Morphometerical observations of intestine in Japanese quail

N M KARAD¹, C S MAMDE¹ and P N THAKUR¹

College of Veterinary and Animal Sciences, Parbhani, Maharashtra 431 402 India

Received: 11 April 2023; Accepted: 9 February 2024

ABSTRACT

The present study was conducted on duodenum, jejunum, ileum, caecum and colorectum of Japanease quail. The weight of the duodenum on day 7^{th} and 42^{nd} was 0.47 ± 0.05 g and 1.45 ± 0.09 g, respectively. The length of the duodenum was found to be 8.60 ± 0.36 cm and 14.13 ± 0.55 cm on the same observation days. The weight and length of the jejunum ranged from 0.47 ± 0.07 g to 1.62 ± 0.19 g and 11.99 ± 0.33 cm to 23.70 ± 1.10 cm on day 7^{th} and 42^{nd} old birds, respectively. The values for the weight and length of the ileum were 0.30 ± 0.03 g to 1.32 ± 0.12 g and 10.21 ± 0.80 cm to 20.88 ± 1.61 cm, respectively at 7^{th} and 42^{nd} old birds of age. The weight and length of caecum were ranged from 0.22 ± 0.03 g to 1.13 ± 0.18 g and 4.13 ± 0.07 cm to 7.69 ± 0.30 cm. The values for the weight and length of the colorectum were 0.10 ± 0.01 g to 0.51 ± 0.05 g and 3.36 ± 0.16 cm to 6.93 ± 0.33 cm. The total length and weight of the five constituents, i.e. duodenum, jejunum, ileum, caecum and colorectum together formed the entire weight and length of the intestine which ranged from 1.55 ± 0.08 g to 6.02 ± 0.43 g and 37.97 ± 1.04 to 73.34 ± 1.61 cm, respectively at 7^{th} and 42^{nd} old birds of age.

Keywords: Caecum, Colorectum, Duodenum, Ileum, Jejunum, Morphology, Quail

The quail (*Coturnix coturnix japonicum*) is most important type of bird after chicken from economical aspect (Sharma *et al.* 2000), as they not only provide additional income to the farmers, but also livelihood to millions of small marginal farmers and landless labours in rural India. Also, quail production has considerable potential to fulfill the requirement of animal protein.

The quail alimentary tract is constantly invaded by foreign antigenic or harmful substances and their lumens are also sites for the proliferation of both beneficial and pathogenic bacterial flora (Mead 1989, Kitagawa *et al.* 2000). Intestine of birds play a very important role in much of the digestion, absorption and productions of nutrients, i.e. fatty acids as well as the B vitamins (thiamine, riboflavin, niacin, pantothenic acid, pyridoxine, biotin, folic acid and vitamin B₁₂). Alteration and impairment within the digestive system both in structure and function has a profound effect on the performance of birds (McLelland 1975).

The purpose of this study was to establish a normal data which is meager in available literatures of Japanese quail and to provide use of this data for consecutive study on small intestine of other avian species. This will be helpful for pathologists, physiologists and poultry researchers for disease control and production strategies.

Present address: ¹Department of Veterinary Anatomy and Histology, College of Veterinary and Animal Sciences, Parbhani, Maharashtra. [™]Corresponding author email: pravin_thakur75@ rediffmail.com

MATERIALS AND METHODS

The present study was conducted on 48 Japanese quail birds (*Coturnix coturnix japonica*) irrespective of sex, procured from local market sources and reared on poultry farm of College of Veterinary and Animal Science, Parbhani under standard managemental quail rearing practices. The intestine was collected from 12 birds each at end of 7th, 14th, 21st and 42nd day of age.

These birds were sacrificed by cranial subluxation. The intestine was observed *in situ* for its gross examination like location, colour, shape and relation with other viscera. The organ was then carefully dissected along with its entire gross morphology for recording biometrical values like weight, length and diameter of entire intestine. The intestine was separated into different segments to record length, weight and diameter of each segment. The whole intestine was removed and the mesenteric tissue trimmed off. The length of duodenum, jejunum, ileum, caecum and colorectum was recorded with the help of digital Vernier caliper. The recorded measurements were analyzed statistically as per methods suggested by Panse and Sukhatme (1967).

RESULT AND DISCUSSION

Weight of intestine: The mean values of weights of duodenum, jejunum, ileum, caeca and colorectum and total intestine were 0.47 ± 0.05 , 0.47 ± 0.07 , 0.30 ± 0.03 , 0.22 ± 0.03 0.10 ± 0.01 and 1.55 ± 0.08 g; 0.72 ± 0.08 , 0.50 ± 0.04 , 0.40 ± 0.03 , 0.41 ± 0.06 , 0.12 ± 0.01 and 2.14 ± 0.14 g; 1.05 ± 0.03 , 1.31 ± 0.10 , 0.90 ± 0.10 , 0.80 ± 0.08 , 0.32 ± 0.02

Table 1. Mean values of weight (g) of different segments of intestine in various age groups of quails

Age group			Weig	ht (g)		
	Duodenum	Jejunum	Ileum	Caecum	Colorectum	Intestine
	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)
7 th day	$0.47^{d}\pm0.05$	$0.47^{b}\pm0.07$	$0.30^{c}\pm0.03$	$0.22^{c}\pm0.03$	$0.10^{c}\pm0.01$	1.55°±0.08
14th day	$0.72^{c}\pm0.08$	$0.50^{b}\pm0.04$	$0.40^{c}\pm0.03$	$0.41^{c}\pm0.06$	$0.12^{c}\pm0.01$	$2.14^{c}\pm0.14$
21st day	$1.05^{b}\pm0.03$	$1.31^{a}\pm0.10$	$0.90^{b}\pm0.10$	$0.80^{b} \pm 0.08$	$0.32^{b}\pm0.02$	$4.38^{b}\pm0.20$
42 nd day	$1.45^{a}\pm0.09$	$1.62^{a}\pm0.19$	$1.32^{a}\pm0.12$	$1.13^{a}\pm0.18$	$0.51^{a}\pm0.05$	$6.02^{a}\pm0.43$
Stat	HS	HS	HS	HS	HS	HS
CD 5%	0.191	0.323	0.228	0.296	0.077	0.709
CD 1%	0.256	0.431	0.305	0.395	0.102	0.947

and 4.38±0.20 g and 1.45±0.09, 1.62±0.19, 1.32±0.12, 1.13±0.18, 0.51±0.05 and 6.02°±0.43 g at D7, D14, D21 and D42 respectively (Table 1). The significantly higher values of weight were observed in quail birds at 42 days compared to other age group birds.

The mean of weight were significantly increased at 42 days age groups birds in all segments of intestine as well as total intestine. The mean of weight of jejunum were comparatively higher as compared to other segments of intestine in all age groups birds except duodenum of D14 age groups where values were higher compared with other segments of intestine. The higher weight of duodenum at D14 might be due to the accumulation of ingesta in duodenum and weight was taken including ingesta in duodenum.

Earlier studies carried out by Yamauchi (2002) reported the higher body weight and length of intestine in broilers than layer birds. Similarly, Wang and Peng (2008) suggested gradual development of small intestine and significant changes in digestive capacity such as weight, length, and surface area of the intestine up to postnatal 45 days.

In the present study, significantly higher weight of intestine and its different segments were observed in mature quail birds (42 days) compared to other age group. The comparatively higher weight was recorded in jejunum among segments of intestine except, duodenum of 14 days birds where values were higher. In other study by Nasrin *et al.* (2012) reported the significantly higher average weights of small and large intestine on 28 day than 1 and 14 days broiler chickens. However, Levi *et al.* (2013) observed the decreased mean weight of all the segments of the small intestine at 10 week age in anak 2000 and marshal broiler

hybrids. Moreover, in accordance with our findings, Kalita (2009) and Nasrin *et al.* (2012) found the increased weight of duodenum, jejunum and ileum with advancement of age.

Length of different segments of intestine: The mean values of length of various segments of intestine were significantly higher at 42 days birds. The higher values of length were observed in jejunum as compared to other segments of intestine in all age groups birds. The recorded maximum length values of jejunum were 11.99±0.33, 13.69±0.58, 21.84±1.21 and 23.70±1.10 cm at D7, D14, D21 and D42 respectively as compared to other segments of intestine (Table 2).

It was suggested that the length of intestine increases with the advancement of age (Verma 1998 and Kalita 2009). The observations made in the present study are in collaboration with the findings of King and Mclelland (1975) also reported the higher average mean length of jejunum than other segments of intestine in avian and domestic birds respectively. Whereas, Partha *et al.* (2002) observed the varied length of duodenum in fowls, ducks and quails. Kadhim *et al.* (2010) noticed the constant rate of duodenal and jejunal length after 10th day while length of ileum and caecum was persistently increased.

Width of various segments of intestine: The maximum width of duodenum, jejunum and ileum in Japanese quail was found as 4.38 ± 0.13 , 4.15 ± 0.29 and 2.92 ± 0.09 mm respectively at D42 day's age groups birds. The higher width in large intestine for proximal, middle, distal caecum and colorectum was observed as 1.97 ± 0.09 , 4.54 ± 0.20 , 3.46 ± 0.16 and 4.54 ± 0.12 mm respectively at D42 day's age groups birds (Table 3).

On comparison of different parts of small and large

Table 2. Mean values of length (cm) of different segments of intestine in various age groups

Age group			Lengt	h (cm)		
	Duodenum	Jejunum	Ileum	Caecum	Colorectum	Intestine
	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)
7 th day	$8.60^{b}\pm0.36$	11.99b±0.33	$10.21^{d}\pm0.80$	$4.13^{\circ}\pm0.07$	$3.36^{\circ}\pm0.16$	37.97 ^d ±1.04
14th day	$9.25^{b}\pm0.36$	$13.69^{b} \pm 0.58$	$13.73^{\circ} \pm 0.62$	$4.69^{c}\pm0.15$	$3.64^{c}\pm0.16$	$45.01^{c}\pm1.46$
21st day	$11.05^{c}\pm0.42$	$21.84^{a}\pm1.21$	$17.33^{b} \pm 1.37$	$6.45^{b}\pm0.21$	$4.71^{b}\pm0.14$	$61.38^{b}\pm1.37$
42 nd day	$14.13^{a}\pm0.55$	$23.70^{a}\pm1.10$	$20.88^a \pm 1.61$	$7.69^{a}\pm0.30$	$6.93^{a}\pm0.33$	$73.34^{a}\pm1.61$
Stat	HS	HS	HS	HS	HS	HS
CD 5%	1.066	2.512	2.407	0.571	0.607	3.951
CD 1%	1.424	3.356	3.216	0.763	0.811	5.278

Table 3. Mean values of width (mm) of different segments of intestine in various age groups

Age group			Width (m	Width (mm) of different segments of intestine	s of intestine		
	Duodenum	Jejunum	Ileum		Caecum		Colorectum
	(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	Proximal	Middle	Distal	(Mean with S.E.)
				(Mean with S.E.)	(Mean with S.E.)	(Mean with S.E.)	
7 th day	2.85°±0.24	2.36 ±0.17	2.09 ^b ±0.11	1.44°±0.23	2.70°±0.23	2.32 ^b ±0.20	1.84°±0.09
14th day	3.11°±0.11	2.62°±0.09	$2.29^{b}\pm0.10$	$1.63^{bc}\pm0.07$	3.42 ^b ±0.24	$2.58^{b}\pm0.19$	$2.10^{\circ}\pm0.18$
21st day	3.94⁵±0.18	$3.45^{b}\pm0.14$	$2.66^{a}\pm0.12$	$1.75^{ab}\pm0.14$	$4.07^{a}\pm0.25$	$3.06^{a}\pm0.13$	$2.59^{b}\pm0.09$
42nd day	4.38 ^a ±0.13	$4.15^{a}\pm0.29$	$2.92^{a}\pm0.09$	$1.97^{a}\pm0.09$	4.54°±0.20	$3.46^{a}\pm0.16$	$4.54^{a}\pm0.12$
Stat	HS	HS	HS	HS	HS	HS	HS
CD 5%	0.425	0.549	0.302	0.278	0.599	0.477	0.394
CD 1%	0.568	0.733	0.404	0.372	0.800	0.637	0.527

intestine, higher width was observed in duodenum and middle caecum in all age groups of birds in Japanese quail.

These findings were similar to the reports of Kalita *et al.* (2012) who recorded the increased width of segments of small intestine with the advancement of age and maximum width was reported on 112 days compared to 1, 7, 14, 28 and 56 days of Kadaknath fowl. McLelland (1975) found the more width of duodenum among the parts of small intestine and Bailey *et al.* (1997) noticed the equal width of jejunum and duodenum in Houbara, Kori, Rufous-crested and White-bellied bustards. The smallest diameter of ileum was observed by Verma (1998) and Partha *et al.* (2002) noticed the varied diameter of duodenum in fowls, ducks and quails. Similarly, Mahmud *et al.* (2015) reported the non-significant mean width of small intestine and large intestine in three Nigerian indigenous genotypes of chicken irrespective of sex.

In conclusion, mean of weight were significantly increased at 42 days age quail birds in all segments of intestine as well as total intestine. The mean weight of jejunum were comparatively higher as compared to other segments of intestine in all age groups birds except duodenum of D14 age groups. The mean values of length of various segments of intestine were significantly higher at 42 days birds. The higher of length were observed in jejunum as compared to other segments of intestine in all age groups birds. On comparison of different parts of small and large intestine, higher width was observed in duodenum and middle caecum in all age groups of birds in Japanese quail.

ACKNOWLEDGEMENT

Authors acknowledge the Associate Dean, College of Veterinary and Animal Sciences, Parbhani for permitting and encouraging the research work.

REFERENCES

Bailey T A, Brown E P M, Samour J H, Naldo J, Lawrence P and Garner A. 1997. Comparative morphology of the alimentary tract and its glandular derivatives of captive bustard. *Journal of Anatomy* **191**: 387–98.

Kadhim K K, Zuki A B Z, Noordin M M, Babjee S M A and Khamas W. 2010. Light and scanning electron microscopy of the intestine of the young Red Jungle Fowl (*Gallus gallus*). *Journal of Animal and Veterinary Advances* **9**(21): 2729–2937.

Kalita P C. 2009. 'Gross morphometric, light-and electron microscopic studies on the small intestine of the Kadaknath fowl.' Doctoral dissertation, GB Pant University of Agriculture and Technology, Pantnagar-263145.

Kalita P C, Singh G K and A Kalita. 2012. Gross morphological and morphometrical studies of small intestine in Post hatch Kadaknath fowl. *Indian Journal of Veterinary Anatomy* 24(2): 74–75.

King A S and McLelland J. 1975. *Outlines of Avian Anatomy*. 1st edn. Bailliere Tindall, London. Pp. 33-42.

Kitagawa H, Shiraishi S, Imagawa T and Uehara M. 2000. Ultrastructural characteristics and lectin-binding properties of M cells in the follicle associated epithelium of chicken caecal tonsils. *Journal of Anatomy* **197**: 607–16.

- Levi U I, Okafor C L, Adaka N, Thank God O E, Nwaogu C I and Ezeasor N D. 2013. Gross and histomorphometric changes in the small intestine of Anak and Marshal Broiler hybrids. *Indian Journal of Veterinary Anatomy* **25**(2): 76–78.
- Mahmud M A, Shaba P, Shehu S A, Danmaigoro A, Gana J and Abdussalam W. 2015. Gross morphological and morphometric studies on digestive tracts of three Nigerian indigenous genotypes of chicken with special reference to sexual dimorphism. *Journal of World's Poultry Research* 5(2): 32–41.
- McLelland J. 1975. Aves digestive system, p 1857-82. (Ed) Getty R. Sisson and Grossmans the Anatomy of the Domestic Animals. Vol. 2. 5th ed. W.B. Saunders Company, Philadelphia.
- Mead G C. 1989. Microbes of the avian cecum: Types present and substrates utilized. *Journal of Experimental Zoology* **252**(S3): 48–54.
- Nasrin M M, Siddiqi N H, Masum M A and Wares M A. 2012. Gross and histological studies of digestive tract of broilers during postnatal growth and development. *Journal of*

- Bangladesh Agriculture University 10(1): 69-77.
- Panse V G and Sukhatme P V. 1967. Statistical Method for Agricultural Workers. 4th edn, New Delhi, ICAR. Pp. 48-62.
- Partha D R and Mondal M M. 2002. Comparative histomorphological study on the duodoneum of fowl (*Gallus gallus*), duck (*Anas boscas*) and quail (*Coutrnix coutrnix*). *Journal of Interacademicia* 6(2): 202–05.
- Sharma D, Appa K B and Totey S M. 2000. Measurement of within and between population genetic variability in quail. *British Poultry Science* **41**: 29–32.
- Verma D. 1998. 'Pre and post-hatch morphogenesis of digestive system in fowl (*Gallus domesticus*).' MVSc. Thesis, JNKV, Jabalpur. Pp. 24-57.
- Wang J X and Peng K M. 2008. Developmental morphology of the small intestine of African ostrich chicks. *Poultry Science* **87**(12): 2629–35.
- Yamauchi K. 2002. Review on chicken intestine villus histological alterations related with intestinal function. *Poultry Science* **39**: 229–42