Sequential pathology of fowl adenovirus serotype 11 in experimentally infected chicken

S CHITRADEVI^{IM}, K SUKUMAR², G A BALASUBRAMANIAM² and A ARULMOZHI²

Veterinary College and Research Institute, Veerapandi, Theni - 625 534

Received: 15 April 2024; Accepted: 26 May 2025

ABSTRACT

The present study was undertaken to find out the sequential pathology of fowl adenovirus in experimentally infected chicken. To assess the gross and histopathology, experimental infection of ninety-eight numbers of one-day-old chicks were inoculated with fowl adenovirus (FAdV) serotype 11 field isolate at the rate of 0.5 ml of $10^{6.5}$ /TCID₅₀ per ml both oral and intramuscular (I/M) route except control group, followed by PCR confirmation and sequencing. Six number of birds from each treatment groups and two number of birds from control groups were sacrificed with 3, 5, 7, 10, 14, 17 and 21^{st} days post infection (dpi) and detailed post mortem examination was conducted. Tissue samples viz., bursa of Fabricius, caecal tonsil, kidneys, liver, spleen and thymus were collected in 10 per cent formalin in sterile container for histopathological examination. Gross pathological lesions were observed in liver from 3^{rd} dpi to 21^{st} dpi in both the groups. Enlarged and congested kidneys were seen at 5^{th} dpi and 7^{th} dpi in I/M and oral group respectively. The intensity of lesions in liver, heart and kidneys were slightly higher in I/M group than the oral group. Histopathological examination of infected tissues revealed mild to severe changes were observed in all tissues except in thymus. The presence of basophilic intranuclear inclusion bodies were found in I/M group from 7^{th} dpi whereas 21^{st} dpi in Oral groups.

Keywords: Experimental infection, Fowl adenovirus, Histopathological examination, Sequential gross

Fowl adenoviruses (FAdVs) infection causes number of disease conditions in chicken, including inclusion body hepatitis (IBH), hydropericardium syndrome (HPS), hepatitis - hydropericardium syndrome (HHS), gizzard erosions (GE), proventriculitis (PV), tenosynovitis and respiratory infections in poultry (McFerran and Smyth 2000). Fowl adenoviruses are classified under the family Adenoviridae, genus Aviadenovirus and it includes eight species, five of which are the FAdV species consisting of Fowl Aviadenovirus A (FAdV-1); Fowl aviadenovirus B (FAdV-5); Fowl aviadenovirus C (FAdV-4 and 10) Fowl aviadenovirus D (FAdV-2, 3,9 and 11) and Fowl aviadenovirus E (FAdV-6, 7, 8a and 8b) (Harrach et al. 2012). Recently, IBH and HHS have been widely distributed in broiler flocks in several countries and there has been a trend toward more epidemic breakouts rather than sporadic epidemics. Furthermore, the significant mortality and growth retardation associated with IBH and HHS have resulted in enormous economic losses (Marek et al. 2014, Schachner et al. 2018). In India, IBH is usually associated with FAdV-2 and 11 (species D) (Chitradevi et al. 2021). IBH has been documented in chickens as young as one and four days old and typically affects

Present Address: ¹Veterinary College and Research Institute, Veerapandi, Theni - 625 534. ²Veterinary College and Research Institute, Namakkal - 637 002. ⊠Corresponding author email: chitradevi.s@tanuvas.ac.in

poultry between the ages of 3-5 weeks (Pilkington et al. 1997, Chitradevi et al. 2021). The affected birds showed varying degrees of mortality, lethargy, ruffled feathers and diarrhoea (Singh et al. 1996, Gaba et al. 2010, Thakor et al. 2012). Macroscopically, affected birds usually show pale yellow, friable and enlarged livers with varying degrees of petechial and/or ecchymotic haemorrhages and enlarged and congested kidneys (Kumar et al. 2013, Chen et al. 2019, Zhao et al. 2015). Histologically, liver exhibited necrosis of hepatocytes, vacuolar degeneration and infiltration of mono nuclear cells and presence of eosinophilic or basophilic intranuclear inclusion bodies (Balachandran et al. 1993, Kumar et al. 2013). Diagnosis of IBH can be carried out through conventional methods by observation of gross and histopathological changes, virus isolation and molecular techniques like hexon gene-specific polymerase chain reaction and sequencing have been used for rapid detection FAdVs (Raue and Hess 1998, Meulemans et al. 2001, Thakor et al. 2012, Pereira et al. 2014, Norfitriah et al. 2018, Abghour et al. 2021). Hence, the present study was undertaken to find out the sequential pathology of field isolated and characterized fowl adenovirus serotype 11 in experimentally infected chicken and this study will helps to find out the pathogenesis pattern of FAdV serotype 11.

MATERIALS AND METHODS

Virus Strain: The FAdV strain used in this study was

isolated from liver samples of broiler chicken suffering with IBH in Tamil Nadu, India and it was molecularly identified by PCR against group specific hexon gene by using Hexon A and Hexon B primers for 890 bp hexon gene (Meulemans *et al.* 2001) as belonging to FAdV-D serotype (GenBank accession number MK816403.1). Virus isolatewas also checked against concurrent infection for Marek's disease virus (MDV), Avian leucosis virus (ALV), Reticular endothelial virus (REV) and Chicken infectious anaemia virus (CAV). The field isolate was scaled up using primary chicken embryo liver cells and TCID₅₀ assay was calculated as per the method of Reed and Muench (1938).

Experimental study: All animal procedures were performed in accordance with local ethical regulations and the approval of in - house Ethical Committee. During the experimental period of three weeks, the chicks were housed in an in-house animal facility unit and effort was taken to minimize the stress in chicks.

To study the pathology of chickens infected with FAdV 11, 98 one day old broiler chicks were divided into three groups viz. Group I (42 chicks), Group II (42 chicks) and Group III (14 chicks - uninoculated control). Group I and group II chickens were inoculated with 0.5 mL of chicken embryo liver cell culture fluid containing 10^{6.5}/TCID₅₀ per ml FAdV 11 isolated by oral and intramuscular route, respectively. The birds were observed daily for mortality and clinical signs up to 21 days post infection (dpi). Six birds from each treatment groups and two birds in control group were sacrificed as per the required procedure on 3, 5, 7, 10, 14,17 and 21st dpi and gross lesions were recorded.

Gross and histopathological examination: During experimental study period, birds of each group were observed the development of abnormal clinical and behavioural signs up to 21st day of post infection. Detailed post mortem examination was conducted and gross pathological changes were noted carefully and the tissue samples viz., bursa of Fabricius, caecal tonsils, kidneys, liver, spleen and thymus were collected and stored in 10 per cent formalin for histopathological examination. The formalin fixed tissues were processed by paraffin wax embedding method for tissue sectioning. The sections were cut at 5-6 microns thickness with automatic section cutting machine (Rotary Microtome RM 2125, Leica, China) and were stained with haematoxylin and eosin (H&E) stain (Bancroft and Stevens 1996). The H & E stained slides were read under microscope and histopathological changes were recorded.

RESULTS AND DISCUSSION

In recent years, FAdV infections in chickens have increased and many FAdV strains related to IBH have been identified in many countries including in India (Trivedi et al. 2018, Shinde et al. 2020, Chitradevi et al. 2021, Shankar et al. 2022, Chavan et al. 2023). In the present study, FAdV-11 strain isolated from field outbreak in Tamil Nadu, India was used to find out the sequential pathology and tissue tropism following experimental infection of

broiler chickens through oral and intramuscular route. Fowl adenovirus strain 11 used in this study was confirmed by PCR (Fig. 1). The phylogenetic analysis also revealed that the FAdV belongs to FAdV D serotype 11 (Gaba *et al.* 2010, Thakor *et al.* 2012, Pereira *et al.* 2014).

In experimental infection, no mortality could be observed from all three groups for entire study period. Mild clinical signs include dullness, depression and diarrhoea were noticed between 3rd to 5th dpi and not in control group. No other major clinical signs were observed. The result of this study is in accordance with the findings of Jadhao *et al.* (2003), Grgic *et al.* (2011) and Steer *et al.* (2015) Though FAdV acted as primary pathogen for causing IBH, absence of concurrent infection, differences in environmental conditions between field and experimental studies along with other stress associated with farm condition, and difference in susceptibility of chicken breeds used in study might influence the outcome of the disease.

On necropsy examination, enlarged, pale, friable liver with haemorrahgic cyst was observed from 3rd to 21st dpi from both the treatment groups of birds and gross lesions in liver was consistent throughout the study (Fig. 2). Accumulation of 0.5 to 1 mL of straw yellow colour fluid in pericardial sac was found from 3rd dpi in I/M group whereas in oral group it was started from 7th dpi (Fig. 3). Enlarged and congested kidneys were seen at 5th dpi and 7th dpi in I/M and oral group respectively (Fig. 4). No gross lesions were observed in other organs such as bursa of Fabricius, caecal tonsil, spleen and thymus as well as control group birds. Based on the extent and severity of gross lesions, it was observed that prominent liver pathology was observed at 10th dpi after that gradual decline in intensity of lesion in liver and heart at 21st dpi in both the groups was observed. The intensity of lesions in liver, heart and kidneys were slightly higher in I/M group than the oral group. Similarly, Steer et al. (2015) observed no gross lesions in the liver of any birds from day 1 to 3 dpi and multiple gross liver lesions were seen in 9 out of 12 FAdV 11 inoculated birds examined between 4 to 7 dpi.

The gross lesions observed in this study is well supported by Alcigir and Vural (2013) who experimentally infected four weeks old healthy broiler chicks with 0.5 ml of 10^{7.3} log EID₅₀FAdV serotype 4 by oral and I/M

Fig. 1. Agarose gel electrophoresis showing 897 bp amplified PCR product of hexon gene of field FAdVs 1 to 13 field samples, M: Marker, NTC: No template control

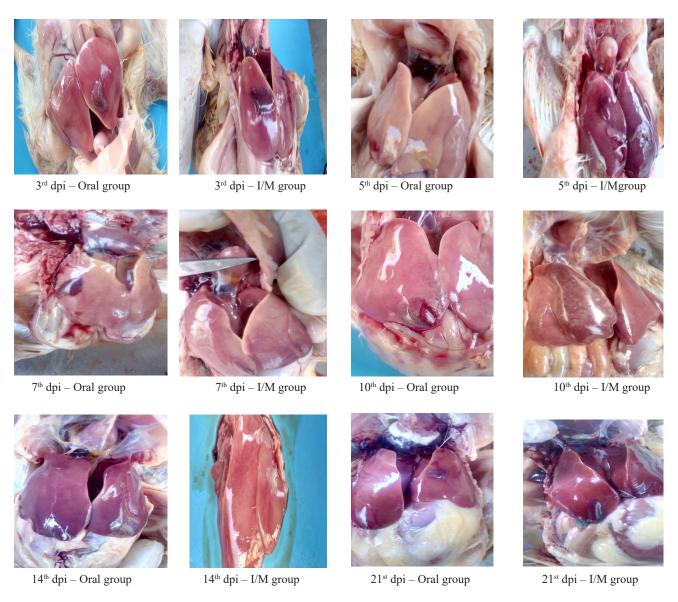


Fig. 2. Enlarged pale, friable liver with varying sizes haemorrahgic cyst in oral and I/M group during experimental study period

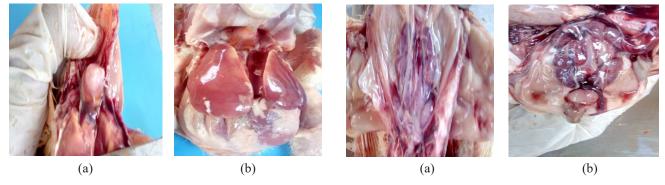


Fig. 3. (a) Hydropericardium at 3^{rd} dpi in I/M group and (b) 7^{th} dpi in oral group

route and found no mortality in chicks but degenerative and inflammatory changes were found in heart and liver. They also observed the intensity of the organ damage was greater in intramuscularly infected birds than the orally

Fig. 4. Enlarged and congested kidneys at (a) 5^{th} dpi in I/M group and (b) 7^{th} dpi in oral group

infected birds. Similarly, Zhao *et al.* (2015) observed mild to severe hepatitis and hydropericardium when the chicks were infected with HBQ12 strain of FAdV serotype 11.

Histopathological examinations of liver, kidney and

lymphoid organs such as bursa of Fabricius, caecal tonsil, spleen and thymus were carried out in the experimentally infected chicken. Mild to severe lymphoid depletion, hyperplasia of plical epithelium, necrosis of cortical lymphoid tissues, fibrous tissue hyperplasia in inter follicular area were observed in bursa of Fabricius from 3rd to 21st dpi (Fig. 5). In caecal tonsil, depletion and lymphoid cell necrosis were observed throughout the study period (Fig. 6). There was mild lymphoid depletion, fibrous tissue proliferation in peri articular lymphoid sheath (PALs), proliferation of fibrous tissues in peri ellipsoidal lymphoid tissue (PELT) and haemorrhages were noticed in spleen on 10th and 14th dpi only (Fig. 7). The result of this study is well correlated with Steer et al. (2015), who observed lymphoid depletion in bursa of Fabricius, spleen and thymus when the birds were inoculated with FAdV 11. The lymphoid depletion observed in the lymphoid organs in the present study clearly showed that the FAdV could cause immunosuppression. These finding were well supported by Schonewille et al. (2008) who reported pathogenic FAdVs could suppress the humoral and cellular response of chickens.

In liver, severe congestion, moderate to severe vacuolar degeneration, mononuclear cells infiltration, hyperplasia of biliary epithelium, moderate to severe sinusoidal congestion, fatty changes varying from micro to macro vesicles, periductular infiltration of mononuclear cells were observed from 3rd to 21st dpi in both I/M and oral route

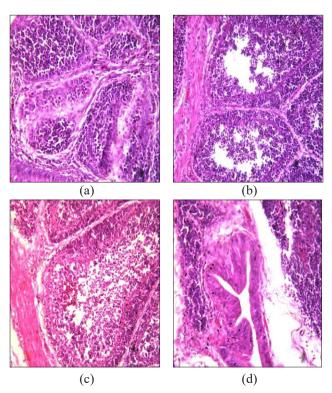


Fig. 5. *Bursa of Fabricius* (a) and (b)Mild to severe depletion of lymphoid cells, (c) indistinct demarcation of cortex and medulla and (d) hyperplasia of plical epithelium from 3rd to 21st dpi (H&E 100X)

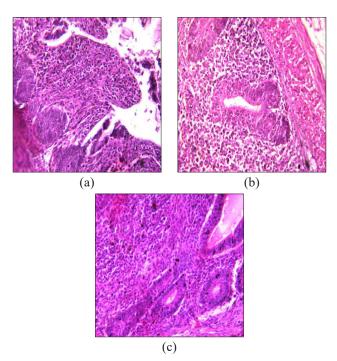


Fig. 6. Caecal tonsil: (a) Mild, (b) moderate and (c) severe hyperplasia of lymphoid cells from 3rd to 21st dpi (H&E 100X)

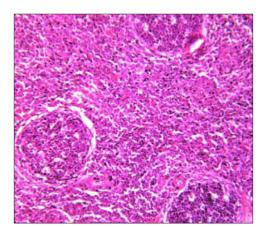


Fig. 7. Regenerative lymphoid nodule, moderate haemorrahge and congestion in Spleen (H&E $100\mathrm{X}$)

of infection. Initially basophilic intranuclear inclusion bodies (INIB) were first appreciated at 5th and 7th dpi in intramuscularly and orally infected birds respectively. After that, it was noticed up to 21st dpi in hepatocytes (Fig. 8).

In both the groups, kidneys showed moderate degeneration, necrosis of tubular epithelium, severe degeneration, desquamation of tubular epithelium, presence of crystals within the tubules, perivascular fibrosis, interstitial haemorrhage and intertubular congestion were observed in entire study period (Fig. 9). The histopathologic lesions observed in liver and kidneys are similar to the observation of Zhao *et al.* (2015), who studied the pathogenicity of FAdV serotype 11 (HBQ12) and FAdV 4 (JSJ13). In the present study, the histopathological lesions observed in intramuscularly infected birds were severe



Fig. 8. Histopathological lesions observed in liver during experimental study period from 3rd to 21st dpi (H&E 100X)

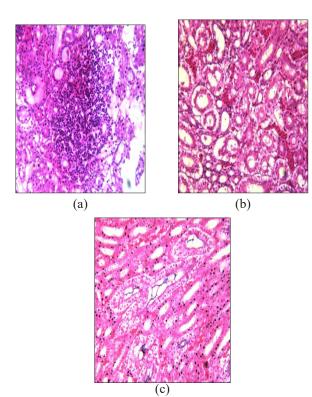


Fig. 9.(a) Massive aggregation of inflammatory cells and tubular necrosis, (b) moderate tubular degeneration and (c) intertubular haemorrhage and crystals in multiple tubules (H&E 100X)

when compared to orally infected birds and similar findings observed by Lim *et al.* (2011). Disruption of myocardial fibres and fibrous tissue replacement and infiltration of monocytes were noticed in heart. Many earlier researchers had similar observations during their experimental studies (Zhao *et al.* 2015, Suohu and Rajkumar 2021, Joshi *et al.* 2022).

In conclusion, though there were no recognizable gross lesions in *bursa of Fabricius*, caecal tonsil and spleen during entire study period, histological evidence revealed that the viral replication also occurred in lymphoid organs. Liver showed massive gross and histopathological lesions including the presence of basophilic intranuclear inclusions in hepatocytes. Significant lesions were also appreciated in kidneys. Gross pathological lesions were prominent in liver, kidneys and heart. Gross lesions in intramuscular group were started earlier. The and intensity of gross and histopathological lesions was also higher in intramuscularly infected birds when compared to orally infected chickens.

REFERENCES

Abghour A, Mouahid M, DarkaouiS, Berrada J, Zro K and Kichou F. 2021. Pathogenicity of field strain of fowl aviadenovirus serotype 11 isolated from chickens with inclusion body hepatitis in Morocco. *PLoS One* **16**(12): doi: 10.1371/journal. pone.0261284

- Alcigir M E and Vural S A. 2013. Evaluation of liver and heart lesions induced by experimental fowl adenovirus 4 infection in broilers and virus detection by immunohistochemistry, immunofluorescence and *in situ* PCR. *Revue De Medecine Veterinaire* **164**(7): 348-57.
- Balachandran C, Muralimanohar B, Sundararaj A and Dorairajan N. 1993. An outbreak of inclusion body hepatitis in a layer flock. *Indian Veterinary Journal* **70**: 964-5.
- Bancroft J D and Stevens A. 1996. Theory and practice of histological techniques. 4th edn. Churchill Livingstone, London.
- Chavan V G, Awandkar S P, Kulkarni M B, Chavhan S G, Kulkarni R C and Agnihotri A. 2023. Molecular phylodynamics of fowl adenovirus serotype 11 and 8b from inclusion body hepatitis outbreaks. *Virus Genes* **59**(1):148-57.
- Chen L, Yin L, Zhou Q, Peng P, Du Y, Liu L, Zhang Y, Xue C and Cao Y. 2019. Epidemiological investigation of fowl adenovirus infections in poultry in China during 2015–2018. BMC Veterinary Research 15: 271 doi: 10.1186/s12917-019-1969-7.
- Chitradevi S, Sukumar K, Suresh P, Balasubramaniam G A, Kannan D. 2021. Molecular typing and pathogenicity assessment of fowl adenovirus associated with inclusion body hepatitis in chicken from India. *Tropical Animal Health Production* **53**(4): 412. doi: 10.1007/s11250-021-02851-8.
- Gaba A, Parmar H, Pal J K and Prajapati K S. 2010. Isolation, identification and molecular characterization of inclusion body hepatitis virus. *Veterinary World* 3(9): 415-7.
- Grgic H, Yang D H and Nagy E. 2011. Pathogenicity and complete sequence of a fowl adenovirus serotype 8 isolate. *Virus Research* **156**: 91-7.
- Harrach B, Benko M, Both G W, Brown M, Davison AJ, Echavarria M, Hess M, Jones M S, Kajon A, Lehmkuhl H D, Mautner V, Mittal S K and Wadell G. 2012. Family *Adenoviridae*. King A M Q, Adams M J, Carstens E B and Lefkowitz E J (eds). Virus Taxonomy: Classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Inc, NY., USA., pp. 125-41.
- Jadhao S J, Deepak J N, Kataria J M, Kataria R S, Tiwari A K, Somwanshi R, Sangamithra P and Verma K C. 2003. Characterization of fowl adenovirus from chicken affected with infectious hydropericardium during 1994-1998 in India. *Indian Journal of Experimental Biology* 41:321-7.
- Joshi V, Kuldip D J, Joddha C B, Bhanderi H B, Ghodasara B J, Kabariya D V and Kabaria D V. 2022. Experimental pathogenicity assessment and vaccine efficacy of fowl adenovirus serotype 4 and 11 responsible for inclusion body hepatitis hydropericardium syndrome in broilers. *Indian Journal of Veterinary Science and Biotechnology* 18(4): 97-103.
- Kumar V, Kumar R, Chandra P, Bhatt and Dhama K. 2013. Outbreaks of inclusion body hepatitis (IBH) in chickens: Pathological studies and isolation of fowl adenovirus. *Advances in Animal and Veterinary Sciences* 1(3S): 21-4.
- Lim T H, Lee H J, Lee D H, Lee Y N, Park J K and Youn H N. 2011. Identification and virulence characterization of fowl adenoviruses in Korea. *Avian Diseases* **55**: 554–60.
- Marek A, Ballmann M Z, Kosiol C, Harrach B, Schlotterer C and Hess M. 2014. Whole-genome sequences of two turkey adenovirus types reveal the existence of two unknown lineages that merit the establishment of novel species within the genus *Aviadenovirus*. *Journal of General Virology* **95**: 156–70.
- McFerran J B and Smyth J A. 2000. Avian Adenoviruses. OIE

- Revue Scientifique et Technique. Office International Des Epizooties 19(2): 589-601.
- Meulemans G, Boschmans M, Van den Berg T P and Decaesstecker M. 2001. Polymerase chain reaction combined with restriction enzyme analysis for detection and differentiation of fowl adenoviruses. Avian Pathology 30: 655-60
- Norfitriah M S, Bejo M H, Omar A R, Aini I and Nurulfiza MI. 2018. Molecular detection and pathogenicity of fowl adenovirus isolated from disease outbreak in commercial layer farm. *International Journal of Agricultural Sciences in Veterinary Medicine* 6(1): 73-84.
- Pereira C G, Marin S Y, Santos B M, Resende J S, Resende M, Gomes A M and Martins N R S. 2014. Occurrence of *Aviadenovirus* in chickens from the poultry industry of Minas Gerais. *ArquivoBrasileiro de Medicina Veterinária e Zootecnia* 66: 801-8
- Pilkington P, Brown, Villegas P, McMurray B, Page K, Rowland G N and Thayer S G. 1997. Adenovirus induced inclusion body hepatitis in four day old broiler breeders. Avian Diseases 41: 472-4.
- Raue R and M. Hess. 1998. Hexon based PCR combined with restriction enzyme analysis for rapid detection and differentiation of fowl adenoviruses and egg drop syndrome virus. *Journal of Virological Methods* **73**: 211–7.
- Reed L J and Muench H. 1938. A simple method for estimating 50 percent end points. American Journal of Hygiene, 27: 493-497.
- Schachner A, Matos M, Grafl B and Hess M. 2018. Fowl aviadenovirus (FAdV) induced diseases and strategies for their control–a review on the current global situation. Avian Pathology 47: 111–26.
- Schonewille E, Singh A, Gobel T W, Gerner W, Saalmuller A and Hess M. 2008. Fowl adenovirus (FAdV) serotype 4 causes depletion of B and T cells in lymphoid organs in specific pathogen free chickens following experimental infection. *Veterinary* Immunology and Immunopathology 121: 130-9.
- Shankar K S, Priyanka E, Mathivanan B, Kumar B P, Mukhopadhayay S K, Mondal S and Kannaki T R. 2022. Molecular Epidemiology of Fowl Adenovirus (FAdV) from Inclusion Body Hepatitis (IBH) Incidences from Indian Broilers Revealed the Prevalence of Serotypes of FAdV-D and E. *Indian Journal of Animal Research* DOI: 10.18805/IJAR.B-4949.
- Shinde D B, Thormothe A L, Koratkar S S, Sharma N, Rajguru A, Rale V, Wagh P, Prajitno T Y and Tongaonkar S S. 2020. Molecular and pathotypic characterization of fowl adenovirus associated with inclusion body hepatitis in Indian chickens. *The Indian Journal of Animal Sciences* 90(7): 982-6.
- Singh A, Oberoi M S, J and S K and Singh B. 1996. Epidemiology of inclusion body hepatitis in poultry in northern India from 1990 to 1994. Revue Scientifique Et Technique De L Office International Des Epizooties 15: 1053-60.
- Steer P A, Sandy J R, Rourke D O, Scott P C, Browning G F and Noormohammadi A H. 2015. Chronological analysis of gross and histological lesions induced by field strains of fowl adenovirus serotypes 1, 8b and 11 in one day old chickens, *Avian Pathology* 44(2): 106-13.
- Suohu S and Rajkhowa T K. 2021. Prevalence and molecular diagnosis of hydropericardium hepatitis syndrome in the poultry population of Mizoram, India. *Indian Journal of Animal Research* **55**(1): 96-100.
- Thakor K B, Dave C J, Fefar D T, Jivani BM and Prajapati KS. 2012. Pathological and molecular diagnosis of naturally

- occurring inclusion body hepatitis-hydropericardium syndrome in broiler chickens. *Indian Journal of Veterinary Pathology* **36**(2): 212-6.
- Trivedi R., Kumar R, Metwal M, Khan A S, Tiwari A, Panday G and Kumar A. 2018. Epidemiological observations on some natural outbreaks of inclusion body hepatitishydropericardium syndrome (IBH-HPS) in domestic chicken.
- International Journal of Current Microbiology in Applied Sciences 7(8): 3012-22.
- Zhao J, Zhong Q, Zhao Y, Hu Y X and Zhang G Z. 2015. Pathogenicity and complete genome characterization of fowl adenoviruses isolated from associated with inclusion body hepatitis and hydropericardium syndrome in China. *PLoS ONE* **10**(7): DOI:10.1371/journal.pone.0133073.