–77.

Albert M L, Sauter B and Bhardwaj N. 1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. *Nature* **392**(6671): 86–89.

Alsahami A A, Ideris A, Omar A, Ramanoon S Z and Sadiq M B. 2018. Isolation, identification and molecular characterization of Newcastle disease viruses in vaccinated chickens from commercial farms in the Sultanate of Oman. *International Journal of Veterinary Science and Medicine* 6(2): 248–52.

Bao K and Reinhardt R L. 2015. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. *Cytokine* **75**(1): 25–37.

Becker Y. 2004. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers—A review and hypothesis. *Virus Genes* **28**(1): 5–18.

Bhuiyan M S A, Amin Z, Rodrigues K F, Saallah S, Shaarani S M, Sarker S and Siddiquee S. 2021. Infectious bronchitis virus (Gammacoronavirus) in poultry farming: Vaccination, immune response and measures for mitigation. *Veterinary Sciences* 8(11): 273.

Chen W T, Chang H K, Lin C C, Yang S M and Yin H S. 2017. Chicken interleukin-1β mutants are effective single-dose vaccine adjuvants that enhance mucosal immune response. *Molecular Immunology* 87: 308–16.

Eldaghayes I, Rothwell L, Williams A, Withers D, Balu S, Davison F and Kaiser P. 2006. Infectious bursal disease virus: Strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. *Viral Immunology* **19**(1): 83–91.

Ginting T E, Suryatenggara J, Christian S and Mathew G. 2017. Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. *Oncolytic Virotherapy* **6**: 21–30.

Jain P, Singh R, Saxena V K, Singh K B, Ahmed K A, Tiwari A K, Sundaresan N R and Sundaresan N R. 2013. *In vitro* rapid clearance of infectious bursal disease virus in peripheral blood mononuclear cells of chicken lines divergent for antibody response might be related to the enhanced expression of proinflammatory cytokines. *Research in Veterinary Science* 95(3): 957–64.

Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F and Casanova J L. 1999. IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. *Current Opinion in Immunology* **11**(3): 346–51.

Li R, Wang H and Zhang M. 2009. Apoptosis induction by the 5Δ NCR of infectious bursal disease virus. Open Veterinary Science Journal 3(1): 55–63.

Liu H, Zhang M, Han H, Yuan J and Li Z. 2010. Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. *Virology Journal* 7(1): 364.

Liu W Q, Tian M X, Wang Y P, Zhao Y, Zou N L, Zhao F F, Cao S J, Wen X T, Liu P and Huang Y. 2012. The different

- expression of immune-related cytokine genes in response to velogenic and lentogenic Newcastle disease virus's infection in chicken peripheral blood. *Molecular Biology Reports* **39**(4): 3611–18.
- Liu Y, Cheng Y, Shan W, Ma J, Wang H, Sun J and Yan Y. 2018. Chicken interferon regulatory factor 1 (IRF1) involved in antiviral innate immunity via regulating IFN-β production. Developmental and Comparative Immunology 88: 77–82.
- Mocellin S, Panelli M C, Wang E, Nagorsen D and Marincola F M. 2003. The dual role of IL-10. *Trends in Immunology* **24**(1): 36–43.
- Sumi V, Singh S D, Dhama K, Gowthaman V, Barathidasan R and
- Sukumar K. 2012. Isolation and molecular characterization of infectious bronchitis virus from recent outbreaks in broiler flocks reveals emergence of novel strain in India. *Tropical Animal Health and Production* **44**(7): 1791–95.
- Susta L, Cornax I, Diel D G, Garcia S C, Miller P J, Liu X, Hu S, Brown C C and Afonso C L. 2013. Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens. *Microbial Pathogenesis* 61–62: 73–83.
- Xue M, Shi X, Zhao Y, Cui H, Hu S, Cui X and Wang Y. 2013. Effects of reticuloendotheliosis virus infection on cytokine production in SPF chickens. *Plos One* 8(12): e83918.