Poultry breeding under public sector in India – Achievements and future perspectives: A comprehensive review

ANEET KOUR¹, SANTOSH HAUNSHI¹, K S RAJARAVINDRA¹, L LESLIE LEO PRINCE¹ and U RAJKUMAR¹ \boxtimes

ICAR-Directorate of Poultry Research, Hyderabad, Telangana 500 030 India

Received: 22 August 2023; Accepted: 12 February 2024

ABSTRACT

Poultry sector in India is reaching new heights due to advances made in breeding, nutrition, health and management. Notably, poultry breeding has played a crucial role in the unprecedented growth and development of the sector through the selection of highly specialized sire and dam lines and subsequently, crossing them to produce varieties suited for commercial and backyard production. Government interventions and public sector institutions have been relentlessly working to make poultry farming remunerative in rural backyards. In this context, climate change, disease outbreaks, stagnant gains, welfare and ethical issues are the major challenges which call for immediate attention. Some possible interventions to address these issues include: incorporation of climate resilience and welfare traits in the selection indices for selection of birds, embarking on genome-based selection to exploit the genomic variability in the population for substantial gains, gene silencing and CRISPR/Cas9 mediated genome editing approaches for improving productivity and boosting immune responses. Collection and analysis of real-time data using artificial intelligence and data analytics will also help in improving predictions for health and welfare traits in poultry. This review provides a detailed account of the achievements of public sector with regard to poultry breeding in the country and presents future perspectives for continued viability and sustainability of the sector.

Keywords: Achievements, Future roadmap, Poultry breeding, Public sector, Research

Indian poultry sector has witnessed a remarkable growth over the years with 8-10% growth rate in broilers and 6-8% in layers (Chatterjee and Rajkumar 2015). Today, Indian poultry market is a USD 28.18 billion venture, growing considerably in the backdrop of demand driven by increased health consciousness, mushrooming of online food delivery platforms and rise in disposable incomes. At a Compounded Annual Growth Rate (CAGR) of 8.1%, it is expected to attain a worth of around 45 billion US dollars by 2028 (https://www.expertmarketresearch.com/ reports/india-poultry-market). This could be attributed to a rapid jump in domestic egg and chicken production in commensuration with product diversification and valueaddition (Nanda Kumar et al. 2022). Poultry keeping in India was largely a backyard venture before 1950s. High producing exotic breeds of poultry were imported from Israel, England and United States of America into the country during 1960s. There have been significant developments in the poultry sector over the last four decades with each decade focussing on different aspects. During the seventies, a spurt in egg production was witnessed, in the eighties, acceleration in broiler production was noticed

Present address: ¹ICAR-Directorate of Poultry Research, Hyderabad, Telangana. [™]Corresponding author email: ullengala@ yahoo.com

and, in the nineties, advances in integration, automation and feed production had happened. The present decade promises to exploit value-added products and global trade avenues (Sridharan 2017).

According to BAHS (2022), the annual egg and meat production from poultry has increased by 47% and 25% over the past five years in the country. Along with the private sector, public sector (research) institutions have also greatly contributed to the phenomenal growth of the poultry production in the country. The progress made in the development of superior high-producing germplasm is a reflection of highly intense genetic selection followed by breeding for desired traits (Pym 2013). Pure-bred differentially selected sire and dam lines are being crossed in a systematic manner to develop birds with higher growth potential in broilers (Rajkumar et al. 2011a, Singh et al. 2012, Rajkumar et al. 2016) and higher egg production potential in layers (Reddy et al. 2001, Haunshi et al. 2009, Rajkumar et al. 2020a). However, most of the improvement in poultry production performance in the country has been achieved through quantitative genetic selection, i.e. by means of phenotype-based selection only (Pym 2013). Breeds/improved lines of White leghorn, Cornish, Kadaknath, Aseel and crossbred varieties like Vanaraja, Gramapriya, Srinidhi, Janapriya, Krishibro, etc. have been contributing significantly for improving the productivity of poultry farming and socio-economic upliftment of farmers (Singh *et al.* 2004, Haunshi *et al.* 2009, Debata *et al.* 2012, Kundu *et al.* 2015, Sarma *et al.* 2018, Haunshi and Prince 2021, Dalal *et al.* 2022).

The advent of genome-based or marker-assisted selection (MAS) has initiated further opportunities for genetic improvement in poultry on account of improved accuracy (Meuwissen *et al.* 2016, Wolc *et al.* 2016). This review is an exhaustive search of the available literature regarding poultry breeding research carried out by public funded institutions and organizations in India.

Poultry selection and breeding methodologies

Poultry breeding in India has historical underpinning in the practice of raising birds in the backyard for domestic consumption and game purposes (Rajkumar et al. 2021a). Before independence, poultry breeding was centred on selection of superior birds in a flock and selling of surplus culled birds as a terminal produce (Saxena and Kolluri 2018). Long term pure-bred selection using this approach led to a severe reduction in additive genetic variance over generations (Falconer and Mackay 1989). Thus, in 1980s, the concept of two-, three- and four-way crosses was adapted from crop breeding programmes to exploit the nonadditive genetic variance component in poultry genome (Saxena and Kolluri 2018). Soon, efforts were made to develop commercial hybrids with high production potential as terminal produce with specialized sire and dam lines. Subsequently, focus was directed at developing specialized sire and dam parent lines with different selection parameters. Cornish males and New Hampshire females were highly preferred for production of broiler chickens whereas White Leghorn was the leading layer breed for white-shelled eggs and Rhode Island Red (RIR) for brown-shelled eggs (Bell 2002). Attempts to bring scientific modern poultry farming to Indian backyards got fructified with the development of Giriraja, a first synthetic chicken variety developed by the University of Agricultural Sciences, Bengaluru (Rajkumar et al. 2021a). Subsequently, several chicken crossbred varieties were developed for their suitability in rural, tribal and remote backyards of India by ICAR-Directorate of Poultry Research (DPR), Hyderabad; ICAR-Central Avian Research Institute (CARI), Izatnagar; State Veterinary and Agricultural Universities, etc.

At present, poultry breeding in India is a combination of pure-line selection (PLS) and crossing, to develop synthetic crosses suitable for further propagation (O'sullivan *et al.* 2010), and conservation and improvement of indigenous chicken breeds.

Pure-line selection: Specialized parent lines with desirable traits are developed through intense selection based on the desired objectives and goal. For production of commercial broiler stock, sire lines with higher body weight, robust body conformation, feed conversion, fertility, liveability and carcass quality are generally selected (Rajkumar et al. 2011a, Padhi and Chatterjee 2013, Padhi et al. 2015a, Rajkumar et al. 2021c) whereas

egg production, egg mass, persistency, egg weight, egg quality, fertility, hatchability and age at sexual maturity are the criteria of selection in females (Rajaravindra et al. 2015, Prince et al. 2020, Rajkumar et al. 2021e). In layers, the prime focus is on increasing egg production without compromising egg weight and maintaining optimum egg quality. Layer breeders select females based on Osborne index for higher egg production and egg quality parameters (Debnath and Ghosh 2015, Chandan et al. 2019, Manjeet et al. 2019, Rajkumar et al. 2020a) while body weight and liveability are the major traits in case of layer males (Rajkumar et al. 2021d) in addition to the egg production. Simultaneously, a control population is also maintained to evaluate the rate of genetic progress in the selected population (Saxena and Kolluri 2018). Several short-term and long-term selection experiments have been done to evaluate the male and female lines for primary traits and correlated responses to other economic traits for improved productivity (Rajkumar et al. 2021b). A detailed list of traits considered as selection criteria in broiler and layer parent line is presented in Table 1.

Furthermore, in the view of impending climate change, heat stress is a major challenge for poultry breeders across the country. Fortunately, in poultry, major genes like naked neck (Na), frizzle (F), slow feathering (K), dwarf (dw), etc. could offer potential solutions for selection of climate-resilient birds in heat stress conditions (Fathi et al. 2022). Naked neck (Na) is an incompletely dominant gene which results in absence of feathers on the neck region. This allows for better heat dissipation and regulation of body temperature while maintaining normal production performance (Sharifi et al. 2010, Rajkumar et al. 2009, 2010, 2011a, b; Fernandes et al. 2023). Dwarf birds with sex-linked dwarf (dw) gene have better adaptability, reproductive fitness, feed efficiency and disease resistance than their normal-sized counterparts in hotter climates (Islam 2005). Also, the sex-linked slow feathering gene and incompletely dominant frizzle gene result in reduced feather mass and body weight, helping in better thermoregulation and encouraging higher meat and egg production in the tropics (Missohou et al. 2003, Fathi et al. 2013). Research on genetic basis of heat tolerance in poultry has been started long ago and the effect of these major genes on immunocompetence (Haunshi et al. 2002, Kundu et al. 2010), serum biochemical parameters (Rajkumar et al. 2010), egg production (Khan et al. 2007), egg quality (Rajkumar et al. 2009), growth and carcass traits (Rajkumar et al. 2011b) have been explored.

Development of crosses: Intense selection of pure lines is followed by crossing for exploiting the non-additive genetic component through heterosis. Considering the complementarity and nicking ability of sire and dam lines in view, these are crossed in different combinations to result in a hybrid heterozygous population with the desirable characteristics. These crosses may be of egg type, dual type and meat type depending on their utility with higher productivity compared to the native chicken. These hybrids

Table 1. Traits considered for selection of chicken broilers and layers

Type of chicken	Line	Selected for	Reference
Broiler males	Synthetic coloured broiler male line, PB-1	5 weeks body weight 6 weeks body weight	Reddy <i>et al.</i> (2018) Reddy <i>et al.</i> (2013)
	CSML	5 weeks body weight	Annual Report (2021-22)
	Vanaraja male line, PD-1	Shank length at 6 weeks	Rajkumar et al. (2016)
Broiler females	Synthetic coloured broiler female line, PB-2	Body weight at 5 and 6 weeks, 40 weeks egg production	Prince et al. (2020)
	CSFL	Body weight at 5 and 6 weeks, 40 weeks egg production	Annual Report (2021-22)
	Vanaraja female line, PD-2	Egg production at 40 weeks Egg mass at 52 weeks	Rajkumar et al. (2021e)
Layer males	Gramapriya male line, PD-6	Shank length up to 6 weeks of age	Rajkumar et al. (2021d)
	White Leghorn strains, IWH and IWI	Egg production up to 64 weeks	Kataria et al. (2015)
Layer females	White Leghorn line, IWK	Egg weight at 28 weeks and egg production up to 64 weeks of age	Haunshi et al. (2015b)
	White Leghorn Lines, IWH and IWI	Part period egg production up to 40 weeks of age	Bais et al. (2006)
	White Leghorn Lines, IWH and IWI	Osborne index for egg production up to 64 weeks	Haunshi et al. (2015b)
	Gramapriya female line, PD-3	Egg mass at 40 weeks	Rajkumar et al. (2020a)

are referred as the improved rural chicken varieties with faster growth rate of 1.5-2.0 kg (males) at 3 months of age and 120-180 eggs, almost 1.5 to 2 times of native chicken production. The resulting crosses are evaluated based on several parameters and the most suitable two-way or three-way crosses are further multiplied and propagated to the field for the benefit of the farmers in terms of higher yields and better returns (Rajkumar *et al.* 2021a). In recent times, several studies have been conducted to evaluate crosses suitable for rural and backyard poultry farming which have been detailed in Table 2.

Commercial poultry breeding in India

In India, poultry breeding is practiced parallelly using: highly improved layer and broiler genotypes for commercial production, and low-input dual purpose varieties and improved indigenous germplasm for backyard poultry production. Though initially, parent stock was imported from large breeding conglomerates to develop commercial broiler and layer varieties (Pym 2013), subsequently, several lines, varieties using two-way and three-way crosses were evolved for the genetic improvement programmes (Khan 2008, Padhi *et al.* 2015a, Rajkumar *et al.* 2018a, Rajkumar *et al.* 2021a).

The impact of commercial breeding on poultry industry could be adjudged by the fact that egg production from commercial poultry is an enormous 84.82% of the total egg production in the country. Also, the contribution of poultry meat (51.00%) to the total meat production of the country is almost completely met by the commercial sector only (BAHS 2022).

Contribution of Indian Council of Agricultural Research

All India Coordinated Research Project (AICRP) on poultry breeding started by the ICAR in 1970 during the

IV five-year plan for improving the poultry production and productivity serves as a landmark development in the history of the country. Two projects namely AICRP on poultry for egg and meat were initiated under the umbrella of ICAR at ICAR institutes and State Agricultural Universities (https://aicrp.icar.gov.in/poultry/). In addition to the existing indigenous strains, four exotic White Leghorn strains for layer and four broiler strains were imported. After initial performance evaluation and their performance in cross combinations, six layer strains (IWH, IWI, IWD, IWF, IWN and IWP) and four broiler strains (PB-1, PB-2, CSML and CSFL) were selected for further genetic improvement and cross production (https://aicrp.icar.gov. in/poultry/achievements/salient-achievements/). Initially, a nucleus stock production unit was established at ICAR-Directorate of Poultry Research (DPR), Hyderabad for maintenance, multiplication and supply of parent lines and their commercial crosses developed by different AICRP centres. The institute was also entrusted with the additional responsibility to evaluate commercial layer and broiler varieties developed at different AICRP centres and to compare their performance vis-à-vis the varieties available in commercial hatcheries and private farms (Annual Report 2021-22). Combined efforts of ICAR-DPR and AICRP on poultry breeding led to the development of several promising high-yielding varieties of broiler and layer chickens suitable for commercial poultry farming in the country. Athulya, a layer variety capable of producing more than 300 eggs has been developed and propagated throughout the country. Layer varieties like Krishi layer, ILI-80, ILM-90 and ILR 90 and broiler varieties like IBL-80, IBI-91, IBB-83 and B-77 are a result of success of these endeavours only (Rajkumar et al. 2018b). Some of the highly popular and promising layer varieties have been

Table 2. Poultry crosses developed by public sector/research institutions in India and their performance under farm conditions

Purpose	Type of cross	Sire line	Dam line	Body weight. at 20 weeks in males (kg)	Annual egg production	Reference
Development of egg type backyard chicken variety	Three-way cross	PD-1 (Cornish) x IWI (White Leghorn) males	PD-3 (Dahlem Red) females	1.67 (at 16 wks)	233	Padhi et al. (2015b)
Development of a dual-purpose backyard variety (Vanaraja)	Two-way cross	PD-1 (Cornish) males	PD-2 (Dahlem Red) females	1.70	160	Padhi <i>et al.</i> (2012)
Development of egg type rural variety (<i>Gramapriya</i>)	Two way cross	PD-6 (Cornish) males	PD-3 (Dahlem Red) females	1.78	220	Rajkumar <i>et al.</i> (2018c)
Development of a dual purpose for freerange poultry farming	Two way cross	PD-1 (Cornish) males	PD-4 (Aseel) females	1.97	189	Rajkumar et al. (2019)
Development of egg type variety for rural poultry farming (Janapriya)	Three way cross	PD-1 (Cornish inheritance) x IWI (White Leghorn) males	PD-3 (Dahlem Red) females	1.62	228	Rajkumar et al. (2018a)
Development of meat type backyard variety (Srinidhi)	Two way cross	Control Broiler males	PD-3 (Dahlem Red) females	1.7-2.0	220-230	Rajkumar <i>et al.</i> (2021a)
Development of a broiler variety (Krishibro)	Two way cross	PB-1 males (Punjab Brown) males	PB-2 females (Punjab Brown) females	2.60	64 (at 40 weeks)	Haunshi <i>et al.</i> (2015b)
Development of a commercial layer variety (<i>Krishilayer</i>)	Two way cross	IWH (White Leghorn males)	IWI (White Leghorn) females		280	Haunshi <i>et al.</i> (2015b)
Development of crosses for rural poultry (CARI-Shyama)	Two way cross	Kadaknath males	CARI Red (Dahlem Red) females	1.12	210	Prakash <i>et al.</i> (2020)
Development of crosses for rural poultry (CARI-Nirbheek)	Two way cross	Aseel Peela males	CARI Red (Dahlem Red) females	1.84	198	Prakash <i>et al.</i> (2020)
Development of heat tolerant birds (UPCARI)	Two way cross	Native chicken with Frizzle plumage males	CARI Red (Dahlem Red) females	1.68	220	https://cari.icar.gov.in/ varieties_deve.php
Development of heat tolerant birds (HITCARI)	Two way cross	Native chicken with naked neck plumage males	CARI Red (Dahlem Red) females	1.75	200	https://cari.icar.gov.in/ varieties_deve.php
Development of chicken variety for backyard production (<i>Rajasri</i>)	Four way cross	Native males	RIR (Rhode Island Red) × WLH (White Leghorn) × DR (Dahlem Red) females	1-1.2	ı	Rao et al. (2012)
Development of a dual-purpose bird ($CARI$ Two way cross $Debendra$)	Two way cross	Synthetic coloured broiler males	Rhode Island Red females	1.7-1.8 (at 12 weeks)	190-200	https://cari.icar.gov.in/ varieties_deve.php

Composition of different lines are: PD-1: Cornish inheritance; PD-2 & PD-3: Dahlem Red inheritance; PD-4: Aseel inheritance; PD-6: Cornish inheritance; PB-1 & PB-2: Punjab Brown inheritance; IWH & IWI: White Leghorn inheritance; CARI Red: Dahlem Red inheritance.

Table 3. Commercial layer chicken varieties developed by ICAR-DPR and AICRP on Poultry Breeding (Rajkumar et al. 2018b)

Variety	Developed by	Egg production up to 72 weeks (Nos.)	Age at first egg (days)
Krishilayer	ICAR-DPR, Hyderabad	270-290	140-150
Athulya (ILM-90)	AICRP on Poultry Breeding, KVASU, Mannuthy, Kerala	303	-
Anand commercial layer	AICRP on Poultry Breeding, AAU, Anand, Gujarat	300	142
ILR-90 Jubilee	Veterinary college, Hyderabad	296	156

detailed in Table 3.

Government support to the poultry sector encouraged the private firms to enter into poultry breeding and production. Venkateswara Hatcheries Pvt. Ltd., Pune pioneered the poultry breeding operations on large scale with pureline breeding followed by many other firms like Suguna, Indian Broiler, Aviagen, Srinivas, etc.

Also, ICAR-Central Avian Research Institute (CARI), Izatnagar has significantly contributed to the commercial poultry farming by developing and releasing several high-yielding commercial layer and broiler stock. The institute is one of the leading centres of AICRP on poultry breeding and is developing commercial germplasm for wide spread dissemination. Some of the major contributions of the centre to the commercial poultry farming in the country have been enlisted in Table 4.

Backyard poultry breeding in India

Though backyard poultry contributes just 15.18% of the total egg production (BAHS 2022), its impact in terms of providing nutritious food, ensuring health and well-being and socio-economic upliftment in rural, tribal and remote corners of the country is hugely significant. This is due to the reason that around 65% of Indian population resides in villages where protein intake is very low (Rajkumar et al. 2021a). Realizing the potential of backyard poultry farming in providing nutritional security, fighting protein malnutrition, promoting economic equity and facilitating women empowerment in the rural areas of the country (Kumar et al. 2019), the Government of India has promoted several initiatives and schemes in this area. These include the re-orientation of AICRP on Poultry Breeding to focus

especially on rural poultry (Annual Report 2021-22). Morphological features like coloured plumage, comb pattern combined with better adaptability and performance (survivability, body growth and optimum production on a low plane of nutrition) have been identified as breeding goals for development of rural chicken varieties (Ayyagari 2001, Dana et al. 2010, Neeteson et al. 2023). These goals are being achieved through selective breeding of indigenous or exotic breeds and crossbreeding of selected lines to develop rural chicken varieties (Haunshi and Sharma 2002, Haunshi et al. 2015a, Rajkumar et al. 2021c). Crossbred chicken varieties like Gramapriya, Vanaraja, Srinidhi have been developed using selective breeding of exotic germplasm and are being successfully propagated to rural and tribal backyards for sustainable production and incomes (Rajkumar et al. 2018b). Also, varieties developed using improved native chicken breeds are in huge demand owing to the superior genes related to meat and egg quality/flavour, broodiness, better adaptability and disease resistance in the latter (Kanakachari et al. 2022).

Role of ICAR-DPR in improvement of backyard chickens

ICAR-DPR, Hyderabad started its quest for development of rural chicken varieties way back in 1996-97. Today, rural chicken varieties developed by the directorate constitute around 8% of the total improved poultry chicken germplasm in the country (Rajkumar and Rama Rao 2018).

Vanaraja: This dual purpose chicken variety was developed by the directorate in 1999. It is a resilient variety with better immune competence and multi-coloured plumage. *Vanaraja* cocks weigh 1.5-1.7 kg at three months and hens lay 110-120 eggs under backyard conditions.

Table 4. Commercial stock developed by ICAR-CARI (https://cari.icar.gov.in/varieties_deve.php)

Commercial layer varieties			
Variety	Egg production up to 72 weeks (Nos.)	Age at first egg (days)	Average egg weight (g)
CARI Priya (ILI-80) (White egg variety)	>298	119-126	57
CARI Sonali (Brown egg variety)	>280	126-133	54
Commercial broiler varieties			
Variety	Body weight at day old (g)	Body weight at 6 weeks (g)	Feed conversion ratio up to 6 weeks
CARIBRO Vishal (White Broiler)	43	1650-1700	1.85
CARIBRO Dhanraja (Coloured Broiler)	46	1500-1700	1.92
CARIBRO Mrityunjay (for hot and dry regions with naked neck character)	38-42	1400-1500	1.95
CARIBRO Tropicana (for hot and dry regions with frizzle feathers)	-	1300	1.90

Vanaraja has made huge inroads across the length and breadth of the country and is highly popular among the rural populace (Mondal and Kakati 2010, Islam *et al.* 2014, Kundu *et al.* 2015, Perween *et al.* 2016, Kumar *et al.* 2021).

Gramapriya: It is another success story for egg-type backyard poultry farming. It is a prolific brown egg layer capable of producing 160-180 eggs in backyard and cocks weigh about 1.5 kg at three months of age. Owing to its great demand, this variety has been supplied to several Government agencies including KVKs, State Animal Husbandry departments, Central Poultry Development Organizations and Poultry Seed Project centres located throughout the country. This variety commands huge appeal throughout the country from Jammu and Kashmir (Singh et al. 2018) in the north to Tamil Nadu (Jagatheesan et al. 2020) in the south and from Maharashtra (Kumar et al. 2017) in the west to Manipur in the north-east (Hajra et al. 2014).

Srinidhi: Srinidhi is another dual-purpose variety which was developed in 2013 to obtain higher body weight of Vanaraja along with higher egg production of Gramapriya in a single bird. Srinidhi hens lay about 150 eggs in backyard conditions. The variety is multi-coloured and attains juvenile body weight of 600-650 g at 6 weeks of age. This backyard variety is also available pan-India and is performing well under diverse climatic conditions (Sarma et al. 2018, Khan et al. 2019, Pankaj et al. 2019).

Swetasri: Swetasri (PD-2 × White Leghorn line) is an egg type variety, popularly known as White Gramapriya which can lay about 180-200 eggs a year under field conditions. This variety is preferred in the remote areas of Kerala and Lakshadweep islands for semi-intensive and small-scale intensive farming systems (Rajkumar et al. 2018b).

Krishibro: This variety is the result of the vision to develop a meat type bird suited for small-scale intensive farming in rural and tribal areas. It has multi-coloured plumage and can attain 1.5 kg body weight at six weeks of age on a low plane of nutrition. Sometimes, 2 kg body weight even before 35 days of age has been reported in these birds (Rajkumar *et al.* 2018b).

Genetic improvement using native chicken germplasm

Native chickens are endowed with superior traits like broodiness, heat tolerance, disease resistance, resilience, fighting against predators, good flight, ability to survive and produce on scavenging or low input diet (Kanakachari et al. 2022). All these traits assume huge significance in the light of challenges like climate change, disease outbreaks, shrinking resources and welfare issues (Hafez and Attia 2020, Duncan 2001). Therefore, native birds are being improved for their production performance while retaining their original phenotypic and behavioural traits (Chatterjee et al. 2007, Haunshi et al. 2011, Haunshi et al. 2012). In this regard, Aseel (Haunshi et al. 2019), Kadaknath (Pal et al. 2019, Haunshi and Sharma 2002), Ghagus (Haunshi et al. 2022) and Nicobari (Niranjan et al.

2008, Haunshi et al. 2020) are being improved for growth, production, reproduction and immune response traits. This is being done through selective breeding for desirable traits in the indigenous breeds to develop specialized lines (morphological, growth, production and carcass quality) (Rajkumar et al. 2017, Haunshi et al. 2019, Dalal et al. 2022, Haunshi et al. 2022). Vanashree is one such improved native chicken line (PD-4) evolved from Aseel breed which is selected for higher body weight at 8 weeks and egg production up to 40 weeks of age (Haunshi et al. 2021). Subsequently, this native germplasm is crossed with improved exotic lines to get F1 generation with 50% native inheritance. F1 is further crossed again with improved exotic lines to get a desired terminal cross with 25% native and rest of the exotic inheritance (Annual Report 2021-22). CARI Nirbheek (Aseel cross), CARI Shyama (Kadaknath cross), UPCARI (Indian native chicken with frizzle plumage cross) and HITCARI (Indian native chicken with naked neck plumage cross) are the examples of the crosses of exotic breed (Dahlem Red) with native chicken germplasm developed by ICAR-CARI, Izatnagar (https:// cari.icar.gov.in/varieties deve.php).

On similar lines, AICRP on poultry breeding was overhauled in 2014-15, to develop location-specific chicken varieties and their dissemination in villages; for conservation, improvement, characterization and application of local native and elite layer and broiler germplasm; to develop package of practices for village poultry and entrepreneurships in rural, tribal and backyard areas, etc. (Annual Report 2021-22). In order to accomplish these objectives, separate breeding strategies have been devised to develop egg-type, meat-type and dual-purpose birds.

Several location-specific and region-specific varieties of rural poultry have been developed as a result of AICRP endeavours (Table 5). Different centres of the project identify local non-descript breed of chicken to develop a variety suited to the demands of rural population of the region. The developed location-specific varieties have been found to have better adaptability and performance in the specific regions owing to the favourable genotype-environment interactions combined with selective breeding and crossbreeding (Rajkumar *et al.* 2018b).

Future perspectives

Sustained efforts in poultry breeding and genetic improvement have ushered in the silver revolution and contributed immensely to the pink revolution in the country. However, Indian poultry breeding is still faced by numerous issues and challenges which need to be addressed immediately. Climate change, more evident in the form of heat stress is one serious challenge (Nyoni *et al.* 2021) which threatens to disturb the poultry production systems, especially in rural areas (Nyoni *et al.*2018). Elevated temperatures beyond thermoneutral zone will lead to reduced feed intake, slower growth rate, lower hen-day egg production, reduced immunity, thus causing a detrimental

Variety	Developed by AICRP	Suited for region/state Genetic make-up Body wt. at 20 weeks (kg) Body wt. at 40 weeks (kg) Annual egg	Genetic make-up	Body wt. a	t 20 weeks (kg)	Body wt. at 4	40 weeks (kg)	Annual egg	Egg weight at
	centre			Male	Female	Male	Female	production (Nos.) 40 weeks (g)	40 weeks (g)
Pratapdhan	MPUAT, Udaipur	Rajasthan	$Native \times PB-2 \times \\RIR$	2.4	1.9	2.7	2.2	165	53.8
Narmadanidhi	NDVSU, Jabalpur	Madhya Pradesh	Kadaknath × Jabalpur colour	1.6	4.1	2.3	1.7	170	48.0
Kamrupa	AAU, Guwahati	Assam	Native × PB-2 × DR	_	1.3-1.5	1.8-2.2	1.3-1.6	118-130	52.0
Jharsim	BAU, Ranchi	Jharkhand	$PB\text{-}2\times Desi\times DR$	П	1.6-1.8			110-130	52-55
Himsamridhi	CSKHPKV, Palampur	Himachal Pradesh	$(DR \times Native) \times DR$	1.7	1.2	2.1	1.6	140	53.0

impact on the welfare and productivity of birds (Wasti et al. 2020, Abioja and Abiona 2021). Although breeding for thermotolerance in chickens through introgression of major genes [like Naked neck (Na), Frizzle (F), Dwarf (dw) and slow feathering (K)] (Wasti et al. 2020) has been going on since long, selection for traits related to heat tolerance (Mashaly et al. 2004) and favourable genotypeenvironment interactions (Chu et al. 2019) could be a potential solution in the direction of raising climate-resilient birds. In this context, genetic markers can be identified and utilized to enhance thermotolerance and productivity of birds in tropical conditions (Nawab et al.2018[Vandana et al. 2021).

Poultry diseases present an ever-existing threat to the breeding systems and can potentially wipe out the entire gene pool meticulously selected over generations (Akintunde and Adeoti 2014). Indiscriminate focus on increasing productivity levels has unintendingly led to disease susceptibility and antimicrobial resistance in poultry (Abreu et al. 2023). Therefore, there is growing concern regarding the welfare of birds and boosting their natural immunity and disease resistance (Hafiz and Attia 2020). From breeding perspective, a viable approach could be designing selection indices giving appropriate weightages to production, health, livability and reproduction (Kumar et al. 2023). Simultaneously, the indigenous poultry germplasm needs to be rapidly characterized and explored to identify disease tolerance genes before they are lost forever.

Poultry breeding is highly competitive and needs continual genetic progress to sustain itself (Preisinger 2018). Though phenotype-based selection is still yielding handsome returns, it is not long before poultry breeders/ geneticists will have to embark on genomic selection of quantitative traits for extensively capturing the genomic variability and yielding sustainable gains. With declining costs of genotyping and improving computational abilities, there is an opportunity to increase the accuracy of EBV for sex limited traits (Meuwissen et al. 2016). However, genome-based breeding programmes in poultry should employ large scale genotyping along with stringent sample tracking to be successful. Nonetheless, high density (HD) SNP genotyping (600K chicken SNP chip) along with genomic prediction and selection is an exciting area in poultry breeding to improve production, disease resistance, climate resilience and carcass quality traits altogether. To start with, we can go for HD genotyping of few families and subsequently, develop computational abilities to select for higher densities using low density chips later by genotype imputation (Habier et al. 2009).

Recently, gene editing systems like (CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and gene silencing by RNA interference is being employed to increase the genetic variation in poultry flocks. This is aimed at improving the egg production, enhancing bird's immune response and producing leaner meat (Khwatenge and Nahashon 2021). Recent findings indicate that RNAi mediated gene silencing of Myostatin receptor gene *ACVR2B* improves the body weight and carcass traits in juvenile chickens (Bhattacharya *et al.* 2019). In a similar approach, Activin type IIB receptor was silenced to generate a knockdown chicken with greater muscle mass (Vishnu *et al.* 2019). Genome editing is also being advocated as a potential solution to animal welfare issues like sex selection and culling through *in ovo* sexing (Lee *et al.*2019).

With the rise in consumer awareness and ethical concerns, poultry breeding decisions should accommodate the conflicting demands of welfare along with food security and climate change (Neeteson *et al.* 2020). Hence, poultry breeders need to identify the individual traits relevant to health and welfare of birds (Star *et al.* 2008). These can include low heritability traits like cannibalism, bone strength, leg score, pecking, robustness, mortality, disease resistance, etc. and other social effects. Selective breeding for these health and welfare related traits (along with management practices) can be a potent tool for poultry breeders to mitigate the ethical challenges posed by intensive poultry farming. Also, genomic selection should incorporate these traits to further bring sustainability in the poultry sector (Muir *et al.* 2014).

Advent of artificial intelligence (AI) and Internet of Things (IoT) presents a great opportunity for poultry breeders to analyse large volumes of precisely collected data for making predictions (Astill *et al.*2020). The data related to poultry health, production and management conditions captured using sensors, video and image processing capabilities and sound or vocalization based analysis (Singh *et al.* 2020) can greatly help the breeders to collect physiological health data for deducing genetic parameters related to bird stress, health and mortality (Aydin 2017a, Aydin 2017b, Wu *et al.* 2022, Park *et al.* 2022). Also, real-time data of images and sound analysis can provide interesting genetic insights on production and feed intake parameters (Aydin *et al.* 2015, Park *et al.* 2022).

Conclusion

Indian poultry sector has made headways globally due to the immense progress made in poultry breeding. Both commercial and backyard breeding systems have contributed to the phenomenal growth of the poultry sector in the country. Also, it has nutritional security, socioeconomic equity, health and well-being of the population. However, climate change, diseases, falling gains and welfare issues are some of the challenges faced by Indian poultry sector today. These need to be appropriately addressed in the future poultry breeding strategies of the country. Developing selection indices with weightages to health and welfare traits along with production, genomic selection for climate resilience, gene editing for enhancing genetic variation, use of artificial intelligence and big data analytics for precise selection are proposed as measures for future development and sustainability of the poultry breeding sector in the country.

REFERENCES

- Abioja M O and Abiona J A. 2021. Impacts of climate change to poultry production in Africa: Adaptation options for broiler chickens, pp. 275–96. *African Handbook of Climate Change Adaptation*. (Eds) Oguge N, Ayal D, Adeleke L and da Silva I. Springer, Cham. https://doi.org/10.1007/978-3-030-45106-6_111
- Abreu R, Semedo-Lemsaddek T, Cunha E, Tavares L and Oliveira M. 2023. Antimicrobial drug resistance in poultry production: Current status and innovative strategies for bacterial control. *Microorganisms* 11(4): 953. https://doi. org/10.3390/MICROORGANISMS11040953
- Akintunde O K and Adeoti A I. 2014. Assessment of factors affecting the level of poultry disease management in Southwest, Nigeria. *Trends in Agricultural Economics* 7(2): 41–56.
- Annual Report 2021-22. 2022. AICRP on Poultry Breeding and Poultry Seed Project, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad-500030, Telangana, India.
- Astill J, Dara R A, Fraser E D, Roberts B and Sharif S. 2020. Smart poultry management: Smart sensors, big data, and the internet of things. *Computers and Electronics in Agriculture* 170: 105291.
- Aydin A, Bahr C and Berckmans D. 2015. A real-time monitoring tool to automatically measure the feed intakes of multiple broiler chickens by sound analysis. *Computers and Electronics in Agriculture* **114**: 1–6.
- Aydin A. 2017a. Development of an early detection system for lameness of broilers using computer vision. *Computers and Electronics in Agriculture* 136: 140–46.
- Aydin, A. 2017b. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. *Computers and Electronics in Agriculture* **135**: 4–10.
- Ayyagari V. 2001. Development of varieties for rural poultry. Souvenir on Sustainable Poultry Production: Rural and Commercial Approach. 3rd March, Hyderabad, India, pp. 7–14.
- BAHS. 2022. Basic Animal Husbandry Statistics, Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India.
- Bais R K S, Kataria M C, Johari D C, Sharma D, Hazary R C and Mohapatra S C. 2006. Relative efficiency of family index versus reciprocal recurrent selection for improving egg production in White Leghorn. *Indian Journal of Poultry Science* 41(3): 233–39.
- Bell D D. 2002. Modern breeds of chickens, pp. 31-40.
 Commercial Chicken Meat and Egg Production. (Eds) Bell D D and Weaver W D. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0811-3
- Bhattacharya T K, Shukla R, Chatterjee R N and Bhanja S K. 2019. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. *Scientific Reports* 9(1): 7789.
- Chandan P, Bhattacharya T K, Rajkumar U, Prince, L L L and Chatterjee R N. 2019. Estimation of genetic parameters of growth and egg production traits by animal model in IWK layer strain. *Indian Journal of Animal Research* **53**(9): 1252–57.
- Chatterjee R N and Rajkumar U. 2015. An overview of poultry production in India. *Indian Journal of Animal Health* **54**(2): 89–108.
- Chatterjee R N, Sharma R P, Reddy M R, Niranjan M and Reddy

- B L N. 2007. Growth, body conformation and immune responsiveness in two Indian native chicken breeds. *Livestock Research for Rural Development* **19**(10): 1–7.
- Chu T T, Bastiaansen J W, Berg P, Romé H, Marois D, Henshall J and Jensen J. 2019. Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments. *Genetics Selection Evolution* **51**(1): 1–13.
- Dalal D S, Ratwan P and Yadav A S. 2022. Genetic evaluation of growth, production and reproduction traits in Aseel and Kadaknath chickens in agroclimatic conditions of northern India. *Biological Rhythm Research* **53**(1): 40–49.
- Dana N, van der Waaij L H, Dessie T and van Arendonk J A M. 2010. Production objectives and trait preferences of village poultry producers of Ethiopia: Implications for designing breeding schemes utilizing indigenous chicken genetic resources. *Tropical Animal Health and Production* 42(7): 1519–29. https://doi.org/10.1007/S11250-010-9602-6/TABLES/11
- Debata D, Panigrahi B, Panda N, Pradhan C R, Kanungo S and Pati P K. 2012. Growth performance and carcass traits of Black Rock, Red Cornish and Vanaraja chicken reared in the coastal climatic condition of Odisha. *Indian Journal of Poultry Science* 47(2): 214–17.
- Debnath B C and Ghosh T K. 2015. Phenotypic correlations between some external and internal egg quality traits in Gramapriya layers. Exploratory Animal and Medical Research 5(1): 78–85.
- Duncan I J. 2001. Animal welfare issues in the poultry industry: is there a lesson to be learned? *Journal of Applied Animal Welfare Science* 4(3): 207–21.
- Falconer D S and Mackay T F C. 1989. *Introduction to Quantitative Genetics*. Longman Scientific and Technical, Longman Group UK Limited.
- Fathi M M, Galal A, El-Safty S and Mahrous M. 2013. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. Growth performance and egg production. *World's Poultry Science Journal* **69**(4): 813–32. https://doi.org/10.1017/S0043933913000834
- Fathi M M, Galal A, Radwan L M, Abou-Emera O K and Al-Homidan I H. 2022. Using major genes to mitigate the deleterious effects of heat stress in poultry: An updated review. *Poultry Science* 101(11): 102157. https://doi.org/10.1016/J. PSJ.2022.102157
- Fernandes E, Raymundo A, Martins L L, Lordelo M and Almeida A M de. 2023. The naked neck gene in the domestic chicken: a genetic strategy to mitigate the impact of heat stress in poultry production—A review. *Animals* 13(6): 1007. https://doi.org/10.3390/ANI13061007
- Habier D, Fernando R L and Dekkers J C. 2009. Genomic selection using low-density marker panels. *Genetics* **182**(1): 343–53.
- Hafez H M and Attia Y A. 2020. Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. *Frontiers in Veterinary Science* 7: 516. https://doi.org/10.3389/fvets.2020.00516
- Hajra D K, Meitei A, Sinyorita S and Prakash N. 2014. Performance of Vanaraja, Gramapriya and Desi birds in the backyard system of rearing in Manipur. *Indian Journal of Poultry Science* 49(1): 118–20.
- Haunshi S and Prince L LL. 2021. Kadaknath: A popular native chicken breed of India with unique black colour characteristics. *World's Poultry Science Journal* 77(2): 427–40.

- Haunshi S and Sharma D. 2002. Immunocompetence in native and exotic chicken populations and their crosses developed for rural farming. *Indian Journal of Poultry Science* **37**(1): 10–15.
- Haunshi S, Devara D, Ramasamy K, Ullengala R and Nath Chatterjee R. 2020. Genetic diversity at major histocompatibility complex and its effect on production and immune traits in indigenous chicken breeds of India. Archives Animal Breeding 63(1): 173–82. https://doi.org/10.5194/ AAB-63-173-2020
- Haunshi S, Doley S and Shakuntala I. 2009. Production performance of indigenous chicken of northeastern region and improved varieties developed for backyard farming. *Indian Journal of Animal Sciences* 79(9): 901–5.
- Haunshi S, Niranjan M, Shanmugam M, Padhi M K, Reddy M R, Sunitha R, Rajkumar U and Panda A K. 2011. Characterization of two Indian native chicken breeds for production, egg and semen quality, and welfare traits. *Poultry Science* 90(2): 314–20.
- Haunshi S, Rajkumar U and Padhi M K. 2019. Improvement of PD-4 (Aseel), an indigenous chicken, for growth and production traits. *Indian Journal of Animal Sciences* 89(4): 419–23.
- Haunshi S, Reddy B L N, Niranjan M, Rajkumar U, Padhi M K, Rajaravindra K S and Chatterjee R N. 2015b. Status of genetic resources of chicken evolved at ICAR-DPR. ICAR-Directorate of Poultry Research, Hyderabad, Telangana – 500030.
- Haunshi S, Shanmugam M, Padhi M K, Niranjan M, Rajkumar U, Reddy M R and Panda A K. 2012. Evaluation of two Indian native chicken breeds for reproduction traits and heritability of juvenile growth traits. *Tropical Animal Health and Production* 44(5): 969–73.
- Haunshi S, Shanmugam M, Rajkumar U, Padhi M K and Niranjan M. 2015a. Characterization of Ghagus breed vis-avis PD-4 birds for production, adaptability, semen and egg quality traits. *Indian Journal of Animal Sciences* 85(12): 1338–42.
- Haunshi S, Sharma D, Nayal L M S, Singh D P and Singh R V. 2002. Effect of naked neck gene (NA) and frizzle gene (F) on immunocompetence in chickens. *British Poultry Science* 43(1): 28–32. https://doi.org/10.1080/00071660120109863
- Haunshi S, U Rajkumar, Paswan C, Prince L L L and Chatterjee R N. 2021. Inheritance of growth traits and impact of selection on carcass and egg quality traits in Vanashree, an improved indigenous chicken. *Tropical Animal Health and Production* 53: 1–8.
- Haunshi S, Ullengala R, Prince LLL, Ramasamy K, Gurunathan K, Devatkal S and Chatterjee R N. 2022. Genetic parameters of growth traits, trend of production and reproduction traits, and meat quality status of Ghagus, an indigenous chicken of India. *Tropical Animal Health and Production* 54(3): 1–9. https://doi.org/10.1007/s11250-022-03166-y
- https://aicrp.icar.gov.in/poultry/ Accessed on 09-02-2024
- https://aicrp.icar.gov.in/poultry/achievements/salient-achievements/ Accessed on 09-02-2024
- https://cari.icar.gov.in/tech2.php Accessed on 31-05-2023
- https://cari.icar.gov.in/varieties_deve.php Accessed on 04-07-2023
- https://www.expertmarketresearch.com/reports/india-poultry-marketAccessed on 30-05-2023
- Islam M A. 2005. Sex-linked Dwarf Gene for Broiler Production in Hot-humid Climates. Asian-Australasian Journal of Animal Sciences 18(11): 1662–68. https://doi.org/10.5713/

- AJAS.2005.1662
- Islam R, Kalita N and Nath P. 2014. Comparative performance of Vanaraja and Indigenous chicken under backyard system of rearing. *Journal of Poultry Science and Technology* **2**(1): 22–25.
- Jagatheesan P R, Thomas K S and Jayalalitha V. 2020. Production Performance of Gramapriya and Vanaraja chicks in Tiruchirappalli district, India. *International Journal of Current Microbiology and Applied Sciences* 9(8): 3613–16.
- Kanakachari M, Rahman H, Chatterjee R N and Bhattacharya T K. 2022. Signature of Indian native chicken breeds: A perspective. World's Poultry Science Journal 78(2): 421–45.
- Kataria M C, Mishra A K, Bais R K S, Kumar S, Narayan R, Johari S and Gopal R. 2015. Genetic and phenotypic response to selection in various traits of IWH and IWI strains of White Leghorn under long term selection. *Journal of Livestock Biodiversity* 5(1-2): 7–10.
- Khan A A, Afzal I, Banday M T and Shiekh I U. 2019. Growth performance and livability of Srinidhi chicken in Kashmir. *SKUAST Journal of Research* **21**(2): 218–20.
- Khan A G, Tiwari R N S, Baghel K K S and Gupta R D. 2007. Influence of the dwarfing gene dw on egg production and viability under summer heat stress. *British Poultry Science* **28**(3): 541–46. https://doi.org/10.1080/00071668708416988
- Khan A G. 2008. Indigenous breeds, crossbreds and synthetic hybrids with modified genetic and economic profiles for rural family and small scale poultry farming in India. *World's Poultry Science Journal* **64**(3): 405–15. https://doi.org/10.1017/S0043933908000135
- Khwatenge C N and Nahashon S N. 2021. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. *Frontiers in Genetics* **12**: 627714.
- Kumar M, Dahiya S P and Ratwan P. 2019. Backyard poultry farming in India: A tool for nutritional security and women empowerment. *Biological Rhythm Research* 52(10): 1476–91. https://doi.org/10.1080/09291016.2019.1628396
- Kumar S, Desai B G, Chauhan H S, Burte R G, Parhad M, Dhekale J S, Dandekar V S, Mayekar A J, Bello A A and Bhagat D J. 2017. Study of external and internal egg geometry traits of Vanaraja and Giriraja in Konkan region of Maharashtra, India. *Journal of Experimental Zoology India* 20(2)
- Kumar U V, Kumar R, Rao S V, Prince L LL and Chatterjee R N. 2021. Geographical distribution of Vanaraja chicken variety and its impact on poultry sector in India. *Indian Journal of Poultry Science* 56(3): 261–66.
- Kumar M, Vohra V, Ratwan P. Gowane G R and Malhotra R. 2023. Sustainable multi-trait selection index based on production, reproduction, and health traits for genetic improvement of Murrah buffaloes. *Animal Biotechnology* 34(7): 2505–13.
- Preisinger R. 2018. Innovative layer genetics to handle global challenges in egg production. *British Poultry Science* **59**(1): 1–6.
- Kundu A, De A K, Kundu M S, Sunder J, Jeyakumr S and Sujatha T. 2015. Production performance of indigenous Nicobari fowls, Vanaraja and their various F1 crosses under hot humid climate of Andaman and Nicobar Islands, India. *Indian Journal of Animal Sciences* 85(2):172–77.
- Kundu A, Singh D P, Mohapatra S C, Dash B B, Moudgal R P and Bisht G S. 2010. Antibody response to sheep erythrocytes in Indian native *vis-a-vis* imported breeds of chickens. *British Poultry Science* **40**(1): 40–43. https://doi.

- org/10.1080/00071669987818
- Lee H J, Yoon J W, Jung K M, Kim Y M, Park J S, Lee K Y, Park K J, Hwang Y S, Park Y H, Rengaraj D and Han J Y. 2019. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. *The FASEB Journal* **33**(7): 8519–29.
- Manjeet D S, Dahiya S P and Patil C S. 2019. 40-week egg production based on part egg production in synthetic white leghorn strain. *The Pharma Innovation* 8(2): 553–54.
- Mashaly M M, Hendricks G L, Kalama M A, Gehad A E, Abbas A O and Patterson P H. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. *Poultry Science* **83**(6): 889–94. https://doi.org/10.1093/PS/83.6.889
- Meuwissen T, Hayes B and Goddard M. 2016. Genomic selection: A paradigm shift in animal breeding. *Animal Frontiers* **6**(1): 6–14. https://doi.org/10.2527/AF.2016-0002
- Miglior F, Muir B L and Van Doormaal B J. 2005. Selection indices in Holstein cattle of various countries. *Journal of Dairy Science* 88(3): 1255–63. https://doi.org/10.3168/JDS. S0022-0302(05)72792-2
- Missohou A, Dieng A, Horst P, Zarate V A, Nesseim T and Tchedre K. 2003. Effect of dwarf (dw) and frizzle (F) genes on the performance of layers under senegalese conditions. *Tropical Animal Health and Production* **35**(4): 373–80. https://doi.org/10.1023/A:1025149523151
- Mondal G and Kakati B K. 2010. Performance of Vanaraja, Kashmir Commercial Layer and Local birds fed on kitchen waste under cold arid condition of Ladakh. *Indian Journal of Animal Nutrition* 27(1): 90–92.
- Muir W M, Cheng H W and Croney C. 2014. Methods to address poultry robustness and welfare issues through breeding and associated ethical considerations. *Frontiers in Genetics* **5**: 407.
- Nanda Kumar T, Samantara A and Gulati A. 2022. Poultry value chain, pp. 227-52. *Agricultural Value Chains in India. India Studies in Business and Economics*. (Eds) Gulati A, Ganguly K and Wardhan H. Springer, Singapore. https://doi.org/10.1007/978-981-33-4268-2_7
- Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, Zhao Y, Nawab Y, Li K, Xiao M and An L. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. *Journal* of *Thermal Biology* 78: 131–39. https://doi.org/10.1016/J. JTHERBIO.2018.08.010
- Neeteson A M, Avendaño S, Koerhuis A, Duggan B, Souza E, Mason J, Ralph J, Rohlf P, Burnside T, Kranis A and Bailey R 2023. Evolutions in commercial meat poultry breeding. *Animals* 13(19): 3150.
- Neeteson A M, Avendaño S and Koerhuis A. 2020. Poultry breeding for sustainability and welfare. *The economics of farm animal welfare: theory, evidence and policy.*, pp. 117–46. Wallingford UK: CABI.
- Niranjan M, Sharma R P, Rajkumar U, Reddy B L N, Chatterjee R N. and Bhattacharya T K. 2008. Comparative evaluation of production performance in improved chicken varieties for backyard farming. *International Journal of Poultry Science* 7(11): 1128–31.
- Nyoni N M B, Grab S and Archer E R M. 2018. Heat stress and chickens: Climate risk effects on rural poultry farming in low-income countries. *Climate and Development* 11(1): 83– 90. https://doi.org/10.1080/17565529.2018.1442792
- Nyoni N M B, Grab S, Archer E and Hetem R. 2021. Perceived impacts of climate change on rural poultry production: A

- case study in Limpopo Province, South Africa. *Climate and Development* **14**(4): 389–97. https://doi.org/10.1080/1756552 9.2021.1929803
- O'sullivan N, Preisinger R and Koerhuis A. 2010. Combining Pure-Line and Cross-Bred Information in Poultry Breeding. Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Genetic Improvement Programmes: Design of Selection Schemes Exploiting Additive and/or Non-Additive Effects—Lecture Sessions. pp. 0984.
- Padhi M K and Chatterjee R N. 2013. Carcass quality traits in four different crossbreds developed for backyard poultry and the effect of age on carcass quality under intensive system of rearing. *Indian Journal of Animal Sciences* **83**(10): 1102–08.
- Padhi M K, Chatterjee R N, Haunshi S, Rajkumar U, Bhattacharya T K and Bhanja S K. 2015a. Evaluation of male line of Vanaraja (PD1), Vanaraja and control broiler in respect to juvenile traits and genetic analysis of juvenile traits in PD1. *Indian Journal of Animal Sciences* 85(9): 991–95.
- Padhi M K, Chatterjee R N, Rajkumar U, Niranjan M and Haunshi S. 2015b. Evaluation of a three-way cross chicken developed for backyard poultry in respect to growth, production and carcass quality traits under intensive system of rearing. *Journal of Applied Animal Research* 44(1): 390–94. https://doi.org/10.1080/09712119.2015.1091336
- Padhi M K, Rajkumar U, Haunshi S, Niranjan M, Panda A, Bhattacharya T K, Reddy M R, Bhanja S and Reddy B. 2012. Comparative evaluation of male line of Vanaraja, control broiler, Vanaraja commercial in respect to juvenile and carcass quality traits. *Indian Journal of Poultry Science* 47(2): 136–39.
- Pal S, Gupta T, Wagh S and Yadav D K. 2019. Comparisons of growth performance of direct and reciprocal crosses of Aseel Peela (AP) and Kadaknath (KN) with Cari-Red. *Journal of Entomology and Zoology Studies* 7(2): 1356–59.
- Pankaj P K, Nirmala G, Ravishankar K, Reddy B S and Chary G R. 2019. Improved poultry variety for income and nutritional security in semi-arid areas of Telangana. *Indian Farming* **69**(6): 18–21.
- Park M, Britton D, Daley W, McMurray G, Navaei M, Samoylov A, Usher C and Xu J. 2022. Artificial intelligence, sensors, robots, and transportation systems drive an innovative future for poultry broiler and breeder management. *Animal Frontiers* 12(2): 40–8.
- Perween S, Kumar K, Chandramoni Kumar S, Singh P K, Kumar M and Dey A. 2016. Effect of feeding different dietary levels of energy and protein on growth performance and immune status of Vanaraja chicken in the tropic. *Veterinary World* **9**(8): 893. https://doi.org/10.14202/VETWORLD.2016.893-899
- Prakash J, Kumar K, Pandey Y and Khare R K. 2020. Egg production and egg quality characteristics in direct and reciprocal crosses using CARI Nirbheek and CARI Shyama. *Journal of Animal Research* **10**(4): 579–683.
- Prince LLL, Rajaravindra K S, Rajkumar U, Reddy B L N, Paswan C, Haunshi S and Chatterjee R N. 2020. Genetic analysis of growth and egg production traits in synthetic colored broiler female line using animal model. *Tropical Animal Health and Production* **52**(6): 3153–63. https://doi.org/10.1007/S11250-020-02340-4/TABLES/7
- Pym R. 2013. Poultry genetics and breeding in developing countries. *Poultry Development Review.* FAO, pp. 80–83.
- Rajaravindra K S, Rajkumar U, Rekha K, Niranjan M, Reddy B L N and Chatterjee R N. 2015. Evaluation of egg

- quality traits in a synthetic coloured broiler female line. Journal *of Applied Animal Research* **43**(1): 10–4. https://doi.org/10.1080/09712119.2014.883319
- Rajkumar U and Rama Rao S V. 2018. Rural poultry: A potential tool for poverty alleviation and nutritional security. Souvenir of 35th annual conference and National symposium of Indian Poultry Science Association on Rural Poultry Production: Challenges for Sustainable Entrepreneurship Development. pp. 161-70.
- Rajkumar U, Haunshi S, Paswan C, Prakash B, Padhi M K and Rama Rao S V. 2019. Evaluation of two way cross developed for free range poultry farming under farm and freerange conditions. *Indian Journal of Animal Sciences* 89(6): 652–57.
- Rajkumar U, Haunshi S, Paswan C, Raju M V L N, Rao S R and Chatterjee R N. 2017. Characterization of indigenous Aseel chicken breed for morphological, growth, production, and meat composition traits from India. *Poultry Science* 96(7): 2120–26.
- Rajkumar U, Haunshi S, Paswan C, Reddy B L N and Yadav S P. 2018a. Evaluation of a three-way crossbred chicken developed for rural poultry under farm and backyard conditions for growth and production traits. *Indian Journal of Animal* Sciences 88(2): 229–32.
- Rajkumar U, Leslie Leo Prince L, Rajaravindra K S, Haunshi S, Niranjan M and Chatterjee R N. 2021b. Analysis of (co) variance components and estimation of breeding value of growth and production traits in Dahlem Red chicken using pedigree relationship in an animal model. *PLOS One* 16(3): e0247779. https://doi.org/10.1371/JOURNAL. PONE.0247779
- Rajkumar U, Niranjan M, Prince L L L, Haunshi S, Paswan C and Reddy B L N. 2021e. Short term selection response for higher 52-week egg mass based on Osborn index in Vanaraja female parent line chicken. *Indian Journal of Animal Sciences* 91(1): 41–5.
- Rajkumar U, Niranjan M, Prince L L L, Paswan C, Haunshi S and Reddy B L N. 2020a. Genetic evaluation of growth and production performance and short-term selection response for egg mass in Gramapriya female line chicken. *Indian Journal of Animal Sciences* **90**(3): 401–6.
- Rajkumar U, Padhi M K, Haunshi S and Chatterjee R N. 2016. Genetic and phenotypic response in Vanaraja Male line chicken under short term selection experiment. *Indian Journal of Animal Sciences* **86**(11): 1287–90.
- Rajkumar U, Paswan C, Haunshi S and Niranjan M. 2018c. Evaluation of terminal crosses to assess the suitability of PD-6 line as a male line for Gramapriya chicken variety developed for rural poultry. *Indian Journal of Animal Sciences* 88(4): 438–42
- Rajkumar U, Prince L L L, Haunshi S, Paswan C and Chatterjee R. 2021d. Estimation of breeding value, genetic parameters and maternal effects of economic traits in rural male parent line chicken using pedigree relationships in an animal model. *Journal of Animal Breeding and Genetics* 138(4): 418–31. https://doi.org/10.1111/JBG.12531
- Rajkumar U, Prince L LL, Paswan C, Haunshi S and Chatterjee R. 2021c. Variance component analysis of growth and production traits in Vanaraja male line chickens using animal model. *Animal Bioscience* 34(4): 471. https://doi.org/10.5713/ AJAS.19.0826
- Rajkumar U, Rama Rao S V and Chatterjee R N. 2018b. *Improved Chicken Varieties*. ICAR-Directorate of Poultry Research,

- Rajendranagar, Hyderabad-500030, Telangana, India.
- Rajkumar U, Rama Rao S V, Raju M V L N and Chatterjee R N. 2021a. Backyard poultry farming for sustained production and enhanced nutritional and livelihood security with special reference to India: A review. *Tropical Animal Health and Production* 53(1). https://doi.org/10.1007/ S11250-021-02621-6
- Rajkumar U, Reddy B L N, Rajaravindra K S, Niranjan M, Bhattacharya T K, Chatterjee R N, Panda A K, Reddy M R and Sharma R P. 2010. Effect of naked neck gene on immune competence, serum biochemical and carcass traits in chickens under a tropical climate. *Asian-Australasian Journal of Animal Sciences* 23(7): 867–72. https://doi.org/10.5713/AJAS.2010.90548
- Rajkumar U, Reddy M R, Rama Rao S V, Radhika K and Shanmugam M. 2011b. Evaluation of growth, carcass, immune response and stress parameters in naked neck chicken and their normal siblings under tropical winter and summer temperatures. *Asian-Australasian Journal of Animal Sciences* 24(4): 509–16. https://doi.org/10.5713/AJAS.2011.10312
- Rajkumar U, Sharma R P, Padhi M K, Rajaravindra K S, Reddy B L N, Niranjan M, Bhattacharya T K, Haunshi S and Chatterjee R N. 2011a. Genetic analysis of juvenile growth and carcass traits in a full diallel mating in selected colored broiler lines. *Tropical Animal Health and Production* 43(6): 1129–36. https://doi.org/10.1007/S11250-011-9812-6
- Rajkumar U, Sharma R P, Rajaravindra K S, Niranjan M, Reddy B L N, Bhattacharya T K and Chatterjee R N. 2009. Effect of genotype and age on egg quality traits in naked neck chicken under tropical climate from India. *International Journal of Poultry Science* 8(12): 1151–55. https://doi.org/10.3923/IJPS.2009.1151.1155
- Rao S T, Preetham V C, Devi K S and Narasimha J. 2012. Rajasri-a designer fowl introgressed with genes from native birds evolved for backyard production system. *Indian Journal* of Poultry Science 47(3): 388–90.
- Reddy B L N, Chatterjee R N, Rajkumar U, Niranjan M, Rajaravindra K S and Bhattacharya T K. 2013. Genetic evaluation of short-term selection in synthetic coloured broiler male and female lines-direct and correlated responses. *Indian Journal of Animal Sciences* 83(3): 285–89.
- Reddy B L N, Panda A K, Reddy M R, Rao S R and Praharaj N K. 2001. Studies on the influence of Juvenile growth traits on laying performance in egg type chickens. *Indian Journal of Poultry Science* **36**(3): 290–93.
- Reddy B L N, Rajaravindra K S and Rajkumar U. 2018. Effect of long-term selection on primary trait (5 week body weight) in synthetic coloured broiler male line: Direct and correlated responses. *Indian Journal of Poultry Science* 53(2): 143. https://doi.org/10.5958/0974-8180.2018.00027.2
- Sarma M, Islam R, Borah M K, Sharma P, Mahanta J D, Kalita N and Bhattacharyya B N. 2018. Comparative performance of vanaraja, srinidhi and desi chicken under traditional system among tribal community of Assam. *Indian Journal of Animal Research* 52(10): 1518–20. https://doi.org/10.18805/IJAR.B-3391
- Saxena V K and Kolluri G. 2018. Selection methods in poultry

- breeding: from genetics to genomics. *Application of Genetics and Genomics in Poultry Science*. https://doi.org/10.5772/INTECHOPEN.77966
- Sharifi A R, Horst P and Simianer H. 2010. The effect of naked neck gene and ambient temperature and their interaction on reproductive traits of heavy broiler dams. *Poultry Science* 89(7): 1360–71. https://doi.org/10.3382/PS.2009-00593
- Singh M, Kumar R, Tandon D, Sood P and Sharma M. 2020. Artificial intelligence and iot based monitoring of poultry health: A review. Proc. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat) Batam, Indonesia.
- Singh P, Bajwa I S, Brah G S and Saini S. 2012. Effect of selection on humoral and *in vivo* cell mediated immune responses in broiler chicken. *Indian Journal of Poultry Science* **47**(3): 292–94.
- Singh P, Kachroo D, Thakur N P, Khajuria V, Kumar P, Kumar M and Kour G. 2018. Comparative performance of Vanaraja, Gramapriya, and Indigenous desi bird under backyard system of rearing in Jammu province, India. *International Journal of Current Microbiology and Applied Sciences* 7(2): 101–5.
- Singh S K, Sharma R K, Singh H and Kumar D. 2004. Performance evaluation and construction of multi-trait selection indices in a commercial strain of White Leghorn. *Indian Journal of Poultry Science* **39**(2): 120–4.
- Sridharan A. 2017. A Study on the Socio-economic characteristics of contract farmers associated with Suguna broilers in Coimbatore district. *International Journal of Business and Management Invention* 6(2): 10–3.
- Star L, Ellen E D, Uitdehaag K and Brom F W. 2008. A plea to implement robustness into a breeding goal: Poultry as an example. *Journal of Agricultural and Environmental Ethics* 21: 109–25.
- Vandana G D, Sejian V, Lees A M, Pragna P, Silpa M V and Maloney S K. 2021. Heat stress and poultry production: Impact and amelioration. *International Journal of Biometeorology* 65(2): 163–79. https://doi.org/10.1007/S00484-020-02023-7/ FIGURES/2
- Vishnu P, Bhattacharya T K, Bhushan B, Kumar P, Chatterjee R N, Paswan C, Dushyanth K, Divya D and Prasad A R. 2019. In silico prediction of short hairpin RNA and *in vitro* silencing of activin receptor type IIB in chicken embryo fibroblasts by RNA interference. *Molecular Biology Reports* **46**: 2947–59.
- Wasti S, Sah N and Mishra B. 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. *Animals* **10**(8): 1266. https://doi.org/10.3390/ANI10081266
- Wolc A, Kranis A, Arango J, Settar P, Fulton J E, O'Sullivan N P, Avendano A, Watson K A, Hickey J M, de los Campos G, Fernando R L, Garrick D J and Dekkers J C M. 2016. Implementation of genomic selection in the poultry industry. Animal Frontiers 6(1): 23–31. https://doi.org/10.2527/AF.2016-0004
- Wu D, Cui D, Zhou M and Ying Y. 2022. Information perception in modern poultry farming: A review. Computers and Electronics in Agriculture 199: 107131.