

Estimation of (co)variance components for body weight traits in intercross synthetic sheep

ABDUL RAHIM¹⊠, RAJNI CHAUDHARY¹, RAJARAVINDRA K S², OM HARI CHATURVEDI³ and G R GOWANE⁴

ICAR-Central Sheep and Wool Research Institute, Kullu, Himachal Pradesh 135 141 India

Received: 16 October 2023; Accepted: 27 June 2024

ABSTRACT

This study was carried out on the recently developed intercross sheep developed from Bharat merino and Gaddi sSynthetic in the temperate region in the state of Himachal Pradesh of India. Study aimed to estimate the genetic parameters and (co)variance components for body weights at birth (BW) and 3-month (3BW), 6-month (6BW), 9-month (9BW) and 12-month (12BW) month age in a closed flock of intercross sheep maintained at North Temperate Regional Station of ICAR-CSWRI, Garsa, India. Data records on 1505 sheep descended from 565 dams and 154 sires over the period of 10 years were utilized. Data were corrected for possible fixed environmental effects such as lambing year, parity, sex of lamb, ewe weight at lambing for further genetic analysis. The restricted maximum likelihood procedure fitting animal models with different combinations of direct and maternal effects were used for genetic analysis. Analysis revealed significant influences of lambing year, parity, sex of lamb and ewe weight at lambing on studied traits. Direct heritability estimates for BW, 3BW, 6BW, 9BW and 12BW were 0.14±0.04, 0.18±0.05, 0.00±0.04, 0.05±0.05 and 0.05±0.05, respectively. Maternal effects significantly influenced the BW and estimated maternal heritability for the trait was 0.17±0.03. The correlation among body weights were medium to high except between BW and 12BW and it ranged from 0.16±0.51 to 0.99±0.19. Results suggest that maternal effects were important for initial growth performance. The heritability estimates for weaning weight was moderate and its positive association with other growth traits indicated that the present selection practice at six months may be shifted to early selection at weaning weight for further genetic improvement.

Keywords: Body weights, Direct heritability, Genetic correlation, Intercross sheep, Maternal effects

Small ruminants are an integral part of rural agrarian economy, especially in hilly and mountainous areas. Poor marginal farmers and agricultural landless labourers depend upon small ruminants farming for their livelihood security (Kumar et al. 2021). The climate of Himalayan region in the North Western India is ideally suited for small ruminant farming. The Himalayan region of Himachal Pradesh possesses lush green meadows which help in rearing small ruminant populations particularly sheep in semi-intensive and migratory production systems. However, the productivity of native breeds in terms of mutton and wool yield is low due to their poor genetic potential (Dixit et al. 2006). Therefore, crossbreeding program for sheep in India was initiated to evolve synthetic sheep breeds of high genetic merit for mutton and wool production (Prince et al. 2010). Native sheep of Gaddi

Present address: ¹ICAR-Central Sheep and Wool Research Institute, Kullu, Himachal Pradesh. ²ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana. ³ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan. ⁴ICAR-National Dairy Research Institute, Karnal, Haryana. Corresponding author email: Choudhary633@gmail.com

breed of Himachal Pradesh were crossed with exotic fine wool breeds, viz. Merino and Rambouillet to improve their growth, wool (yield and quality) and reproduction traits. As a result, a fast-growing and fine wool producing intercross sheep was developed in 2012 at North Temperate Regional Station (NTRS), ICAR-Central Sheep and Wool Research Institute (ICAR-CSWRI), Garsa by stabilizing the population with 75% exotic inheritance (Merino and Rambouillet). The animals of this synthetic strain are relatively medium-sized, well adapted to high ranges of Himalayan terrains and capable to travel long distances (Rahim *et al.* 2024). It yield large quantity of fine quality wool and have better growth than native sheep breeds (Rajarayindra *et al.* 2018).

Growth has direct association with wool yield, mature body weight, early reproduction and survivability (Narula et al. 2009, Gowane et al. 2010b, Lalit et al. 2017). Lamb growth is regulated by both direct additive and maternal genetic effects, which in turn, influence the economic viability of a commercial sheep flock (Mousa et al. 2013, Shiotsuki et al. 2014). Models which ignored the maternal genetic effects resulted in biased estimation of genetic parameters. Keeping this into consideration, the present

study was undertaken to estimate genetic parameters and covariance components of growth traits in intercross sheep using animal model. The aim was also extended to devise a strategy for breeding program in the closed nucleus of intercross sheep.

MATERIALS AND METHODS

Description of data: The information utilized in the study was collected from the database of 1505 animals maintained during the period from 2012 to 2021. As the flock is institutional, the data size was limited. The research project was started in August 2009 with the aim to develop the fine wool sheep from existing breeds. Initially, Gaddi Synthetic (GS) and Bharat Merino (BM) sheep with same exotic inheritance (75%) were reciprocally crossed (BM rams \times GS ewes and GS rams \times BM ewes) with each other to produce F_1 (B and G genotype) animals. The crossbred genotypes (G and B) born were again crossed with each other to developed intercross (H genotypes), which were stabilized by intercrossing and flock was subsequently closed in next generation.

Management practices: The sheep flocks were maintained at North Temperate Regional Station (NTRS), Garsa, Kullu, Himachal Pradesh, a sub temperate region with optimum inputs under semi-intensive management system. The farm is located an altitude of 1400 to 2100 above average sea level with coordinates of 77.20°E longitude and 31.28°N latitude. The climate is sub-temperate with temperature ranging from -2°C in winter to 35°C in summer. The animals were allowed to graze during day time in Himalayan territory of Garsa valley, with six-hour grazing. The animals were stall-fed with 300 to 450 g concentrate feed according to their age, sex and physiological status. Tupping was carried out once a year and during breeding season between mid-August to ending September. The flock was a closed type where 150 breeding females were maintained every year. Breeding rams were selected on the basis of six months live weight, first six-monthly greasy fleece yield and wool quality. Top 10 to 15 rams of different sire lines were kept for breeding per year and retained in the flock for two years. Lambing usually commenced in January and terminated at the end of March. After birth, lambs were housed with their mothers in separate enclosures for three days. Concentrate feed was offered ad lib to lambs from 15 days after birth till weaning at three months of age. After weaning, the male and female lambs were segregated from dams and housed separately. Concentrate mixture @300 g was provided to each animal in addition to six hours grazing along with stall feeding of dry or green fodder or lopped fodder tree leaves as per availability. Various prophylactic measures, viz. drenching, dipping and vaccination against enterotoxemia were followed as per standard protocol.

Recorded growth traits: Lambs were weighed from birth to one year of age at an interval of three month. Birth weight of newly born lamb was taken within 12 h of birth and the remaining 3BW, 6BW, 9BW and 12BW were taken

precisely on exact dates, when the particular animal attains that particular age.

Statistical analysis: Data were analyzed initially by least-squares analysis of variance to identify the fixed effects to be included in the model (IBM Corp, SPSS, 2019). The statistical model included the fixed effects of year of lambing (10 levels; 2012 to 2021), sex of lamb (male and female), parity of ewe (I, II, III, IV and >V) and dam weight at lambing (<30, 30-35, 35-40 and ≥40 kg) on different body weights. Only the significant (P≤ 0.05) effects were included in analysis to derive (co)variance components by Average Information Restricted Maximum Likelihood (AIREML) approach fitting an animal model using WOMBAT program (Meyer 2007). Six different animal models which accounted for the direct and maternal genetic effects were used as below:

$$\begin{split} y &= X\beta + Z_a a + e \\ y &= X\beta + Z_a a + Z_m m + e \text{ with Cov } (a_m, m_o) = 0 \\ y &= X\beta + Z_a a + Z_m m + e \text{ with Cov } (a_m, m_o) = A\sigma_{am} \\ y &= X\beta + Z_a a + Z_p e + e \\ y &= X\beta + Z_a a + Z_m m + Z_p e + e \text{ with Cov } (a_m, m_o) = 0 \\ y &= X\beta + Z_a a + Z_m m + Z_p e + e \text{ with Cov } (a_m, m_o) = A\sigma_{am} \end{split}$$

Where; y, Phenotypic record vector; β , a, m, pe and e, Vectors for fixed, direct additive, maternal additive, maternal permanent environmental, and residual effects, respectively; X, Z_a , Z_m and Z_{pe} , Associated corresponding matrices; A, Numerator relationship matrix and σ_{am} , Covariance between direct and maternal direct effects. Assumptions for variance (V) and covariance (Cov) matrices involving random effects were $V(a)=A\sigma_a^2$; $V(m)=A\sigma_m^2$; $V(pc)=I\sigma_{pe}^2$; $V(e)=I\sigma_e^2$ and Cov(a,m) $A\sigma_{am}$. Where; I, Identity matrix; σ_a^2 , σ_m^2 , σ_p^2 , σ_e^2 , Direct additive, direct maternal, maternal permanent environmental and residual variances, respectively.

The direct animal and maternal effect correlation (r_{am}) was estimated as $\sigma_{am}/(\sigma_a \times \sigma_m)$. The maternal repeatability across the year for ewe performance was calculated for all the traits as $t_{_{m}}\!\!=\!\![(1\!/\!4)\;h^2+\,m^2+\,c^2+\!\!r_{_{am}}\!\!\sqrt{m^2}\!\sqrt{h^2}]$ (Al-Shorepy 2001). The total heritability (h²_t) was calculated using the formula $h_t^2 = (\sigma_a^2 + 0.5 \sigma_m^2 + 1.5 \sigma_{am})/\sigma_p^2$ (Willham 1972). For selecting the best univariate model, Likelihood Ratio Test (LRT) was employed for each trait (Meyer 2007). An effect was considered to have significant influence when its inclusion caused a significant increase in log likelihood, compared with the model in which it was ignored. Significance was tested at P<0.05 by comparing differences in log-likelihoods to values for a chi-square distribution with degrees of freedom equal to the difference in the number of (co)variance components fitted for the two models. Subsequently, bivariate analyses were performed from best model to estimates the correlations among the studied traits.

RESULTS AND DISCUSSION

The characteristic of data structure in intercross sheep along with descriptive analysis for the traits under study are

Table 1. Characteristics of data structure for body weight in intercross synthetic sheep

Trait	BW	3BW	6BW	9BW	12BW
Number of records	1505	1415	940	840	743
Number of sires with progeny	154	153	141	141	139
Number of dams with progeny	565	549	464	440	414
Mean (kg)	3.56	15.72	21.91	24.83	28.20
Standard error of the mean	0.01	0.08	0.14	0.14	0.19
Standard deviation	0.54	2.91	4.23	4.09	5.20
Coefficient of variation (%)	15.23	18.53	19.31	16.46	18.44
R^{2} (%)	0.20	0.18	0.32	0.35	0.50

Where; BW, Birth weight; 3BW, 3 Months body weight; 6BW, 6 Months body weight; 9BW, 9 Months body weight; 12BW, 12 Months body weight; R², Coefficients of determination.

presented in Table 1. Number of animals in the pedigree was found to be 1505, and sires and dams with known progeny are 154 and 565, respectively. In the studied population, 49.24% of the lambs were male and 50.76% were female. In general, the coefficient of variation (CV) for the studied traits ranged from 15.23% (BW) to 19.31% (6BW). The CV for BW is less than other growth traits, which is an indication of the minor effect of environment on BW. The coefficients of determination for fitted models ranged from 20 to 50 %.

The estimated least squares means (LSM) and standard errors (SE) for BW, 3BW, 6BW, 9BW and 12BW was

3.55±0.02, 15.61±0.10, 21.29 ±0.16, 24.19±0.16 and 27.90 ±0.19 kg, respectively. The overall LSM obtained in present study were well in agreement with the earlier studies of Gowane *et al.* (2010a) in Bharat Merino sheep and Rajaravindra *et al.* (2018) for this intercross sheep. Least squares analysis of variance revealed significant (P<0.05) effect of year of lambing, sex of the lamb and dam weight at lambing on all studied traits, whereas, parity of dam was significant on BW only (Table 2). Similar findings have been reported by various researchers in other sheep breeds (Gowane *et al.* 2010a, Abbasi *et al.* 2012, Kumar *et al.* 2017, Mallick *et al.* 2021, Ehsaninia, 2021,

Table 2. Least-squares means along with standard error of body weights at different ages in intercross synthetic sheep

Factors	N	BW(kg)	3BW(kg)	6BW(kg)	9BW(kg)	12BW(kg)
Overall	1505	3.55±0.02	15.61±0.10	21.29±0.16	24.19±0.16	27.90±0.19
Year of lambing		**	**	**	**	**
2012	156	$3.55^{bc} \pm 0.05$	$16.86^{a}\pm0.26$	$26.26^{a}\pm0.37$	$26.93^{a}\pm0.37$	$33.95^a \pm 0.43$
2013	161	$3.43^{cd} \pm 0.04$	$16.85^{a}\pm0.24$	$22.37^{b}\pm0.39$	$25.70^{ab} \pm 0.43$	$31.42^{a}\pm0.87$
2014	196	$3.55^{bc} \pm 0.04$	$15.43^{bc} \pm 0.23$	$17.81^{\circ}\pm0.80$	$20.22^{\circ} \pm 0.68$	$24.72^{cd} \pm 0.79$
2015	121	$3.28^{d} \pm 0.05$	$14.70^{\circ} \pm 0.26$	$19.56^{\circ} \pm 0.40$	$22.52^{\circ}\pm0.43$	$26.72^{bcd} \pm 0.50$
2016	136	$3.42^{cd} \pm 0.04$	$14.88^{c} \pm 0.24$	$19.57^{\circ} \pm 0.38$	$24.39^{b}\pm0.40$	$27.66^{b} \pm 0.45$
2017	154	$3.59^{bc} \pm 0.04$	15.06°±0.22	$18.62^{\circ} \pm 0.32$	21.95°±0.35	$25.16^{\circ}\pm0.39$
2018	119	$3.63^{ab} \pm 0.05$	$16.35^{ab} \pm 0.26$	$21.75^{b}\pm0.40$	$25.03^{b}\pm0.42$	$27.07^{bcd} \pm 0.49$
2019	136	$3.80^{a}\pm0.04$	$15.28^{bc} \pm 0.25$	22.01b±0.37	$24.61^{b} \pm 0.37$	$27.53^{b} \pm 0.42$
2020	155	$3.67^{ab} \pm 0.04$	15.27°±0.22	$22.43^{b}\pm0.33$	$24.97^{b} \pm 0.34$	$27.01^{bd} \pm 0.38$
2021	171	$3.59^{bc} \pm 0.04$	$15.43^{bc} \pm 0.21$	$22.50^{b}\pm0.30$	$25.56^{ab} \pm 0.30$	$27.72^{b}\pm0.35$
Parity of dam		**	NS	NS	NS	NS
Parity I	566	$3.43^{b} \pm 0.02$	15.33 ± 0.13	21.05 ± 0.22	24.60 ± 0.23	27.99 ± 0.28
Parity II	392	$3.54^{a}\pm0.03$	15.66 ± 0.15	21.30 ± 0.25	24.24 ± 0.25	28.16 ± 0.31
Parity III	274	$3.56^{a}\pm0.03$	15.74 ± 0.17	21.66 ± 0.27	24.07 ± 0.27	27.81 ± 0.32
Parity IV	162	$3.63^{a}\pm0.04$	15.58 ± 0.23	21.69 ± 0.35	24.42 ± 0.36	28.25 ± 0.42
Parity V or above	111	$3.60^{a}\pm0.05$	15.73 ± 0.27	20.75 ± 0.41	23.60 ± 0.42	27.27 ± 0.48
Sex of lamb		**	**	**	**	**
Males	741	$3.63^{a}\pm0.02$	$16.02^a \pm 0.12$	$22.22^a \pm 0.20$	$25.85^{a}\pm0.20$	$30.27^{a} \pm 0.24$
Females	764	$3.48^{b}\pm0.02$	$15.20^{b}\pm0.12$	$20.36^{b}\pm0.19$	$22.53^{b} \pm 0.19$	$25.52^{b}\pm0.23$
Ewe weight at lambing		**	**	**	**	**
30 kg	177	$3.27^{d}\pm0.04$	$14.47^{c}\pm0.24$	$20.17^{b}\pm0.38$	$22.86^{b} \pm 0.40$	$26.21^{\circ} \pm 0.46$
30-35	417	$3.53^{\circ} \pm 0.03$	$15.12^{c}\pm0.15$	$20.91^{b}\pm0.24$	$23.62^{b}\pm0.24$	$27.62^{b} \pm 0.29$
35-40	556	$3.63^{b} \pm 0.02$	$15.83^{b} \pm 0.12$	$21.81^{a}\pm0.21$	$24.77^{a}\pm0.21$	$28.61^{a}\pm0.25$
>40	355	$3.78^{a}\pm0.03$	$17.02^{a}\pm0.15$	$22.28^{a}\pm0.24$	25.49°±0.24	$29.15^{a}\pm0.30$

Where; BW, Birth weight; 3BW, 3 Months body weight; 6BW, 6 Months body weight; 9BW, 9 Months body weight; 12BW, 12 Month body weight; LSM±SE in same column with different superscripts differ significantly (** P<0.01).

Table 3. (Co)variance components and genetic parameter estimates of growth traits in intercross synthetic sheep

Traits	Model	$\sigma_{\rm a}^2$	$\sigma_{\rm m}^2$	g	$\sigma_{\rm c}^2$	$\sigma_{\rm s}^2$	$\sigma_{\rm p}^2$	$h^2 \pm SE$	$\mathrm{m}^2\pm\mathrm{SE}$	$c^2 \pm SE$	\mathbf{r}_{am}	$h_{\rm t}^2$	t m	LogL
	1	0.065				0.176	0.241	0.27±0.05				0.27	0.07	318.169
	7	0.034	0.042		,	0.168	0.243	$0.14{\pm}0.04$	0.17 ± 0.03	,		0.22	0.21	334.682
DW	3	0.032	0.040	0.002	ı	0.168	0.243	0.13 ± 0.05	0.16 ± 0.05	ı	0.063	0.23	0.21	333.102
Α	4	0.044	,	1	0.037	0.159	0.240	0.18 ± 0.04	1	0.15 ± 0.03	,	0.18	0.20	332.521
	5	0.037	0.023	1	0.018	0.163	0.241	0.15 ± 0.05	0.10 ± 0.05	0.08 ± 0.05	,	0.20	0.21	334.389
	9	0.033	0.018	900.0	0.019	0.165	0.241	0.14 ± 0.05	0.08 ± 0.06	0.23 ± 0.48	0.080	0.21	0.21	334.511
	1	1.265			,	5.813	7.078	0.18 ± 0.05		,		0.18	0.04	-2088.085
	2	0.716	0.528		ı	5.868	7.112	0.10 ± 0.04	0.07 ± 0.03	ı	,	0.14	0.10	-2088.522
Mac	3	1.053	1.197	-0.768	ı	5.616	7.098	0.15 ± 0.06	0.16 ± 0.06	ı	-0.684	0.23	0.10	-2086.598
3B W	4	0.737	,		0.657	5.688	7.081	0.10 ± 0.04		0.09 ± 0.03		0.10	0.12	-2086.552
	5	0.727	0.039		0.625	5.691	7.083	0.10 ± 0.04	0.01 ± 0.04	0.09 ± 0.04		0.11	0.12	-2086.554
	9	0.977	0.556	-0.518	0.524	5.533	7.072	0.14 ± 0.05	90.0 ± 80.0	0.07 ± 0.05	-0.703	0.07	0.11	-2085.395
	1	0.001			,	12.105	12.106	0.00 ± 0.04		,	,	0.00	0.00	-1651.353
	2	0.001	0.524	,	ı	11.598	12.122	0.00 ± 0.05	0.04 ± 0.04	ı	,	0.02	0.04	-1650.659
MOS	3	0.119	0.848	-0.316	1	11.472	12.123	0.01 ± 0.06	0.07 ± 0.06	ı	-0.996	0.01	0.05	-1650.503
M GO	4	0.001	,		0.353	11.755	12.109	0.00 ± 0.04		0.03 ± 0.04		0.00	0.03	-1651.093
	5	0.001	0.523		0.001	11.599	12.124	0.00 ± 0.05	0.04 ± 0.05	0.00 ± 0.06	,	0.02	0.04	-1650.660
	9	0.117	0.849	-0.313	0.012	11.473	12.126	$0.01{\pm}0.05$	0.07 ± 0.09	0.00 ± 0.06	-0.996	0.01	0.05	-1650.501
	1	0.592			1	10.407	10.999	0.05 ± 0.05		1		0.05	0.01	-1433.004
	2	0.601	0.001	•	ı	10.403	11.005	0.06 ± 0.06	0.00 ± 0.04	1		0.05	0.01	-1433.005
	3	0.712	0.016	-0.102	1	10.378	11.003	0.07 ± 0.07	90.0 ± 00.0	ı	-0.968	0.05	0.01	-1432.960
9BW	4	0.598	,	•	0.001	10.406	11.005	0.05 ± 0.05		0.00 ± 0.04	,	0.05	0.01	-1433.005
	5	0.601	0.001	,	0.001	10.407	11.010	0.06 ± 0.05	90.0 ± 00.0	0.00 ± 0.06	,	0.05	0.01	-1433.007
	9	0.713	0.015	-0.101	0.001	10.380	11.008	0.07 ± 0.06	0.00 ± 0.08	0.00 ± 0.06	-0.967	0.05	0.01	-1432.971
	1	0.714			1	12.899	13.610	0.05 ± 0.05		1		0.05	0.01	-1346.224
	2	0.678	0.075		ı	12.860	13.613	0.05 ± 0.06	0.01 ± 0.04	ı		90.0	0.02	-1346.218
	3	0.941	0.660	-0.655	ı	12.662	13.607	0.07 ± 0.06	0.05 ± 0.08	ı	-0.832	0.02	0.02	-1346.027
12BW	4	0.613	,	•	0.352	12.649	13.613	0.05 ± 0.06		0.03 ± 0.05		0.05	0.04	-1346.107
	5	0.616	0.001	•	0.354	12.643	13.615	0.05 ± 0.06	0.00 ± 0.07	0.03 ± 0.08	-0.999	0.05	0.04	-1346.107
	9	0.955	0.338	-0.567	0.468	12.416	13.610	0.07 ± 0.07	0.03 ± 0.11	0.03 ± 0.08	,	0.02	0.03	-1345.879
1111					,									:

Where; h^2 , Direct heritability; Log-L, Log-likelihood value; S.E., Standard error; σ^2 , Direct genetic variance; σ^2 , Maternal common (permanent) environmental variance; σ^2 , Residual variance; σ^2 , Phenotypic variance. m^2 , σ^2 ,

Kannan et al. 2023). Weights of the lambs was significantly (P<0.01) influenced by period of lambing, with some years performing better than others at certain phases. The differences could be attributed due to variation in late gestational nutrition of ewes and body score condition of ewe prior to conception, which is dictated by grazing pattern, breeding strategy, diseases outbreaks and other managemental and feeding practices during study period. Results on similar lines were also reported by Illa et al. (2019) in Nellore sheep, Ehsaninia (2021) in Sagsari sheep and Kannan et al. (2023) in Mecheri sheep. Birth weights (P<0.01) showed significant (P<0.05) variation in the dam's parity and similar finding was also reported by Kannan et al. (2023) in Mecheri sheep. Primiparous ewes produce lambs with lower birth weight than multiparous ewes. Also, higher birth weight was observed with an increase in parity number. Ewes in their advanced parity attain adequate body capacity and better mothering ability leading to better development of fetal growth (Gowane et al. 2011, Abbasi et al. 2012). However, parity had non-significant impact on body weight at later age which can be attributed to decrease in the maternal environment components and expression of the individual's own phenotype as the dominant entity. Male lambs were significantly (P<0.05) heavier than the female lambs at all ages. Differences in sexes were prominent with advancement of age due to differences in their endocrine system (Ehsaninia 2021). The males become more aggressive for suckling and feeding due to anabolic effect of androgen hormone resulting in higher intake of nutrient and consequently higher growth (Kumar et al. 2018). Significant ($P \le 0.01$) effects of dam weight at lambing was observed on all body weights (Table 2). Heavier lambs were born to heavier weight ewes followed by medium-weight ewes and lighter ewes. This might be due to more nutrition and uterine space offered by heavier dams to developing fetuses. The lambs delivered by heavier dams had heavier live weights at successive ages.

Estimation of (co)variance components analyzed by univariate models using AIREML method for different body weights are presented in Table 3. The best model was chosen using LRT (Meyer 2007). As 1 degree of freedom at 5% level of significance leads to critical value of 3.841. Any significant difference between all the 6 models for all the traits except BW could not be seen. Model 2 with animal and maternal genetic effects was found to be more suitable for birth weight, however model-1 was most suitable for rest of the live weights.

Birth weight (BW): Results of different animal models fitted to birth weight revealed that, model 1 tends to overestimate (0.27 \pm 0.05) as compared to other models. The incorporation of maternal genetic effect in model 2 significantly improved the value of log-likelihood and reduced the direct h² by 48% (0.14 \pm 0.05) as the genetic variance was further partitioned into the maternal genetic variance component (m²=0.17 \pm 0.03). This estimate of direct heritability for BW from best model was in agreement with earlier reports of Mandal *et al.* (2006a)

in Muzaffarnagari (0.15), Prince et al. (2010) in Malpura (0.14), and Rajendran et al. (2022) in Mecheri (0.15) sheep breeds. However, heritability values were higher than findings of Gowane et al. (2010a) in Bharat Merino, Bangar et al. (2020) in Harnali and Kumar et al. (2017) in Nellore sheep. Further, the estimate was lower than Prince et al. (2010) in Avikalin, Khorsand et al. (2014) in Afshari and Ehsaninia (2021) in Sangsari sheep. Maternal effects are a heritable component of phenotypic variance and that arises from allelic differences between individual mothers at loci affecting offspring phenotype (Ghafouri-Kesbi 2013). The maternal heritability for this trait was in accordance with the findings of Gowane et al. (2010b) in Malpura (0.23), Singh et al. (2016) in Marwari (0.21) and Bangar et al. (2020) in Harnali (0.16) sheep. Moderate estimate of direct heritability suggests further scope for improvement of BW due to selection in the flock. Direct heritability estimate was increased to 0.18±0.04 when direct additive and maternal permanent environmental effect (c²) were included in model 4. However, it did not increase the log likelihood value. The more comprehensive model 5 gave estimates of h^2 , m^2 and c^2 as 0.15 ± 0.05 , 0.10 ± 0.05 and 0.08±0.05, respectively, indicating that the maternal effect constitutes little more of the direct effect rather than permanent environment effects. The maternal effect had a significant impact on growth performance up to weaning period indicating the importance of maternal ability for early expressed traits. Addition of covariance between direct and maternal effects yield positive estimate of r_{am} in models 3 and 6 for birth weight, which were similar to earlier findings of Gowane et al. (2010a) in Bharat Merino sheep. The estimates of repeatability of ewe performance (t_m) for birth weight in current study ranged from 0.07 to 0.21. The total heritability (h,2) ranged from 0.18 to 0.27 over different models. However, based on LRT we report h², estimate of 0.22 for BW.

Weaning weight (3BW): For weaning weight, model 1 was found to be most suitable among all animal models based on LRT. Heritability estimate from model 1 was 0.18±0.05. However, estimates ranged from 0.10±0.04 to 0.18±0.05 over different models, due to inclusion or exclusion of maternal effect. This estimate was in accordance with estimates reported by Mokhtari et al. (2013) in Arman (0.15 \pm 0.02) and Dixit *et al.* (2001) for Bharat Merino (0.14) sheep. However, it was higher than reports of Ekiz et al. (2004) for Turkish Merino (0.06); Mandal et al. (2006b) in Muzaffarnagari (0.09) sheep and Gowane et al. (2010a) in Bharat Merino (0.04 ± 0.02) sheep. Moderate estimate of genetic variability can be exploited for further improvement of weaning weight through direct selection. In present flock, selection at weaning age provides higher genetic gain per unit of time rather than selection at six months of age. In higher models, estimate of m² were lower than the m² for BW and c² estimate (0.07±0.04) indicates the decline of maternal effect from birth to weaning in intercross sheep. Similar declining results were also obtained by Kumar et al. (2017) in Nellore, Abbasi *et al.* (2012) in Iranian Baluchi and Dhakad *et al.* (2022) for Malpura sheep. Addition of covariance between direct and maternal effect has shown negative estimate of r_{am} in models 3 and 6 and yield higher estimates of h^2 in comparison, which is just an inflated estimate. The negative covariance arises due to antagonistic pleiotropy among the traits (Roff 2002). The total heritability (h_t^2) was high in magnitude (0.18) and in accordance with earlier findings of Gowane *et al.* (2010a) in Bharat Merino sheep. Moderate direct h^2 estimate for 3BW indicate further scope of genetic improvement of weaning weight through selective breeding.

Post weaning body weights (6BW, 9BW and 12BW): Among all animal models, model 1 was found to be more appropriate model for post weaning body weights as per LRT. The direct heritability obtained from best model for 6BW, 9BW and 12BW were 0.00±0.04, 0.05±0.05 and 0.05±0.05, respectively. Higher models that included maternal effects revealed that estimates of maternal heritability were 0.07 ± 0.06 , 0.00 ± 0.06 and 0.03 ± 0.06 , respectively. Similarly, low estimates for post weaning body weights were also reported by Gowane et al. (2010a) for fine wool Bharat Merino (0.00 for 6BW; 0.03±0.03 for 9BW and 0.09±0.05 for 12BW) Sheep. These values were lower than the estimates of Mandal et al. (2006b) in Muzaffarnagri (0.06 for 6BW, 0.10 for 9BW and 0.14 for 12BW) and Rajenddran et al. (2022) in Mecheri (0.07 for 6BW, 0.11 for 9BW, and 0.07 for 12BW) sheep breed. The negligible estimates for these traits indicate poor genetic variability in population due to possibility of exhaustion of additive genetic variance. This trait has been under selection for several generations and hence logical reduction in additive genetic variance is possible, especially for 6BW. The intercross sheep is developed from Bharat merino and Gaddi synthetic and maintained only at regional station under sub-temperate environment. The flock was genetically closed since the development of this strain which restricted the scope for increasing genetic variability in the flock by influx of outside germplasm. Also, since the population is being continuously selected for early favorable trait, additive genetic variability in the population may have declined over the years. Maternal heritability estimates were low in magnitude and shows decreasing trends for post-weaning weights as compared to birth (0.17) and weaning (0.08) weight. Present findings were in agreement with the reports of Prince et al. 2010 in Avikalin sheep, Kumar et al. 2017 in Nellore sheep and Dhakad et al. 2022 in Malpura sheep, where maternal effects were found to be declining with the advancement of age. Very low or zero estimates of maternal heritability indicates that maternal genetic effects lost its impact during post-weaning stage and animals completely rely upon their own genotype for better growth rate. For all post weaning traits, there was a strong negative correlation between animal and maternal genetic effects and it ranged from -0.967 to -0.999. The negative r_{am} would not be possible from a biological perspective and this may arises due to

poor nutrition, management and environmental conditions and low number of progenies per ewe (Maniatis and Pollott 2003, Meyer 2007). Significant effect of maternal common environment was noticed only on 12BW (0.03±0.05). The estimates of total heritability for post weaning body weighs over different models ranged from 0.01 (6BW) to 0.06 (12BW). Similarly, repeatability of ewe performance estimates obtained in present study ranged between 0.00 (6BW) and 0.05 (6BW). Both the estimates of h_t^2 and h_t^2 mere very low in present finding and were similar with the earlier studies of Gowane *et al.* (2010a) for Bharat merino (0.00 and 0.11 for 6BW, 0.03 and 0.09 for 9BW and 0.09 and 0.02 for 12BW) sheep, indicating negligible or little scope for further improvement in these traits.

Genetic correlation: The bivariate analysis estimation of correlation between different growths traits of intercross Synthetic sheep are presented in Table 4. Estimates for direct genetic correlation (r_a) between BW and body weight at different ages were low to high except very low of 0.05 between BW and 12BW. It ranged from 0.16 between BW and 9BW to 0.75 between BW and 6BW. Our results fall within the range as reported by Bangar et al. (2020) in Harnali sheep for BW with 3BW (0.57), 6BW (0.02), 9BW (0.41) and 12BW (0.59). Similarly, the r_a of 3BW with 6BW (0.99), 9BW (0.58) and 12BW (0.79) were high and in accordance with the estimates reported by Kumar et al. (2017) in Nellore sheep for 6BW (0.93), 9BW (0.84) and 12BW (0.79). The genetic correlation between 6BW-9BW, 6BW-12BW and 9BW-12BW were very high and ranged from 0.90 (6BW-9BW) to 0.99 (9BW-12BW). Similar to present estimates, several authors reported positive and medium to high genetic correlation in different breeds of sheep (Yazdi et al. 1997, Gowane et al. 2010a, Gowane et al. 2010b, Khorsand et al. 2014). The phenotypic correlations between body weights at various ages were positive and medium to high, which ranged from 0.17 (BW-9BW) to 0.78 (6BW-9BW). In accordance with current findings higher phenotypic and genetic correlation among different body weight has been reported in sheep breed (Gowane et al. 2010a; Gowane et al. 2010b, Mokhtari et al. 2013, Prakash et al. 2012 and Kumar et al. 2017). Positive and moderate to high correlation between different economically important traits suggest that selection of any growth early trait will have its positive consequence over the other correlated trait at later ages (Bangar et al. 2020, Mangotra et al. 2021). Therefore, early selection in intercross sheep could be advantageous since selection for weaning weight would lead to the overall genetic improvement of later expressed growth traits. In addition, this will also help in culling of surplus and less productive animals to increase the selection intensity and accuracy of selection for profitable sheep farming.

In conclusion, the results of the present investigation demonstrated the moderate heritability estimates for weaning weight and its positive association with other growth traits. This will help to replace the current practice

Table 4. Estimates of genetics (above diagonal) and phenotypic (below diagonal) correlation body weight in inter cross synthetic sheep

Trait	BW	3BW	6BW	9BW	12BW
BW	-	0.24±0.16	0.75#	0.16±0.51	0.05±0.35
3BW	0.30 ± 0.03	-	0.99 ± 0.64	0.58 ± 0.22	0.40 ± 0.29
6BW	0.24 ± 0.03	0.64 ± 0.02	-	0.99 ± 0.57	0.90#
9BW	0.17 ± 0.03	0.58 ± 0.02	0.70 ± 0.02	-	0.99 ± 0.19
12BW	0.18 ± 0.04	0.50 ± 0.03	0.66 ± 0.02	0.78 ± 0.02	-

*Indicates that the approximation used to define standard errors of parameter estimates failed.

of selection at six months to selection at weaning age for further genetic improvement in growth of intercross sheep.

REFERENCES

- Abbasi M A, Abdollahi-Arpanahi R, Maghsoudi A, Torshizi R V and Nejati-Javaremi A. 2012. Evaluation of models for estimation of genetic parameters and maternal effects for early growth traits of Iranian Baluchi sheep. *Small Ruminant Research* **104**: 62–69.
- Al-Shorepy S A 2001. Estimates of genetic parameters for direct and maternal effects on birth weight of local sheep in United Arab Emirates. *Small Ruminant Research* **39**: 219–24.
- Bangar Y C, Magotra A and Yadav A S. 2020. Estimates of covariance components and genetic parameters for growth, average daily gain and Kleiber ratio in Harnali sheep. *Tropical Animal Health and Production* **52**: 2291–96.
- Dhakad G S, Saini S, Mallick P K, Misra S S, Gowane G R, Sharma S, Prakash V, Kumar A, Mahala S and Singh N. 2022. Elucidating genotype by environment interaction over the growth trajectory of Malpura sheep in the semi-arid region of India through random regression model. *Small Ruminant Research* 216: 106791.
- Dixit S P, Chander R, Kumar S and Dhillon J S. 2006. Status of newly developed wool strains of sheep in India: A review. *Agricultural Review* 27: 292–97.
- Dixit S P, Dhillon J S and Singh G. 2001. Genetic and non-genetic parameter estimates for growth traits of Bharat Merino lambs. Small Ruminant Research 42: 101–104.
- Ehsaninia J. 2021. Estimates of (co)variance components and genetic parameters for pre-weaning body weight traits and Kleiber ratio in Sangsari sheep breed. *Italian Journal of Animal Science* 20: 918–27.
- Ekiz B, Ozcan M, Yilmaz A and Ceyhan A. 2004. Estimates of genetic parameters for direct and maternal effects with six different models on birth and weaning weights of Turkish Merino lambs. *Turkish Journal of Veterinary and Animal Science* 28: 383–89.
- Ghafouri-Kesbi F. 2013. (Co)variance components and genetic parameters for growth rate and Kleiber ratio in fat-tailed Mehraban sheep. *Archiv Tierzucht* **55**: 564–72.
- Gowane G R, Chopra A, Prakash V and Arora A L. 2010b. Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Malpura sheep. *Livestock Science* 131: 94–101.
- Gowane G R, Chopra A, Prince L L L, Mishra A K and Arora A L. 2011. Genetic analysis for growth traits of prolific Garolex Malpura (GM) sheep. *Tropical Animal Health and Production* **43**: 299–03.
- Gowane G R, Chopra A, Prince L L L, Paswan C and Arora A L. 2010a. Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Bharat Merino sheep. *Animal* 4: 425–31.

- IBM Corp, 2019. Released 2019. IBM SPSS Statistics for Windows, Version 25.0. IBM Corp., Armonk, NY, USA.
- Illa S K, Gollamoori G and Nath S. 2019. Direct and maternal variance components and genetic parameters for average daily body weight gain and Kleiber ratios in Nellore sheep. *Tropical Animal Health and Production* **5**: 155–63.
- Kannan T A, Jaganathan M, Ramanujam R, Chinnaondi B, Illa S K, Kizilkaya K and Peters S O 2023. Multi-trait Bayesian analysis and genetic parameter estimates in production characters of Mecheri sheep of India. *Tropical Animal Health and Production* 55: 1–8.
- Khorsand A, Hafezian S H, Yansari A T and Farhadi A. 2014. Genetic parameters of direct and maternal effects for growth traits of Afshari sheep. *Iranian Journal of Applied Animal Science* 4: 69–74.
- Kumar A, Misra S S, Chauhan I S, Gowane G R and Shinde A K. 2021. Small ruminant production in dryland regions of india: Sstatus, challenges and opportunities. *Indian Journal of Animal Sciences* 91: 350–359.
- Kumar S I, Gangaraju G, Kumar C V and Nath S. 2018. Genetic parameters for growth rate and Kleiber ratios of Nellore sheep. *Indian Journal of Animal Research* **52**: 1405–08.
- Kumar S, Kumar V C, Gangaraju G, Nath S and Thiruvenkadan A K. 2017. Estimates of direct and maternal (co)variance components as well as genetic parameters of growth traits in Nellore sheep. *Tropical Animal Health and Production* 49: 1431–438.
- Lalit Z S, Malik Z S, Dalal D S, Patil C S and Dahiya S P. 2017. Genetic studies on growth, reproduction and wool production traits in Harnali sheep. *Indian Journal of Animal Research* 51: 813–816.
- Mallick P K, Chauhan I, Thirumaran S M K and Kumar A. 2021. (Co) variance components and genetic parameters of pre-weaning growth traits and kleiber ratio in Bharat Merino sheep. *Indian Journal of Small Ruminant* 27(2): 160–67.
- Mandal A, Neser F W C, Rout P K, Roy R and Notter D R. 2006a. Estimation of direct and maternal (co)variance components for pre-weaning growth traits in Muzaffarnagari sheep. *Livestock Science* **99**: 79–89.
- Mandal A, Neser F W C, Rout P K, Roy R and Notter D R. 2006b. Genetic parameters for direct and maternal effects on body weights of Muzaffarnagari sheep. *Animal Science* 82: 133–40.
- Maria G A, Boldman K G and Van Vleck L D 1993. Estimates of variance due to direct and maternal effects for growth traits of Romanov sheep. *Journal of Animal Science* 71: 845–49.
- Maniatis N and Pollott G E. 2003. The impact of data structure on genetic (co) variance components of early growth in sheep, estimated using an animal model with natural effects. *Journal of Animal Science* **8**:101–08.
- Meyer K. 2007. WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood

- (REML). Journal of Zhejiang University Science B8: 815–21. Mokhtari M S, Shahrebabk M M, Shahrebabk H M and
- Sadeghi M 2013. Estimation of (co) variance components and genetic parameters for growth traits in Arman sheep. *Journal of Livestock Science and Technologies* 1: 35–43.
- Mousa E, Monzaly H, Shaat I and Ashmawy A. 2013. Factors affecting birth and weaning weights of native Farafra lambs in upper Egypt. *Egyptian Journal of Sheep and Goats Science* 8: 1–10.
- Narula H K, Yadav S B S. Sharma P R and Vimal M. 2009. Growth and reproductive performance of Magra sheep of Rajasthan. *Indian Journal of Animal Science* **79**: 639–41.
- Prakash V, Prince L L L, Gowane G R and Arora A L. 2012. Factors affecting postweaning average daily gain and Kleiber ratios in Malpura sheep. *Indian Journal of Animal Sciences* 82: 1598–600.
- Prince L L L, Gowane G R, Chopra A and Arora A L. 2010. Estimates of (co) variance components and genetic parameters for growth traits of Avikalin sheep. *Tropical Animal Health* and Production 42: 1093–101.
- Rahim A, Chaudhary R, Rajaravindra K S, Pourouchottamane R, Gowane G R and Kumar A, 2024. Elucidating population structure and genetic diversity of Intercross sheep through pedigree analysis. *Small Ruminant Research* 107309.
- Rajaravindra K S, Chauhan I, Chaturvedi O H and Sharma S R. 2018. Production performance of synthetic sheep developed

- for fine wool production. XXV Annual Convention of ISVIB and National conference on innovative biotechnological approaches for improving animal health and productivity, 13th-15th December, pp 116.
- Rajendran R, Muralidharan J, Bandeswaran C, Illa S K, Kizilkaya K, Peters S O and Thiruvenkadan A K. 2022. Bayesian estimates of genetic parameters for body weights in Mecheri sheep of India. South African Journal of Animal Science 52: 234–40.
- Roff D A. 2002. Life history evolution. Sinauer Associates, Sunderland, MA.
- Shiotsuki L, de Oliveira D P, Lobo R N B and Faco O. 2014. Genetic parameters for growth and reproductive traits of Morada Nova sheep kept by smallholder in semi-arid Brazil. *Small Ruminant Research* **120**: 204–08.
- Singh H, Pannu U, Narula H K, Chopra A, Naharwara V, and Bhakar S K. 2016. Estimates of (co) variance components and genetic parameters of growth traits in Marwari sheep. *Journal of Applied Animal Research* **441**: 27–35.
- Willham R L. 1972. The role of maternal effects in animal breeding: III. Biometrical aspects of maternal effects in animals. *Journal of Animal Science* **35**: 1288–93.
- Yazdi M H, Engstom G, Nasholm A, Johansson K, Jorjani H and Liljedah L E. 1997. Genetic parameters for lamb weight at different ages and wool production in Baluchi sheep. *Animal Science* 65: 247–55.