

Indian Journal of Animal Sciences **94** (10): 831–836, October 2024/Article https://doi.org/10.56093/ijans.v94i10.141354

Detection of virulent and ESBL-resistant Salmonella species from cattle and associated farm environment

SNEHAL SUDRIK¹, RAHUL KOLHE¹⊠, CHANDRAKANT BHONG¹, TEJAS SHENDE¹, SAMEER JADHAV¹, PRASHANT MHASE¹, VIKAS WASKAR¹, GANESH HINGE¹ and SNEHAL GADHAVE¹

KNP College of Veterinary Science, Shirwal, Maharashtra Animal and Fishery Sciences University, Satara, Maharashtra 412 801 India

Received: 23 August 2023; Accepted: 2 August 2024

ABSTRACT

The aim of this study was to explore the virulence characteristics and antibiotic resistance in *Salmonella* species isolated from cattle farms. During the study, 10 cattle farms were selected and from each farm, 35 samples consisting of faeces, milk, udder swabs, hand swabs, floor swabs, animal drinking water, pit water, composite fodder sample, and dairy utensil swabs were collected. Accordingly, 350 samples were collected from 10 farms and processed for the detection of *Salmonella* spp. Presumptive *Salmonella* isolates were confirmed by PCR and characterized for virulence and antibiotic resistance genes. From 350 samples, 19 (5.40%) *Salmonellae* were recovered, and out of 19 *Salmonellae*, 12 were ESBL producers. Similarly, out of 19 isolates, *spvC* was the predominant gene detected (42.10%), followed by *stn* (31.5%), and *spvR* (26.31%), whereas, *invA*, and *iroB* genes were detected in all 19 *Salmonella* isolates. Most of the *Salmonella* isolates were multi-drug resistant strains exhibiting resistance to nalidixic acid (94.73%), tetracycline (36.84%), and ceftazidime (42.10%). Out of 12 ESBL-positive *Salmonellae*, 9 (75%) isolates harboured ESBL genes, viz. *bla_{SHV}* and *bla_{TEM}* (25% each) and *bla_{CTX-M}* and *bla_{OXA}* (16.66% each). Six *Salmonellae* isolates showed the presence of *tetA* gene. The current study indicated healthy cattle and the associated farm environments could be a source of virulent and drug-resistant *Salmonellae*. The current study also advocates phenotypic and genotypic antibiotic resistance monitoring at farm animal premises and agricultural ecosystems.

Keywords: Antibiotic resistance, Cattle, ESBL, Salmonella, Virulence

Numerous animal species are the reservoirs of non-typhoidal Salmonella (NTS), including cattle, and Salmonella species have the ability to establish lifelong infection in cattle, which is characterized by an asymptomatic carrier status with intermittent periods of bacteremia and shedding. Of the known subspecies, S. enterica subspecies enterica is the most relevant in dairy cattle. Salmonellosis may cause severe disease in cattle and also pose a significant zoonotic risk. Sub-clinical shedding of Salmonella by cattle generates occupational risk to farm workers (Srednik et al. 2021). Salmonella may enter a farm from different sources like contaminated water, litter, personnel, equipment, vehicles, rodents, insects, and pets. Cattle in dairy farms could be a potential source for the contamination of the farm environment and farm products by antibiotic-resistant bacteria like Salmonella spp.

Antimicrobial resistance (AMR) has been a global challenge that is being addressed extensively under the One Health paradigm. The development of AMR is a

Present address: ¹KNP College of Veterinary Science, MAFSU, Shirwal, Maharashtra. [™]Corresponding author email: dr_kolherahul@rediffmail.com

complex process that involves the aggregation of several factors. Salmonella spp. are among the predominant bacterial communities of Enterobacteriaceae family, that are resistant to critically important antimicrobials for public health. Dairy cattle and farm premises could be the reservoirs of virulent as well as drug-resistant Salmonella spp. and the emergence of resistant strains warrants a better understanding of the epidemiology of this pathogen. Under the umbrella of One Health, the containment of AMR required collaborative efforts to address the actual AMR burden in humans, animals, food, and also from environmental reservoirs. The current study was undertaken to detect and characterize Salmonella spp. isolated from cattle farms for virulence and antibiotic resistance. The goal was to learn about dairy cattle's risk of excreting pathogenic and antibiotic-resistant Salmonella through faeces. Earlier reports from India principally focused on phenotypic AMR studies (Taneja and Sharma 2019) however, studies on cattle-origin Salmonella were found to be scanty (Iyer et al. 2019).

MATERIALS AND METHODS

Sampling: A sampling plan comprising of a collection of samples from 10 designated cattle farms located at different

places in the vicinity of the KNP College of Veterinary Science, Shirwal was designed. From a farm having at least 10 dairy animals, a minimum of five animals in milking conditions were selected. During each sampling, 35 different samples were collected which included faeces, milk, udder swabs, hand swabs, floor swabs, animal drinking water, pit water, composite fodder samples, dairy utensil swabs, and environmentally exposed agar plates (air sample). Thus, a total of 350 samples were collected from 10 different farms.

Isolation and identification of Salmonella spp: Samples were first pre-enriched in Buffered Peptone Water (BPW), followed by enrichment in Rappaport Vassiliadis (RV) medium and selective plating on Xylose Lysine Deoxycholate (XLD) agar and Hektoen enteric (HE) agar. The plates were incubated at 37°C for 24 h, three to five representative Salmonella colonies were picked up, purified, and confirmed by biochemical tests namely catalase, oxidase, indole, methyl red, Voges Proskauer, H₂S production on TSI agar, and citrate utilization.

Molecular detection: Bacterial DNA was extracted from all the isolates using boiling and snap-chilling method. DNA concentrations and qualities were checked using NanoDrop (Thermo Scientific, USA). All the presumptive Salmonella isolates were screened by PCR for the presence of invA and iroB genes as per the protocol developed by Bhaskara et al. (2012) and Bäumler et al. (1997), respectively. Similarly, other Salmonella-specific virulent genes namely, spvC, stn, and spvR were detected as per the method described by Nikiema et al. (2021). PCR conditions and primer sequences used for the detection of virulence and AMR genes have been shown in Table 1. The uniplex

reactions were conducted in a total of 25 μ L of mixture volume containing 12.5 μ L 2× PCR Master Mix (Takara) supplied with TaqDNA polymerase, buffer, MgCl₂ and dNTPs. For PCR, 1 μ L (10 pmol/ μ L) each of forward and reverse primer and 5 μ L DNA was used. Amplifications were performed as per different protocols for each targeted gene. The amplicons were analyzed using 1.5% agarose gel electrophoresis and visualized by the gel documentation system (IBright CL750, Thermo Scientific).

Antimicrobial susceptibility testing: Antibiotic susceptibility patterns of Salmonella spp. were studied using the Kirby-Bauer disc diffusion method. The test was performed using 12 different antibiotics, viz. ciprofloxacin (CIP: 5 µg), ceftazidime (CAZ: 30 µg), gentamicin (GEN: 10 μg), azithromycin (AZM: 15 μg), tetracycline (TE: 30 μg), trimethoprim (TR:10 µg), chloramphenicol (C: 30 µg), ceftriaxone (CTR: 30 µg), amoxicillin-clavulanic acid (AMC: 30 µg), amikacin (AK: 30 µg), enrofloxacin (EX: 10 μg), and nalidixic acid (NA: 30 μg) manufactured by HiMedia Laboratories Mumbai. Salmonella spp. were also studied for ESBL production using a double disk synergy test (DDST). Isolates showing the difference in the zone of inhibition ≥5 mm of cephalosporin discs and cephalosporin plus clavulanic acid-containing discs were considered potential ESBL producers.

Detection of AMR genes: Phenotypically confirmed ESBL-producing Salmonella were subjected to multiplex PCR targeting the beta-lactamase genes, viz. bla_{SHV} bla_{TEMP} bla_{CTX-MP} and bla_{OXA} using the method described by Fang et al. (2008). For the bla_{CMY2} protocol described by Mthembu et al. (2019), and for the detection of tetA, the protocol described by Ng et al. (2001) was used (Table 1).

Table 1. Oligonucleotide sequences used for the detection of virulence and AMR genes

Genes targeted	Oligonucleotide sequences (3'-5')	Product size (bp)	PCR conditions
invA	F-TCA TCG CAC CGT CAA AGG AAC C R-GTG AAA TTA TCG CCA CGT TCG GGC AA	284	ID-94°C/1 min; D-94°C /1 min; A-58.3°C/30 s; E-72/1 min; FE-72/7 min
iroB	F- CGC CGCATA CAC TAT TCT CAG GA R-ACGCTC ACCGGCTCCAGATTTAT	606	ID-94°C/3 min; D-94°C/40 sec; A- 55°C/40 s; E-72°C/40 s; FE-72°C/5 min
spvC	F-ACTCCTTGCACAACCAAATGCGGA R-TGT CTT CTG CATTTCGCCACCATCA	571	ID-94°C//5 min; D-94°C/30 s; A-63°C/30 s; E-72°C//30 s; FE-72°C/7 min
stn	F-CTTTGGTCGTAAAATAAGGCG R-TGCCCAAAGCAGAGAGATTC	260	ID-94°C/5 min; D-94°C//30 s; A- 94°/30 s; E-72°C/30 s; FE- 72°C/7 min
spvR	F-CAGGTTCCTTCAGTATCGCA R-TTTGGCCGGAAATGGTCAGT	310	
tetA	F-GCTACATCCTGCTTGCCT R-CATAGATCGCCGTGAAGA	210	ID-94°C/3 min; D-95°C/30 s; A-60°C/30 s; E-72°C/1 min; FE-72°C/8 min
bla_{TEM}	F-CGC CGCATA CAC TAT TCT CAGAATGA R-ACGCTC ACCGGCTCCAGATTTAT	440	
bla_{CTX-M}	F-ATGTGCAGYACCAGTAARGTKATGGC R-GGGTRAARTARGTSACCAGAAYCAGCG	593	ID-94°C/5 min; D-94°C/45 s; A-63°C/1 min; E-72°C/1 min; FE 72°C/7 min
bla_{SHV}	F-CTT TAT CGG CCC TCA CTC AA R-AGGTGCTCATCATGGGAAAG	237	
bla_{OXA}	F-ACA CAA TAC ATA TCA ACT TCG C R-AGTGTGTTT AGA ATG GTGATC	813	
$bla_{\rm CMY2}$	F-ATAACCACCCAGTCACGC R-CAGTAGCGAGACTGCGCA	631	ID-94°C/5 min; D-94°C//30 s; A- 60°/30 s; E-72°C/1 min; FE- 72°C/5 min

RESULTS AND DISCUSSION

The present study focussed on the isolation and molecular characterization of Salmonella species from cattle and their associated farm environment. Diverse types of samples collected during the study were faeces, milk, udder swabs, hand swabs, floor swabs, dairy utensil swabs, fodder, animal pit water, drinking water, and air samples. Out of 350 samples, 19 (5.42%) were positive for Salmonella spp. Variation in the distribution of Salmonella at different farms was observed, and the majority of the isolates were from the fodder. Salmonella could be isolated from almost all types of samples except milk and air samples. Out of 10 farms, hand swabs of two dairy farmers were also positive for Salmonella, which was an indication of poor personal hygiene. A study from Southern Ethiopia documented a moderate prevalence of salmonellosis in dairy cows with poor body condition, farm's husbandry hygiene, and management system (Asefa et al. 2023). Another study from Ethiopia recorded a high prevalence (11.2%) of Salmonella in various samples (udder swabs, faeces, milk, bucket swabs, etc.) collected from dairy farms (Abunna et al. 2018). Salmonella spp. are food and water-borne zoonotic pathogens infecting a wide range of vertebrates including humans and animals. Most of the animal and human infections of Salmonella are caused by serotypes of S. enterica subspecies enterica. In cattle, Salmonella can be isolated from apparently healthy animals. In our study, Salmonella was detected in the animal fodder samples, indicating the possible risk of Salmonella transmission from feed to animals. An exhaustive review of Salmonella in animal feeds has been published, which highlighted the importance of animal feed and fodder in the transmission of Salmonella (Sargeant et al. 2021).

All the *Salmonella* isolates confirmed based on cultural, morphological, and biochemical characteristics were further studied by uniplex PCR to detect species-specific *invA* gene (Fig. 1). Out of 19 *Salmonella* isolates, all isolates possessed both genes. In *Salmonella*, *invA* acts as a biomarker for detection purposes. It is involved in the invasion of host epithelial cells, plays a vital role in systemic infections, and plays a significant role in the virulence of the organism in the intestine (El-Sebay *et al.* 2017). Salmonellosis is rarely recorded in bovines however it may act as a career for *Salmonella* spp. Lanzas *et al.* (2010) investigated an outbreak of Salmonellosis

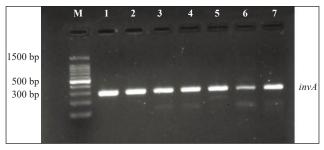


Fig. 1. Detection of *invA* gene in *Salmonella* spp [M: 100 bp DNA ladder; Lane 1-7: *invA* gene (284 bp)].

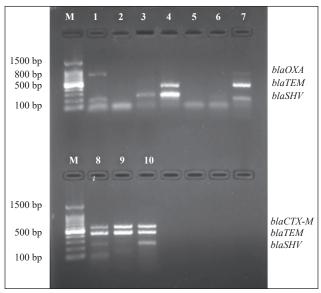


Fig. 2. Detection of ESBL genes in *Salmonella* spp. [M- 100 bp DNA ladder; Lane 1: bla_{OXA} (813 bp) gene; Lane 3: bla_{SHV} (237 bp) gene; Lane 4: bla_{TEM} (440 bp) and bla_{SHV} (237 bp) genes; Lane 7: bla_{OXA} (813 bp), bla_{TEM} (440 bp) and bla_{SHV} (237 bp) genes; Lane 8: bla_{CTX-M} (593 bp), bla_{TEM} (440 bp), and bla_{SHV} (237 bp) genes; Lane 9: bla_{CTX-M} (593 bp), bla_{TEM} (440 bp) genes; Lane 10: bla_{CTX-M} (593 bp), bla_{TEM} (440 bp) genes].

in cattle to describe the transmission dynamics of MDR Salmonella Typhimurium after the onset of a clinical outbreak in a dairy herd. The outbreak was limited to five clinical cases, and only 18 animals out of 500 cows shed *Salmonella* in their faeces. The longest shedder was culture-positive for Salmonella for at least 68 days. The findings of the current study also affirmed that virulent *Salmonella* is prevalent in the dairy farm environment at a lesser frequency.

Another gene used for the detection of Salmonella enterica in the present study was iroB, a fur-regulated gene that is a member of the iroA (iroBCDEN) gene cluster (Supplementary Fig. 1). All the 19 isolates showed its presence. The specific role of iroB is to encode enterobactin glucosylation that contributes to the virulence of the bacteria by preventing the host antimicrobial protein (lipocalin-2) from sequestering the siderophore (Hantke et al. 2003, Deguenon et al. 2019, Mthembu et al. 2019). In short, invA and iroB genes are conserved in all Salmonella spp. and found in SPI-1 (Salmonella pathogenicity islands). The present study has raised a serious concern due to the presence of invasive strains of Salmonella in dairy farms, and the surrounding environment, which is of public health significance and hence needs to be monitored scrupulously.

Another objective of the study was to detect the genes concerned with virulence in *Salmonella* namely *spvC*, *spvR* and, *stn* genes (Supplementary Figs. 2, 3, 4). Out of the 19 isolates, *spvC* was the predominant gene detected (8/19; 42.10%), followed by *stn* (6/19; 31.5%), and *spvR* (5/19; 26.31%). Similar studies on bovine salmonellosis were scanty. Ownagh *et al.* (2023) evaluated the presence of *fimA*, *stn*, and *invA* genes in *Salmonella* present in faecal

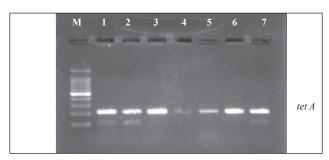


Fig. 3. Detection of *tetA* gene in *Salmonella* spp. [M: 100 bp DNA ladder; Lanes 1-7: *tetA* gene (210 bp)].

samples of buffaloes from Iran, and PCR results of the study documented that 50 (11.90%) faecal samples were positive for the genes. The spv locus is strongly associated with strains that cause non-typhoidal bacteremia. The spy region contains three genes that are required for virulence phenotype. These are positive transcriptional regulator spvR and two structural genes, spvB and spvC. These Salmonella-plasmid virulence (spv) factors are characteristics of Salmonella serotypes implicated in systemic diseases and thus important for spreading of the systemic infections (Nikiema et al. 2021). Thus, the detection of spvC and, spvR-positive Salmonella strains are extremely important in relation to public health. The Salmonella stn gene encodes for an enterotoxin and is associated with infection with serotypes of Salmonella Typhi, Typhimurium, and Enteritidis. The stn gene is a clinically important biomarker that is used to differentiate Salmonella enterica strains (stn+), from Salmonella bongori and other Enterobacteriaceae family (Nikiema et al. 2021). Few documented studies targeting these genes were available. Nikiema et al. (2021) studied a total of 106 Salmonella isolates, out of them, 70 (66%) isolates had invA, and stn genes, and 39 (36.8%) isolates had spvR gene and 51 (48.1%) had *spvC* gene.

In conjunction with this study, Deguenon *et al.* (2019) detected the virulence genes of *Salmonella* spp. in 406 animal faecal samples. The findings of the study documented that 2.46% of samples were *Salmonella*

positive and out of them, spvC gene was present in 10% of isolates, whereas, spvR was found in 20% and all the isolates were positive for invA and stn genes. In contrast to our findings, a study from India by Chaudhary et al. (2015) demonstrated that out of 37 chicken-origin Salmonella, 30 isolates possessed spvR gene, but none of the isolates was found positive for spvC gene. Ranjbar et al. (2020) isolated a large number of Salmonella enteritidis from fecal samples of cattle from Iran. The observations of the current study highlighted the fact that food animals are a potential source of virulent Salmonella species and transmission risk from animal or environmental sources to humans cannot be ruled out. Also, the study emphasized the need for monitoring of Salmonella serotypes associated with apparently healthy animals and their predominance in the associated environment.

All the 19 Salmonella isolates were screened for the detection of antibiotic susceptibility patterns (Table 2). High resistance was noted for Nalidixic acid (94.73%), followed by Tetracycline (36.84%) and Ceftazidime (42.10%). Most of the isolates were sensitive to Gentamicin (89.47%), Enrofloxacin (89.47%), and Amikacin (89.47%). Abunna et al. (2018) demonstrated the antibiotic susceptibility pattern of 34 Salmonella isolates from dairy cattle (Ethiopia) and in the study, resistance was reported to Ampicillin (97.06%), amoxicillin, (91.18%), Nalidixic acid (67.65%), and Chloramphenicol (50%). Salmonella isolates of the present study were also resistant to Nalidixic acid and Ceftazidime. Geletu et al. (2022) revealed the susceptibility profile of 13 Salmonella isolates from fecal and environmental samples of dairy cattle. The study documented that most of the isolates were sensitive to Gentamicin and Nitrofurantoin, while resistance was noted towards Tetracycline and Nalidixic acid in accordance with the current study. Ampicillin, Nalidixic acid, and Nitrofurantoin resistant Salmonella isolates from cattle faeces and milk were also documented in other studies elsewhere (Addis et al. 2011). Results of the study revealed that the Salmonella spp. have developed resistance to 3rd generation Cephalosporins, and Nalidixic acid.

Table 2. Antibiogram profile of Salmonella species

Antimicrobial agent	Abbreviation	Sensitive		Intermediate		Resistant	
	_	No.	%	No.	%	No.	%
Ciprofloxacin	CIP	0	0	10	52.63	9	47.36
Ceftazidime	CAZ	4	21.05	7	36.84	8	42.10
Gentamicin	GEN	17	89.47	0	0	2	10.52
Azithromycin	AZM	8	42.10	8	42.10	3	15.78
Tetracycline	TE	9	47.36	3	15.78	7	36.84
Trimethoprim	TR	5	26.31	13	68.42	1	5.26
Chloramphenicol	C	10	52.63	4	21.05	4	21.05
Ceftriaxone	CTR	4	21.05	7	36.84	8	42.10
Amoxyclauv	AMC	0	0	10	52.63	9	47.36
Amikacin	AK	17	89.47	0	0	2	10.52
Enrofloxacin	EX	17	89.47	0	0	2	10.52
Nalidixic acid	NA	0	0	1	5.26	18	94.73

All the confirmed *Salmonella* isolates were also studied for the presence of ESBL-types, and out of the 19 isolates, 12 (63.15%) were ESBL-producers. Out of the four isolates, from fodder, three were ESBL positive. Very few studies have documented the prevalence of ESBL-positive *Salmonella* associated with bovines. A study from Nigeria surprisingly detected a very high percentage of ESBL-positive *Salmonella* (55.00%) in cattle faeces (Ogefere *et al.* 2017). We could not find any report from India on the isolation and characterization of *Salmonella* spp. in terms of ESBL pattern from dairy cattle.

All the 12 phenotypically ESBL-positive Salmonella isolates were further investigated for the presence of ESBL genes, viz. bla_{TEM} , bla_{CTX-M} , bla_{SHV} , bla_{OXA} , and bla_{CMY-2} as described in the previous section. Out of the 12 isolates, nine (75%) harbored ESBL genes (Fig. 2). Out of them, three (33.33%) isolates were positive for bla_{SHV} and bla_{TEM} genes, while $bla_{{\it CTX-M}}$ and $bla_{{\it OXA}}$ genes were also present in two isolates each. Sample-wise distribution showed that three fodder (33.33%), and two pit water samples were found positive for the presence of beta-lactam genes. A combination of $\mathit{bla}_\mathit{SHV}^+ \mathit{bla}_\mathit{TEM}$ was also detected in Salmonella isolated from one pit water sample. The findings of Wang et al. (2020) were in accordance with the current study. They found the predominance of $bla_{\scriptscriptstyle CTX-M}$ in all the ESBL-positive Salmonella species recovered from dairy cattle. In the present study, the prevalence of bla_{CTX-M} was reported low in comparison with bla_{SHV} and bla_{TEM} . There were no reports from India on the characterization of cattle/bovine-origin Salmonella species for ESBL genes. Out of the 19 Salmonella isolates, tetA gene was present in six (31.57%) isolates (Fig. 3). Bag et al. (2021) demonstrated the prevalence of tetA gene from dairy cattle farms. In their study, the prevalence of tetA was found to be very high (100%). Resistance to tetracycline is very common in Gram-negative microbes and is globally prevalent. Tetracycline is a broad-spectrum antibiotic that is extensively used in animals and humans, as well as in aquaculture production. There are at least 40 different variants of tet genes, which governs resistance to tetracycline. The present study attempted to detect the presence of bla_{CMY-2} gene in Salmonella spp., but all the isolates were found to be negative.

The current study indicated that cattle and their associated farm environment could be the source of virulent and drugresistant strains of *Salmonella* spp. Cross-contamination of Salmonella from one animal to another and occupational risk of acquiring infection to farm workers cannot be ruled out. The study also advocates that phenotypic and genotypic AMR monitoring at farm animal premises and agricultural ecosystems is the need of the hour.

REFERENCES

Abunna F, Ngusie G, Beyene T, Ayana D, Wakjira B, Waktole H and Duguma R. 2018. Occurrence and antimicrobial susceptibility profile of *Salmonella* from dairy farms in and around Meki Town, Oromia, Ethiopia. *Biomedical Journal of*

- Scientific and Technical Research 6(4): 5389–395.
- Addis Z, Kebede N, Worku Z, Gezahegn H, Yirsaw A and Kassa T. 2011. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: A cross sectional study. *BMC Infectious Diseases* 11: 222–28.
- Asefa I, Legabo E, Wolde T and Fesseha H. 2023. Study on *Salmonella* isolates from fresh milk of dairy cows in selected districts of wolaita zone, Southern Ethiopia. *International Journal of Microbiology* **2023**: 6837797.
- Bag M A S, Khan M S R, Sami M D H, Begum F, Islam M S, Rahman M M, Rahman M T and Hassan J. 2021. Virulence determinants and antimicrobial resistance of *E. coli* isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. *Saudi Journal of Biological Sciences* 28(11): 6317–323.
- Bäumler A J, Tsolis R M, Valentine P J, Ficht T A and Heffron F. 1997. Synergistic effect of mutations in *invA* and *lpfC* on the ability of *Salmonella typhimurium* to cause murine typhoid. *Infection and Immunity* **65**(6): 2254–259.
- Chaudhary J H, Nayak J B, Brahmbhatt M N and Makwana P P. 2015. Virulence genes detection of *Salmonella* serovars isolated from pork and slaughter house environment in Ahmedabad, Gujarat. *Veterinary World* 8(1): 121–24.
- Deguenon E, Dougnon V, Lozes E, Maman N, Agbankpe J, Abdel-Massih R M, Djegui F, Baba-Moussa L and Dougnon J. 2019. Resistance and virulence determinants of faecal Salmonella spp. isolated from slaughter animals in Benin. BMC Research Notes 12(1): 317–23.
- El-Sebay N A, Abu Shady H M, El-Rashed El-Zeedy S A and Samy A A. 2017. *InvA* gene sequencing of Salmonella Typhimurium isolated from Egyptian poultry. *Asian Journal of Scientific Research* **10**: 194–02.
- Fang H, Ataker F, Hedin G and Dornbusch K. 2008. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. *Journal* of Clinical Microbiology 46(2): 707–12.
- Geletu U S, Usmael M A and Ibrahim AM. 2022. Isolation, identification, and susceptibility profile of E. coli, Salmonella, and S. aureus in dairy farm and their public health implication in Central Ethiopia. Veterinary Medicine International 2022: 1887977.
- Hantke K. 2003. Is the bacterial ferrous iron transporter FeoB a living fossil?. *Trends in Microbiology* **11**(5): 192–95.
- Iyer V, Ravalia A, Bhavsar K, Cottagiri S A, Sharma A, Vegad M, Shah P, Shah B, Solanki B, Soni S and Mavalankar D. 2019. Antimicrobial resistance surveillance in typhoidal *Salmonella* in Ahmedabad in an era of global antimicrobial resistance surveillance systems. *Journal of Global Infectious Diseases* 11(4): 153–59.
- Lanzas C, Warnick L D, James K L, Wright E M, Wiedmann M and Gröhn Y T. 2010. Transmission dynamics of a multidrugresistant *Salmonella typhimurium* outbreak in a dairy farm. *Foodborne Pathogens and Disease* 7(4): 467–74.
- Mthembu T P, Zishiri O T and El Zowalaty M E. 2019. Molecular detection of multidrug-resistant *Salmonella* isolated from livestock production systems in South Africa. *Infection and Drug Resistance* 12: 3537–548.
- Ng L K, Martin I, Alfa M and Mulvey M. 2001. Multiplex PCR for the detection of tetracycline resistant genes. *Molecular and Cellular Probes* 15(4): 209–15.
- Nikiema M E M, Kakou-Ngazoa S, Ky/Ba A, Sylla A,

- Bako E, Addablah A Y A, Ouoba J B, Sampo E, Gnada K, Zongo O, Traoré K A, Sanou A, Bonkoungou I J O, Ouédraogo R,Barro N and Sangaré L. 2021. Characterization of virulence factors of *Salmonella* isolated from human stools and street food in urban areas of Burkina Faso. *BMC Microbiology* **21**(1): 338–50.
- Ogefere H O and Ibadin E E. 2017. Detection of extended spectrum beta-lactamases among gram negative bacilli recovered from cattle faeces in Benin city, Nigeria. *Notulae Scientia Biologicae* 9(2): 177–81.
- Ownagh A, Etemadi N, Khademi P and Tajik H. 2023. Identification of *Salmonella* carriers by amplification of *FimA*, *Stn* and *InvA* genes and bacterial culture methods in fecal samples of buffalo. *Veterinary Research Forum* **14**(1): 21–28.
- Ranjbar R, Ardashiri M, Samadi S and Afshar D. 2018. Distribution of extended-spectrum β-lactamases (ESBLs)

- among *Salmonella* serogroups isolated from pediatric patients. *Iranian Journal of Microbiology* **10**(5): 294–99.
- Sargeant J M, Totton S C, Plishka M and Vriezen E R. 2021. Salmonella in animal feeds: a scoping review. Frontiers in Veterinary Science 8: 727495.
- Srednik M E, Lantz K, Hicks J A, Morningstar-Shaw B R, Mackie T A and Schlater L K. 2021. Antimicrobial resistance and genomic characterization of *Salmonella* Dublin isolates in cattle from the United States. *PloS One* 16(9): e0249617.
- Wang J, Xue K, Yi P, Zhu X, Peng Q, Wang Z, Peng Y, Chen Y, Robertson I D, Li X, Guo A and Aleri J W. 2020. An abattoirbased study on the prevalence of *Salmonella* fecal carriage and ESBL related antimicrobial resistance from culled adult dairy cows in Wuhan, China. *Pathogens (Basel, Switzerland)* 9(10): 853–63.