Infrared thermography technique for detecting estrus in Surti does

RANA RANJEET SINGH¹⊠, V K SINGH¹, H C SHARMA¹ and S S CHAUDHARY¹

CVSc and AH, Kamdhenu University, Navsari, Gujarat 396 450 India

Received: 29 May 2024; Accepted: 4 July 2024

Keywords: Estrogen, Estrus, Goat, Infrared thermography, Progesterone, Surface temperature, Surti

Accurate and timely estrus detection in goats (Capra hircus) is crucial for maximising production and reproductive performances as well as effective herd management for economic sustainability. Current methods of estrus detection in goats, including visual observation, tail painting, teaser animals, mucus discharge observation, behavioural changes, hormone testing and ultrasonography, are time-consuming, labour-intensive and influenced by the duration and frequency of observations, as well as herd size. Therefore, there is a need for a simple, quick, accurate, non-contact, non-invasive diagnostic tool for optimal estrus detection.

Piccione *et al.* (2003) found that sexually mature cows have a body temperature rhythm during estrus. This suggests that changes in body temperature could be a viable method for detecting estrus. While rectal or vaginal temperature measurements are traditionally considered the gold standard for determining core body temperature using thermometers (Vickers *et al.* 2010), they are somewhat laborious and time-consuming. As an alternative, measuring surface temperature could offer a quick and easy solution.

Objects with temperatures above absolute zero (0 K or -273°C) emit infrared radiation that is correlated with body temperature. Therefore, the higher the temperature of an object, the more infrared radiation will be emitted (Olasehinde 2021). Thermal mapping or thermographic images of such surfaces will display the temperature distribution of that region, which can be analysed using specialised software. These thermograms represent differences in temperatures of an object's surface with different colours; for example, the hottest areas are recorded as white or red, and the coldest areas are blue or black (Colak *et al.* 2008).

This technique is called as infrared thermography, and it has been used in the livestock industry to measure heat transfer and blood flow patterns by detecting body temperature changes (Chacur *et al.* 2016). Infrared thermography has been used to measure skin temperatures

Present address: ¹CVSc & AH, Kamdhenu University, NAU campus, Navsari, Gujarat. [™]Corresponding author email: drexplicit@gmail.com

of the orbital area, flank, and ears in relation to rectal temperature (Sevegnani et al. 2016), for early diagnosis of subclinical and clinical mastitis (Berry et al. 2013), to assess heat stress in dairy cattle (Montanholi et al. 2008), to evaluate scrotal temperature as a measure of fertility in cattle and goats (Weschenfelder et al. 2013), for estrous detection in dairy ruminants (Talukder et al. 2014), to measure vulvar surface temperature difference between the phases of estrus and diestrus in cattle (Siregar et al. 2016) and ewes (George et al. 2014), to predict ovulation (Talukder et al. 2014), to detect early signs of viral and systemic infections (Vadlejch et al. 2010), and to assess animal welfare (Stewart et al. 2007) and animal behaviour (Reichard et al. 2010). Therefore, considering the importance of this relatively new technology option and its utility for efficient, quick, and easy estrus detection as an aid to enhancing goats' reproductive performance, this work was done to study the skin thermal pattern and evaluate the potential of the infrared thermography technique for estrus detection in Surti goats.

The present study was conducted on 24 apparently healthy and cyclic Surti does maintained at Livestock Research Station, Navsari Agricultural University, Navsari, Gujarat, under standard housing and management practices. The selected animals were divided into two groups, i.e. does that were in the estrus phase (E) and does that were not in the estrus phase (NE). Confirmation of estrus was done by parading a sexually active apronized buck thrice during the day (morning, noon and evening hours), along with observations for the presence of behavioural signs such as standing to be mounted, wagging of the tail, frequent micturition, restlessness, mounting on other animals, clustering around a buck and frequent bleating. Physiological signs like vulvar oedema, vulvar hyperemia, cervico-vaginal mucus discharge and opening of cervicalos were also observed to confirm the estrus. Whole blood samples from the jugular vein were collected once from both E and NE groups on the day the E group exhibited estrus. The vacutainer tubes without anticoagulant were used to collect blood samples and kept undisturbed for clotting. Serum was harvested from the coagulated blood without disturbing the clot for assaying estrogen and progesterone hormones using commercially available ELISA kits (Diagnostic automation, USA), luteinising hormone (LH) and follicle-stimulating hormone (FSH) (Cloudclone Corporation, USA). Comparisons of hormones were done to confirm the E and NE phases. The levels of these hormones were statistically compared between two groups, E and NE does, by t-test using SAS 9.3 software. Higher LH, FSH, estrogen and lower progesterone indicated the estrus phase. Ear temperature (or tympanic temperature) was recorded with the help of a non-contact infrared thermometer (BPL AccuDIGIT thermometer, India), while the rectal temperature was measured with the help of a clinical thermometer (Rossmax Swiss GmbH, Switzerland). Thermal images of the posterior body parts of the goats (Figs. 1 and 2) were captured using an infrared thermal camera (FLIR T420-Flir Systems Commercial Co. USA). While performing thermography, a constant distance of 1 m was maintained between the camera and the target surface on the animal body. Ambient temperature and relative humidity were determined during thermography using a real-time automatic data logger. Images captured using a thermal imaging camera were subjected to FLIR Image analysis software, and final observations for surface temperature were recorded after correcting for distance, ambient temperature, and relative humidity in the software itself. Pearson correlation analysis was performed using SAS 9.3 for surface temperatures of the vulva, pudendum, rectum, tympanic, as well as rectal temperature.

Most of the estrus-specific behavioural signs, viz. standing to be mounted, wagging of the tail, frequent micturition, restlessness, mounting on other animals, clustering around a buck, frequent bleating, and physiological signs like vulvar oedema, vulvar hyperemia, cervicovaginal mucus discharge and opening of cervical-os were observed in the does of the E group. Similar estrus-specific sexual behaviours in goats were also reported by Bedos *et al.* (2012), Kerketta *et al.* (2014) and Debora *et al.* (2018).

Serum concentrations (Mean±SEM) of estrogen, progesterone, LH, and FSH hormones of estrus and non-estrus Surti does are presented in Table 1. Perusal of

data revealed that the serum concentration of estrogen, FSH, and LH was significantly higher (P≤0.01), and the serum concentration of progesterone was significantly lower (P≤0.01) in goats showing signs of estrus than non-estrus. The values of all these hormones were within normal physiological range, which corroborated well with the incidence of estrus. Regressing corpus luteum of the previous cycle results in lowering circulatory progesterone levels that pave the way for the next estrous cycle. Anterior pituitary gonadotropins such as LH and FSH are responsible for follicular growth (Amiridis and Cseh 2012). During the follicular phase, in proestrus, gonadotropindependent follicles begin to develop under the influence of FSH (Gama and Bressan 2011). FSH stimulates granulosa cells to produce estrogen in increasing levels (Hafez and Hafez 2000), thereby creating positive feedback for GnRH to rise. The spurt in GnRH levels results in a drastic LH rise before ovulation. Synergistic to rise in FSH, LH secretion from the anterior pituitary increases during estrus, results in its preovulatory surge. Thus, a period spanning the estrus phase is marked with higher levels of LH, FSH and estrogen and lowered progesterone, as observed in the present study.

Surface temperatures (Mean±SEM) of the vulva, pudendum, rectum, and tympanic and rectal temperature of estrus and non-estrus Surti does are presented in Table 2. A significant difference (P<0.05) in tympanic and rectal temperature between two groups of animals was observed. The tympanic temperature was higher by 1.73°C, whereas rectal temperature was higher by 1.15°C in group E than NE. The rectal temperature in goats varies from 38.8°C to 40.50°C (Singh and Islam 2014), and daily variation in rectal temperature ranges from 0.3°C to 1.9°C (Piccione and Refinetti 2003). The higher rectal temperature during estrus may be attributed to increased physical activity (Walton and King 1986), estradiol, LH surge, and the GnRH hypothalamic response in cyclic cows (Talukder *et al.* 2014).

The surface temperature of the vulva and rectum were significantly (P<0.05) higher in does in estrus than non-estrus does. Does in estrus had 1.02°C higher vulvar surface temperature and 0.78°C higher rectal surface temperature

Table 1. Serum concentrations (Mean±SEM) of estrogen, progesterone, LH, and FSH hormones of estrus and non-estrus Surti does

Group	Estrogen (pg/ml)	Progesterone (ng/ml)	LH (pg/ml)	FSH (pg/ml)
Does in estrus (E) (n=12)	$38.50^{b}\pm2.22$	$1.23^{a}\pm0.18$	$4639.28^{b} \pm 197.66$	$11.79^{b}\pm0.69$
Non-estrus does (NE) (n=12)	$17.93^{a}\pm0.40$	$2.92^{b}\pm0.20$	2597.70°±33.55	$7.27^{a}\pm0.45$
Overall (N=24)	28.21 ± 2.41	2.08 ± 0.22	3618.49±234.34	9.53 ± 0.62

Means bearing different superscripts across columns differ significantly at P≤0.01.

Table 2. Surface temperatures (Mean±SEM) of the vulva, pudendum, rectum, and tympanic & rectal temperature of estrus and nonestrus Surti does

Group	Tympanic	Rectal	Vulvar surface	Rectal surface	Pudendal surface
	temperature (°C)	temperature (°C)	temperature (°C)	temperature (°C)	temperature (°C)
Non-estrus does (12)	$35.28^a \pm 0.69$	$37.62^{a}\pm0.13$	$36.60^{a}\pm0.35$	$38.02^a \pm 0.28$	36.86±0.33
Does in estrus (12)	$37.01^{b}\pm0.46$	$38.77^{b} \pm 0.15$	$37.62^{b}\pm0.15$	$38.80^{b} \pm 0.13$	37.51 ± 0.18
Overall (24)	36.14 ± 0.44	38.20 ± 0.15	37.11±0.21	38.41 ± 0.17	37.19±0.20

Means bearing different superscripts across columns differ significantly at P<0.05.

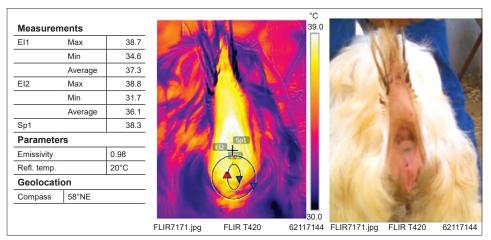


Fig. 1. Thermogram of non-estrus doe.

than the does that were not in estrus. A non-significant difference in pudendal temperature was observed between the two groups of animals, although it was higher for does in estrus. The thermogram of both the groups of does is presented in Figs. 1 and 2. Marquez et al. (2019) concluded that the difference in radiated temperature between control and estrus synchronised groups is attributed to increased radiated temperature in cyclic cows during the estrus period. Talukder et al. (2014) postulated that estradiol, LH surge and GnRH hypothalamic response in cyclic cows may increase the radiated temperature, which could be corroborated by the serum levels of different hormones observed in this study. In mammals, the skin plays a vital role in transferring heat between the body surface and the environment and the heat loss efficiency depends on the temperature gradient between the two. The insensible mode of heat loss is activated when the superficial temperature increase results from redirecting the blood flow to the body's surface by vasodilation (Habeeb et al. 1992). Stelletta et al. (2017) reported an increase in vulva temperature during the estrus period until approaching ovulation and then the vulva temperature decreased at the end of the estrus period. Similar to the findings of the present study, the higher vulvar surface temperature was also reported by

Talukder et al. (2014), Debora et al. (2018) and De Ruediger et al. (2018). Osawa et al. (2004) studied the variations of vulva temperatures in cows and observed an increase in vulvar surface temperature in estrus compared with the diestrus periods. Further, in the present study, the rectal temperature was higher than the surface temperature of the vulva in both groups of animals, which is in agreement with the finding of Pamungkas et al. (2020).

Correlation coefficients among surface temperature of vulva, pudendal, rectum, and rectal and tympanic temperature are presented in Table 3. A strong positive and significant correlation was observed for the surface temperature of the vulva with pudendum (0.779), rectal surface (0.781), rectal (0.683), and tympanic (0.409) temperatures. Significant positive correlation was also found for pudendal surface temperature with rectal surface temperature (0.695) and rectal temperature (0.523); rectal surface temperature with rectal temperature with tympanic temperature (0.405); rectal temperature with tympanic temperature (0.636). De Ruediger *et al.* (2018) reported moderate to strong correlations between rectal temperature and vulva, muzzle and orbital area surface temperatures.

The findings of the present study concluded that the

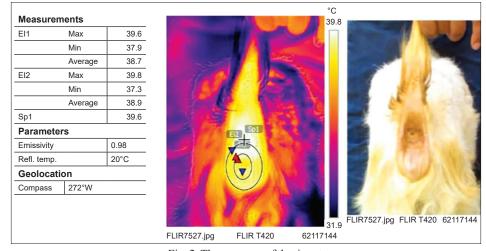


Fig. 2. Thermogram of doe in estrus.

Table 3. Correlation coefficients among surface temperature of vulva, pudendal, rectum and rectal and tympanic temperature

Temperature (°C)	Vulvar surface temperature	Pudendal surface temperature	Rectal surface temperature	Rectal temperature	Tympanic temperature
Vulvar surface temperature	1	0.779**	0.781**	0.683**	0.409*
Pudendal surface temperature	0.779**	1	0.695**	0.523**	0.203
Rectal surface	0.781**	0.695**	1	0.594**	0.405^{*}
Rectal temperature	0.683**	0.523**	0.594**	1	0.636**
Tympanic temperature	0.409^{*}	0.203	0.405^{*}	0.636**	1

^{*}Correlation is significant at the 0.05 level, **Correlation significant at the 0.01 level.

vulvar and rectal surfaces, along with rectal and tympanic temperatures, were significantly higher in the E group does. A strong, significant positive correlation exists between vulvar surface temperature and pudendal surface temperature, rectal surface temperature, rectal temperature as well as tympanic temperature. Thus, the infrared thermography technique holds the potential for detecting estrus in Surti does.

SUMMARY

The present study evaluated the potential of the infrared thermography technique for estrus detection in Surti does. Based on the presence of estrus-specific behaviour, physiological signs as well as higher LH, FSH, estrogen and lower progesterone hormone concentration, 24 Surti does were divided into two groups, viz. estrus and nonestrus does. Recording of surface temperatures, rectal and tympanic temperatures was done using an Infrared thermal camera (FLIR T420), digital thermometer and infrared non-contact tympanic thermometer, respectively. It was concluded that temperatures of the vulva, rectal surface, rectal and tympanic temperatures are significantly higher in estrus does. Further, a strong, significant positive correlation was observed between vulvar and pudendal, rectal surface temperatures, rectal temperature as well as tympanic temperature. Thus, it may be concluded that the infrared thermography technique holds the potential for detecting estrus in Surti does.

ACKNOWLEDGEMENT

The authors acknowledge the Principal of Veterinary College, Navsari, Kamdhenu University and the Research Scientist, LRS, NAU, Navsari, for financial support and providing necessary facilities.

REFERENCES

Amiridis G S and Cseh S. 2012. Assisted reproductive technologies in the reproductive management of small ruminants. *Animal Reproduction Science* **130**: 152–61.

Bedos M, Velázquez H, Fitz-Rodríguez G, Flores JA, Hernández H, Duarte G, Vielma J, Fernández I G, Retana-Márquez M S, Muñoz-Gutiérrez M, Keller M and Delgadillo J A. 2012. Sexually active bucks are able to stimulate three successive groups of females per day with a 4-hour period of contact. *Physiology & Behavior* **106**: 259–63.

Berry R J, Kennedy A D, Scott S L, Kyle B L and Schaefer A L. 2013. Early detection of mastitis using infrared thermography

in dairy cows. Journal of Dairy Science 91: 4244-48.

Chacur M G M, Bastos G P, Vivian D S, Silva L, Chiari L N F, Araujo J S, Souza C D and Gabriel Filho L R A. 2016. Use of infrared thermography to evaluate the influence of climatic factors in the reproduction and lactation of dairy cattle. *Acta Scientiae Veterinariae* 44: 1412–21.

Colak A, Polat B, Okumus Z, Kaya M, Yanmaz L E and Hayirli A. 2008. Short communication: Early detection of mastitis using infrared thermography in dairy cows. *Journal of Dairy Science* 91: 4244–48.

Débora A E F, Josiel F and Aracely R F R. 2018. Detecting estrus in Canindé goats by two infrared thermography methods. *Acta Veterinaria Brasilica* 12: 49–54.

De Ruediger F R, Yamadaa P H, Barbosaa L G B, Chacurb M G M, Ferreiraa J C P, de Carvalhoc N A T, Sorianob G A M, Codognotoa V M and Oba E. 2018. Effect of estrous cycle phase on vulvar, orbital area and muzzle surface temperatures as determined using digital infrared thermography in buffalo. *Animal Reproduction Science* 197: 154–61.

Gama L T and Bressan M C. 2011. Biotechnology applications for the sustainable management of goat genetic resources. Small Ruminant Research 98: 133–46.

George W D, Godfrey R W, Ketring R C, Vinson M C and Willard S T. 2014. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. *Journal Animal Science* 92: 4949–55.

Habeeb A A, Marai I F M and Kamal T H. 1992. Heat stress, pp. 27–47. (Eds) Philips C and Piggens D. Farm Animals and The Environment. Wallingford: C.A.B. International.

Hafez E S E and Hafez B. 2000. Folliculogenesis, egg maturation, and ovulation. *Reproduction in Farm Animals* 68–81.

Kerketta S, Singh M, Patel B H M, Verma M, Prasad J K, Upadhyay D and Bhushan B. 2014. Study on buck's mating behaviour, libido score and semen Biology in local goat of Rohilkhand region. *Indian Journal of Animal Research* 48: 491–95.

Marquez H J P, Ambrose D J, Schaefer A L, Cook N J and Bench C J. 2019. Infrared thermography and behavioral biometrics associated with estrus indicators and ovulation in estrus-synchronized dairy cows housed in tie stalls. *Journal of Dairy Science* **102**: 4427–40.

Montanholi Y R, Odongo N E, Swanson K C, Schenke F S, McBride B W and Miller S P. 2008. Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (*Bos taurus*). *Journal of Thermal Biology* 33: 468–75.

Olasehinde O. 2021. Infrared Thermography and machine learning in livestock production. *International Journal of Advanced Research and Review* **6**: 38–57.

- Osawa T, Tanaka M, Morimatsu M, Hashizume K and Syuto B. 2004. Use of infrared thermography to detect the change in the body surface temperature with estrus in the cow. 2004 Proceedings from the 2004 SFT/ACT Annual Conference & Symposium, August 47, Lexington, Kentucky.
- Pamungkas F A, Purwanto B P, Manalu W, Yani A and Sianturi R G. 2020. Use of infrared thermography for identifying physiological and hematological conditions of young Sapera dairy goats. *Indonesian Journal of Animal and* Veterinary Science 25: 120–30.
- Piccione G, Caola G and Refinetti R. 2003. Daily and estrous rhythmicity of body temperature in domestic cattle. *BMC Physiology* **3**: 1–8.
- Piccione G and Refinetti R. 2003. Thermal chronobiology of domestic animals. Frontiers in Bioscience 8: 258–64.
- Reichard J D, Prajapati S I, Austad S N, Keller C and Kunz T H. 2010. Thermal windows on brazilian free-tailed bats facilitate thermoregulation during prolonged flight. *Integrative and Comparative Biology* **50**: 358–70.
- Sevegnani K B, Fernandes D P B and Silva S H M G. 2016. Evaluation of thermoregulatory capacity of dairy buffaloes using infrared thermography. *Engenharia Agricola* **36**: 1–12.
- Singh R R and Islam M Md. 2014. Farm Animal Management: Principles and Practices. New India publishing agency, New Delhi.
- Siregar T N, Melia J, Rohaya, Thasmi C N, Masyitha D, Wahyuni S, Rosa J, Nurhafni, Panjaitan Budianto and Herrialfian. 2016. Determining proportion of exfoliative vaginal cell during various stages of estrus cycle using vaginal cytology techniques in Aceh cattle. Veterinary Medicine International

- 1 1 1 5
- Stelletta C, Tekin K, Tirpan B, Alemdar H, Cil B, Stelletta F O, Olgac K T, Inanc M E and Daskin A. 2017. Vulvar thermal pattern following synchronization of estrus is linked to fertility after timed artificial insemination in goat. *Theriogenology* 103: 137–42.
- Stewart M, Webster J R, Verkerk G A, Schaefer A L, Colyn J J and Stafford K J. 2007. Noninvasive measurement of stress in dairy cows using infrared thermography. *Physiology and Behavior* **92**: 520–25.
- Talukder S, Kerrisk K L, L Ingenhoff, Thomson P C, Garcia S C and Celi P. 2014. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. *Theriogenology* **81**: 925–35.
- Vadlejch J, Knizkova I, Makovcova K, Kunc P, Jankovska I, Janda K, Borkovcova M and Langrova I. 2010. Thermal profile of rabbits infected with Eimeria intestinalis. *Veterinary Parasitology* 171: 343–45.
- Vickers L A, Burfeind O, Von Keyserlingk M A G, Veira D M, Weary D M and Heuwieser W. 2010. Comparison of rectal and vaginal temperatures in lactating dairy cows. *Journal of Dairy Science* 93: 5246–51.
- Walton J S and King G J. 1986. Indicators of estrus in Holstein cows housed in tie stalls *Journal of Dairy Science* **69**: 2966–73.
- Weschenfelder A V, Saucier L, Maldague X, Rocha L M, Schaefer A L and Faucitano L. 2013. Use of infrared ocular thermography to assess physiological conditions of pigs prior to slaughter and predict pork quality variation. *Meat Science* 95: 616–20.