# Effect of supplementation of spirulina (*Arthrospira*) and exogenous protease enzyme on growth performance and nutrient retention of broilers

PREM KUMAR  $R^{1\boxtimes}$ , VENKATESWARLU  $S^1$ , SRINIVASA RAO  $D^1$  and PADMAJA  $K^1$ 

Sri Venkateswara Veterinary University, Tirupati, A.P, India - 517 502.

Received: 04 March 2024; Accepted: 26 March 2025

## ABSTRACT

The present study was carried out to assess the effect of dietary supplementation of different levels of spirulina (*Arthrospira*), a blue-green microalgae with or without exogenous protease enzyme on performance and nutrient retention of broiler chicken. Two hundred and forty commercial broiler chicks were randomly distributed into five dietary treatments with four replicates containing 12 birds each. The dietary treatments were: basal diet prepared as per ICAR (2013) specifications (control:  $T_1$ ), basal diet containing 1% spirulina ( $T_2$ ), basal diet containing 1% spirulina + 0.05% exogenous protease ( $T_3$ ), basal diet containing 2% spirulina ( $T_4$ ) and basal diet containing 2% spirulina+0.05% exogenous protease ( $T_5$ ). Birds were reared under deep litter system for 35 days and fed with prestarter, starter and finisher diets. Results revealed that the body weight gain, performance index, protein efficiency ratio and feed conversion ratio were increased significantly in  $T_3$  groups compared to  $T_1$ ,  $T_2$ ,  $T_4$  and  $T_5$  groups. Nutrient retention was not affected by supplementing spirulina and exogenous protease in broiler rations. Therefore, it could be concluded that although the supplementation of 1% spirulina and 0.05% exogenous protease improve the growth performance of broiler birds, it should be used with caution under the prescribed limit.

Keywords: Broilers, Exogenous protease, Nutrient retention, Performance, Spirulina

Spirulina, a biomass of cyanobacterium, containing high protein, vitamins, minerals, essential amino and fatty acids, phytopigments, bioactive compounds, reported to have growth promoting, immuno- modulating and anti-inflammatory effects (Farag et al. 2016, Mariey et al. 2012). It may act as an alternative to antibiotics for enhancing growth performance of poultry birds. Dietary inclusion of spirulina in broiler nutrition has favourable effects on health and performance (Kharde et al. 2012, Shanmugapriya and Saravana babu 2014). Spirulina has also been associated with increased growth rate (Evans et al. 2015, Park et al. 2018) and nutrient digestibility (Park et al. 2018). The efficiency of its utilization may enhance by supplementation of exogenous enzymes. Protease enzyme has several benefits including decreasing undigested proteins in the diet, increasing amino acid availability and reducing protein needs in the diet (Buttin et al. 2016). However present knowledge of broiler chicken response to dietary supplementation of spirulina and exogenous protease enzyme is unknown. Therefore, the present study was planned to observe the effect of supplementation of different levels of spirulina with or without exogenous protease enzyme on growth performance and nutrient utilization of broilers.

Present address: ¹Sri Venkateswara Veterinary University, Tirupati, A.P, India – 517 502. <sup>™</sup>Corresponding author email: prem.regulagadda@gmail.com

#### MATERIALS AND METHODS

The experiment was carried out at Department of Animal Nutrition, College of Veterinary Science, Sri Venkateswara Veterinary University (SVVU), Tirupati, after taking approval by the Institutional Animal Ethics Committee vide reference number 281/go/ReBi/S/2000/CPCSEA/CVSc/TPTY/028/Animal Nutrition/2021 dated 24-08-2021.

Two hundred and forty commercial broiler chicks (Cobb - 400 strain) were randomly distributed into five dietary treatments with four replicates containing 12 birds each. The dietary treatments were: basal diet prepared as per ICAR (2013) specification (control: T<sub>1</sub>), basal diet containing 1% spirulina (T<sub>2</sub>), basal diet containing 1% spirulina (T<sub>3</sub>), basal diet containing 2% spirulina (T<sub>4</sub>), basal diet containing 2% spirulina (T<sub>4</sub>), basal diet containing 2% spirulina (T<sub>5</sub>). Birds were reared under deep litter system for 35 days and fed with pre-starter, starter and finisher diets. Clean and fresh drinking water was made available at all the times. All the birds were vaccinated as per standard vaccination schedule. Nutrient composition of spirulina used in experimental diets is summarized in Table 1.

The individual body weight of the birds was recorded at weekly interval up to 5 weeks of age. Average weekly body weight gain was calculated in all the replicates of the five treatments. Total feed offered and left-over feed for each replicate was measured daily to calculate daily feed consumption. Feed conversion ratio (FCR) was calculated

Table 1. Nutrient composition (% DM) of spirulina used in experimental diets

| Nutrient           | Spirulina |
|--------------------|-----------|
| Dry matter         | 89.26     |
| Organic matter     | 88.53     |
| Crude protein      | 62.3      |
| Ether extract      | 0.83      |
| Crude fibre        | 0.76      |
| Total ash          | 11.47     |
| Acid insoluble ash | 1.8       |
| GE (Kcal/kg)       | 4043.13   |
| ME (Kcal/kg)*      | 2850      |
| Calcium            | 0.59      |
| Phosphorous        | 1.31      |

<sup>\*</sup>Calculated values

based on total feed consumed and total weight gain of each replicate. Performance index was calculated for each treatment by dividing the average weight gain by the feed conversion ratio and the protein efficiency ratio was calculated by dividing the weight gain to protein consumed.

To determine the nutrient retention (%), a metabolism trial was conducted at the end of 5 weeks of age and proper records of total feed offered, left over feed and faeces voided were recorded daily. Moisture content of excreta samples was analysed to know the total faecal dry matter output per day. At the end of collection period, excreta sample collected from each replicate was thawed, mixed thoroughly, dried in oven and ground in wielly mill for further analysis. The representative samples of experimental diets offered and excreta samples from each replicate were analysed for various nutrients as per AOAC (2007) and the nutrient retention (%) of dry matter, crude protein, ether extract and crude fibre was calculated. Data were analysed by the method of Snedecor and Cochran (1994) and using SPSS version 22.0. Statistical comparisons of the results were made using one way analysis of variance (ANOVA) and significant differences (p<0.05) between different experimental groups were analysed by Duncan's test.

# RESULTS AND DISCUSSION

Growth performance: Body weight gain was significantly (p<0.05) higher in 1% spirulina along with protease enzyme supplementation compared to control and

2% spirulina supplemented groups (Table 2). The obtained results approved the findings of Park et al. (2018) where spirulina at 0, 0.25, 0.5, 0.75 and 1 % in the broiler diet showed linear increase (p<0.01) in body weight gain as the level of spirulina increased from 0 to 1 %. Similarly, Shanmugapriya et al. (2015) in normal broiler birds and Moustafa et al. (2021) in heat stress broiler birds fed diets containing 0.5, 1 and 1.5 % spirulina and reported significant increase (p<0.05) in body weight gain up to 1 % level and was decreased in 1.5 % level compared to control in both type of birds. On the other hand, Pestana et al. (2020) observed very high levels of spirulina (15%) had significant reduction (p<0.01) in the body weight gain compared to control even after supplemented with various enzymes i.e., lysozyme and cocktail enzymes. Possible reasons for increased body weight gain in 1 % spirulina supplemented groups might be due to availability of quality amino acids from spirulina microalgae compared to other vegetable proteins (Park et al. 2018, Evans et al. 2015, Tavernari et al. 2018), antimicrobial, antioxidant and antiinflammatory properties due to presence of physiologically active compounds like carotenoid pigments, phycocyanin, poly unsaturated fatty acids, vitamins, macro and micro minerals (Becker 2007, Eriksen 2008, Maoka 2011) and beneficially alters the intestinal microbial population (Alwaleed et al. 2020). On the other hand, decrease in the body weight gain in higher spirulina incorporation (2%) was due to lack of proper endogenous enzymes to completely break the cell wall of spirulina (Pestana et al. 2020), higher viscosity of digesta due to gelation of proteins and faster passage rate may limit the access of the endogenous enzymes to their target substrates which resulted in decreased digestibility and absorption of nutrients leading to poor performance (Evans et al. 2015). The improved body weight gain in protease supplemented groups compared to non-supplemented groups might be attributed to augmenting the endogenous peptidases secretion resulted in increased protein digestibility, stimulation of digestive enzymes secretion, hydrolyzing the proteinaceous anti nutritional factors (Ghazi et al. 2002, Law et al. 2018) and modification of intestinal microflora.

Feed intake was significantly higher (p<0.05) in 1% spirulina supplemented groups and lower (p<0.05) in 2% spirulina supplemented groups when compared to control group (Table 3). The feed intake observed in the present

Table 2. Effect of supplementation of Spirulina and exogenous Protease enzyme on weekly body weight gain (g) in broilers

| Weekly body weight       | Treatment                   |                               |                              |                                |                          |  |
|--------------------------|-----------------------------|-------------------------------|------------------------------|--------------------------------|--------------------------|--|
| gain (g)                 | $T_1$                       | $T_2$                         | $T_3$                        | $T_4$                          | $T_5$                    |  |
| 1st week                 | $103.56 \pm 1.25$           | $107.41 \pm 2.31$             | $108.56 \pm 1.02$            | $108.79 \pm 1.76$              | $108.48 \pm 2.15$        |  |
| 2 <sup>nd</sup> week     | $270.66 \pm 4.97$           | $278.47\pm5.52$               | $283.00\pm2.83$              | $281.54 \pm 4.61$              | $283.33 \pm 4.65$        |  |
| 3 <sup>rd</sup> week *   | $421.83^{~ab}\pm2.67$       | $424.85^{\rm  ab}\!\pm2.40$   | $427.54^{a} \pm 4.71$        | $408.27^{\circ} \pm 5.20$      | $412.08^{\;bc} \pm 4.96$ |  |
| 4th week *               | $448.08^{bc} \pm 3.91$      | $467.21^{\rm \ ab} \pm 7.27$  | $474.25^{\rm \ a} \pm 4.63$  | $443.27^{c} \pm 9.85$          | $449.83^{\ bc} \pm 3.72$ |  |
| 5th week *               | $488.85^{\ bc} \pm 6.98$    | $502.06^{\rm  ab} \pm 8.68$   | $520.95{}^{\rm a}\pm7.29$    | $469.77^{\text{ cd}} \pm 3.96$ | $464.16^{d} \pm 4.39$    |  |
| Cumulative (0-5 weeks) * | $1732.99^{\circ} \pm 12.58$ | $1780.02^{\text{b}} \pm 8.88$ | $1814.31^{\rm \ a} \pm 9.60$ | $1711.65^{\circ}\pm7.49$       | $1717.89^{c} \pm 10.02$  |  |

abcd Values bearing different superscripts in a row differ significantly \* (p<0.05)

Table 3. Effect of supplementation of Spirulina and exogenous Protease enzyme on weekly feed intake (g) in broilers

| Wealthy food intoles (a) | Treatment                       |                                |                              |                            |                             |  |
|--------------------------|---------------------------------|--------------------------------|------------------------------|----------------------------|-----------------------------|--|
| Weekly feed intake (g)   | $T_1$                           | Τ,                             | T <sub>3</sub>               | $T_4$                      | T <sub>5</sub>              |  |
| 1st week                 | $123.21 \pm 0.44$               | $122.68 \pm 1.02$              | $121.27 \pm 1.80$            | $120.87 \pm 1.32$          | $120.91 \pm 1.31$           |  |
| 2 <sup>nd</sup> week     | $375.41 \pm 2.19$               | $377.70\pm1.78$                | $376.04 \pm 2.27$            | $376.49 \pm 1.47$          | $375.95 \pm 1.55$           |  |
| 3 <sup>rd</sup> week *   | $646.29^{\mathrm{a}}\pm6.06$    | $644.66^{\mathrm{a}} \pm 5.55$ | $641.54^{ab} \pm 4.18$       | $623.54^{\circ} \pm 4.59$  | $626.87^{bc} \pm 4.58$      |  |
| 4 <sup>th</sup> week *   | $866.20^{abc}\pm11.45$          | $872.21^{ab} \pm 5.79$         | $878.24^{\rm a} \pm 1.82$    | $841.50{}^{\rm c}\pm10.80$ | $848.41^{\ bc} \pm 6.78$    |  |
| 5 <sup>th</sup> week *   | $1152.71^{ab} \pm 5.19$         | $1173.51^{a} \pm 12.30$        | $1170.37^{\rm a} \pm 8.45$   | $1124.33^{\ bc}\pm10.70$   | $1109.33^{\circ} \pm 13.10$ |  |
| Cumulative (0-5 weeks) * | $3163.83~^{\text{a}} \pm 20.83$ | $3190.78{}^{\rm a}\pm12.79$    | $3187.48^{\rm \ a} \pm 9.41$ | $3086.75^{b} \pm 13.74$    | $3081.50^{b} \pm 18.04$     |  |

<sup>&</sup>lt;sup>abc</sup> Values bearing different superscripts in a row differ significantly \* (p<0.05)

study are corroborated with the findings of Park *et al.* (2018) who reported non-significant increase (p>0.05) in feed intake as spirulina level increased from 0 to 1%. Similarly, Abbass *et al.* (2020) observed non-significant increase (p>0.05) in feed intake up to 1% level of spirulina, thereafter decrease in feed intake. In contrast to results reported in the present study, Raach-Moujahed *et al.* (2011) and Shanmugapriya *et al.* (2015) observed decreased feed intake as the level of spirulina increased in diet.

Significantly better (p<0.05) feed conversion ratio was observed in 1% spirulina along with protease enzyme supplementation compared to other treatment groups and control group (Table 4). The obtained results of FCR were in agreement with Shanmugapriya et al. (2015) who reported significantly (p<0.01) better FCR in broilers supplemented with spirulina up to 1% level and poor FCR was observed as the levels further increased to 1.5 %. Similarly, Park et al. (2018) observed linear decrease in FCR as the level of spirulina increased from 0 to 1% level. Similar findings were also reported by Jamil et al. (2015), Fathi et al. (2018), Shinde et al. (2018) and Khan et al. (2020) who observed better FCR in broilers supplemented with low levels of spirulina. In contrast to present study, Abbass et al. (2020) reported linear decrease (P<0.05) in FCR from 1.63 to 1.55 with increasing the spirulina from 0 to 4%. The increased FCR in protease enzyme supplemented group might be attributed to the increased digestibility of nutrients especially proteins, stimulation of digestive enzymes and partially degrading the cell wall of feed resulted in better availability of nutrients present in feeds. Non significantly better FCR in spirulina supplemented groups compared to control might be due to increased antioxidant activity of spirulina which might have diverted more nutrients towards growth by minimizing the nutrient expenditure for the wear and tear of body tissues due to oxidative stress.

The performance index and protein efficiency ratio were increased from control to 1% spirulina supplemented group and decreased in 2% spirulina supplemented group (Table 5). Better performance index and protein efficiency ratio in spirulina supplemented groups compared to control might be attributed to the improved feed utilization efficiency, enhanced absorption of vitamins and minerals (Gruzauskas et al. 2004) and beneficially alter the intestinal microbial population with increase in *Lactobacillus* and decrease in E. Coli population (Alwaleed et al. 2020). Further better performance in exogenous protease supplemented groups might be due to better peptide digestion of spirulina proteins along with other ingredients in ration and increased absorption of amino acids.

Nutrient retention (%): The spirulina supplementation at 1% and 2% levels with and without exogenous protease enzyme supplementation had no effect (p>0.05) on retention of Dry Matter (DM), Organic Matter (OM), Crude Protein (CP), Ether Extract (EE) and Crude Fiber (CF) as compared to control (Table 6). However, there was numeric increase in CP retention and decrease in EE retention in spirulina supplemented groups compared to control. CP retention reported in the present study is similar to that of Becker (2007), who reported that spirulina addition had no beneficial effect on protein digestibility as it contains approximately 11.5% of non-protein nitrogen.

Although current results show non significant improvement in supplementation of spirulina at 1% level along with exogenous protease enzyme to broilers diet on the body weight gain, performance index, protein efficiency ratio and feed efficiency, further research needs to be

Table 4. Effect of supplementation of Spirulina and exogenous Protease enzyme on feed conversion ratio in broilers

| Feed conversion ratio    | Treatment                     |                               |                      |                             |                               |  |
|--------------------------|-------------------------------|-------------------------------|----------------------|-----------------------------|-------------------------------|--|
| _                        | T <sub>1</sub>                | T <sub>2</sub>                | T,                   | T <sub>4</sub>              |                               |  |
| 1st week *               | $1.19^{\text{a}} \pm 0.017$   | $1.14^{ab}\pm0.017$           | $1.11^{b} \pm 0.023$ | $1.11^{\ b} \pm 0.007$      | $1.11^{\mathrm{b}} \pm 0.013$ |  |
| 2 <sup>nd</sup> week     | $1.38 \pm 0.020$              | $1.35\pm0.023$                | $1.32\pm0.017$       | $1.34 \pm 0.020$            | $1.32\pm0.017$                |  |
| 3 <sup>rd</sup> week     | $1.53\pm0.014$                | $1.51\pm0.020$                | $1.50\pm0.020$       | $1.52\pm0.007$              | $1.52\pm0.016$                |  |
| 4th week                 | $1.93\pm0.013$                | $1.86\pm0.023$                | $1.85\pm0.018$       | $1.90\pm0.050$              | $1.88\pm0.015$                |  |
| 5th week *               | $2.36{}^{\mathrm{a}}\pm0.029$ | $2.33{}^{\mathrm{a}}\pm0.029$ | $2.24^{b} \pm 0.026$ | $2.39^{\mathrm{a}}\pm0.011$ | $2.38^{a}\pm0.030$            |  |
| Cumulative (0-5 weeks) * | $1.82^{\text{a}} \pm 0.005$   | $1.79{}^{\mathrm{a}}\pm0.013$ | $1.75^{b} \pm 0.006$ | $1.80^{\text{a}} \pm 0.013$ | $1.79^{a} \pm 0.006$          |  |

<sup>&</sup>lt;sup>ab</sup> Values bearing different superscripts in a row differ significantly \* (P<0.05)

Table 5. Effect of supplementation of Spirulina and exogenous Protease enzyme on overall performance in broilers

| Danier stan               | Treatment                    |                               |                              |                             |                                 |  |
|---------------------------|------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------------|--|
| Parameter                 | T_1                          | T,                            | T <sub>3</sub>               | $T_{\scriptscriptstyle 4}$  | T,                              |  |
| Initial body weight       | $43.36 \pm 0.43$             | $43.42 \pm 0.35$              | $43.30 \pm 0.65$             | $43.20 \pm 0.16$            | $43.60 \pm 0.25$                |  |
| Final body weight*        | $1776.35{}^{\rm c}\pm2.83$   | $1823.44^{b} \pm 2.45$        | $1857.61^{\rm \ a} \pm 3.30$ | $1754.85^{\;d} \pm 1.73$    | $1761.50^{\mathrm{d}} \pm 0.99$ |  |
| Body weight gain*         | $1732.99^{\circ} \pm 12.58$  | $1780.02^{b} \pm 8.88$        | $1814.31^{\rm \ a} \pm 9.60$ | $1711.65^{\circ}\pm7.49$    | $1717.89{}^{\rm c}\pm10.02$     |  |
| Feed intake*              | $3163.83~^{\rm a} \pm 20.83$ | $3190.78{}^{\rm a}\pm12.79$   | $3187.48^{\rm \ a} \pm 9.41$ | $3086.75^{b} \pm 13.74$     | $3081.50^{b} \pm 18.04$         |  |
| Feed conversion ratio*    | $1.82^{\rm a} \pm 0.005$     | $1.79{}^{\mathrm{a}}\pm0.013$ | $1.75^{b} \pm 0.006$         | $1.80^{a}\pm0.013$          | $1.79{}^{\rm a}\pm0.006$        |  |
| Performance index (g)*    | $949.27^{\circ}\pm8.37$      | $993.18^{b}\pm12.10$          | $1032.75{}^{\rm a}\pm8.90$   | $949.30^{\circ} \pm 11.12$  | $957.73^{\circ}\pm7.17$         |  |
| Protein efficiency ratio* | $2.74^{\text{d}} \pm 0.004$  | $2.78^{\text{b}} \pm 0.002$   | $2.84^{\rm \ a} \pm 0.006$   | $2.77^{\text{c}} \pm 0.002$ | $2.79^{b} \pm 0.001$            |  |

<sup>abcd</sup> Values bearing different superscripts in a row differ significantly \* (p<0.05)

Table 6. Effect of supplementation of Spirulina and exogenous Protease enzyme on nutrient retention (%) in broilers

| Parameter      | Treatment        | Treatment        |                  |                  |                  |  |  |  |
|----------------|------------------|------------------|------------------|------------------|------------------|--|--|--|
|                | $T_1$            | $T_2$            | $T_3$            | $T_4$            | $T_{5}$          |  |  |  |
| Dry Matter     | $74.03 \pm 0.29$ | $73.57 \pm 1.87$ | $74.59 \pm 1.16$ | $72.69 \pm 0.62$ | $71.55 \pm 0.32$ |  |  |  |
| Organic Matter | $75.81 \pm 0.96$ | $74.72\pm1.92$   | $74.99\pm1.67$   | $74.36\pm1.48$   | $73.85 \pm 0.92$ |  |  |  |
| Crude Protein  | $67.49 \pm 1.42$ | $69.14 \pm 3.57$ | $70.35 \pm 0.89$ | $67.03\pm0.38$   | $69.82\pm0.87$   |  |  |  |
| Ether Extract  | $75.21 \pm 1.14$ | $70.67 \pm 4.13$ | $71.48 \pm 3.55$ | $69.13 \pm 1.45$ | $71.06\pm0.53$   |  |  |  |
| Crude Fiber    | $29.11 \pm 0.52$ | $30.02\pm0.58$   | $30.06\pm0.54$   | $29.35 \pm 0.42$ | $29.33 \pm 0.43$ |  |  |  |

All the parameters were non-significant (NS) among the treatments (p>0.05)

carried out for efficient utilization of spirulina at different levels with different combination of exogenous enzymes to determine optimum levels in broiler and layer diets for profitable poultry farming.

### REFERENCES

AOAC. 2007. Official Methods of Analysis. 17th Edition. Association of Official Analytical Chemists. Washington, D.C, USA.

Abbass M S, Bandar L K and Hussein F M. 2020. Effect of using different levels of spirulina algae (*Spirulina platensis*) in diet on productive performance and characteristics of the carcass of broiler. *Plant Archives* **20**(2): 5755-61.

Alwaleed E A, El-Sheekh M, Abdel-Daim M M and Saber H. 2020. Effects of *Spirulina platensis* and *Amphora coffeaeformis* as dietary supplements on blood biochemical parameters, intestinal microbial population, and productive performance in broiler chickens. *Environmental Science and Pollution Research* 28(2): 1801-11.

Becker E W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25: 207–10.

Buttin P, Yan F, Dinbner J, Knight C D, Vazquez-Anon M, Odetallah N and Carter S. 2016. Effect of dietary protein and protease supplementation on performance and gut health of broiler chicks. *Poultry Science* 99: 3557-66.

Eriksen N T. 2008. Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. *Applied Microbiology and Biotechnology* **80**(1): 1-14

Evans A M, Smith D L and Moritz J S. 2015. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. *Journal of Applied Poultry Research* **24**(2): 206-14.

Farag M R, Alagawany M, El-Hack M E A and Dhama K. 2016. Nutritional and healthical aspects of Spirulina (*Arthrospira*) for poultry, animals and human. *International Journal of*  Pharmacology 12(1): 36-51.

Fathi M A, Namra M M M, Ragab M S and Aly M M M. 2018. Effect of dietary supplementation of algae meal (*Spirulina platensis*) as growth promoter on performance of broiler chickens. *Egyptian Poultry Science Journal* **38**(2): 375-389.

Ghazi S, Rooke J A, Galbraith H and Bedford M R. 2002. The potential for the improvement of the nutritive value of soyabean meal by different proteases in broiler chicks and broiler cockerels. *British Poultry Science* **43**(1): 70-7.

Gruzauskas R, Lekavicius R, Raceviciute-Stupeliene A, Sasyte V, Tevelis V and Svirmickas G J. 2004. Visciukų broilerių virskinimo procesų optimizavimas simbiotiniais preparatais. *Veterinarija ir zootechnika* **28**(50): 51-6.

ICAR. 2013. Nutrient requirements of Poultry. Indian Council of Agricultural Research, New Delhi, India.

Jamil A R, Akanda M R, Rahman M M, Hossain M A and Islam M S. 2015. Prebiotic competence of spirulina on the production performance of broiler chickens. *Journal of Advanced Veterinary and Animal Research* **2**(3): 304-9.

Khan S, Mobashar M, Mahsood F K, Javaid S, Abdel-Wareth A A, Ammanullah H and Mahmood A. 2020. Spirulina inclusion levels in a broiler ration: evaluation of growth performance, gut integrity, and immunity. *Tropical Animal Health and Production* **52**(6): 3233-40.

Kharde S D, Shirbhate R N, Bahiram K B, Nipane S F. 2012. Effect of Spirulina supplementation on growth performance of broilers. *Indian Journal of Veterinary Research* 21: 66-9.

Law F L, Zulkifli I, Soleimani A F, Liang J B and Awad E A. 2018. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. *Asian-Australasian Journal of Animal Sciences* 31(8): 1291.

Maoka T. 2011. Carotenoids in marine animals. *Marine drugs* **9**(2): 278-93.

Mariey Y A, Samak H R and Ibrahem M A. 2012. Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1-productive and reproductive performances of local laying

- hens. Egyptian Poultry Science Journal 32(1): 201-15.
- Moustafa E S, Alsanie W F, Gaber A, Kamel N N, Alaqil A A and Abbas A O. 2021. Blue-green algae (*Spirulina platensis*) alleviate the negative impact of heat stress on broiler production performance and redox status. *Animals* 11(5): 1243.
- Park J H, Lee S I and Kim I H. 2018. Effect of dietary Spirulina (Arthrospira platensis) on the growth performance, antioxidant enzyme activity, nutrient digestibility, caecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry science 97(7): 2451-9.
- Pestana J M, Puerta B, Santos H, Madeira M S, Alfaia C M, Lopes P A and Prates J A M. 2020. Impact of dietary incorporation of Spirulina (*Arthrospira platensis*) and exogenous enzymes on broiler performance, carcass traits, and meat quality. *Poultry science* **99**(5): 2519-32.
- Raach-Moujahed A, Haddad B, Moujahed N and Bouallegue M. 2011. Evaluation of growth performances and meat quality of Tunisian local poultry raised in outdoor access. *International Journal of Poultry Science* **10**(7): 552-9.

- Shanmugapriya B and Saravana Babu S. 2014. Supplementary effect of Spirulina platensis on performance, hematology and carcass yield of broiler chicken. *Indian Streams Research Journal* 4: 1-7.
- Shanmugapriya B, Babu S S, Hariharan T, Sivaneswaran S and Anusha M B. 2015. Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. *International Journal of Recent Scientific Research* 6(2): 2650-3.
- Shinde S R, Patil R A, Padghan P V. 2018. Effect of spirulina supplementation on growth performance of broilers. *Journal of Pharmacognosy and Phytochemistry* 7(1S): 3265-7.
- Snedecor G W and Cochran W G. 1994. Statistical methods 8th ed Affiliated East West Press, New Delhi 13: 1467-73.
- Tavernari F D C, Roza L F, Surek D, Sordi C, Silva M L B D, Albino L F T and Boiago M M. 2018. Apparent metabolisable energy and amino acid digestibility of microalgae *Spirulina platensis* as an ingredient in broiler chicken diets. *British Poultry Science* **59**(5): 562-67.