Phenotypic and molecular characterization of *Candida spp.* isolated from intramammary infections in dairy animals by PCR-RFLP

DEVENDER SINGH RANA¹, PANKAJ KUMAR¹, PAWAN KUMAR¹, JASLEEN KAUR¹, SAURABH J TALUKDAR¹, RAHUL YADAV¹, MAHAVIR SINGH¹, JINU MANOJ¹ and RAJESH CHHABRA¹⊠

Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana

Received: 23 September 2024; Accepted: 26 June 2026

ABSTRACT

Mastitis is caused by various microorganisms like bacteria, viruses, mycoplasma, algae and yeasts. Of them, fungal infections contribute to 2-13% of the cases, with Candida as the most common genus, although wide variations in prevalence and species are identified. In the present study, 06.66% (n = 40/600) prevalence was observed in mastitic milk samples of cattle and buffalo on the basis of culture examination on blood agar (BA), sabouraud dextrose agar (SDA) and candida differentiation agar (CDA). On SDA, the isolates produced white to creamy, smooth, pasty and convex colonies. However, different isolates could not be differentiated on the basis of colony characteristic on SDA medium. Chromogenic agar such as candida differential agar was able to differentiate different species of Candida on the basis of production of different coloured colonies. In the VITEK®2 compact system, different isolates were identified with diverse level of identification ranging from excellent to acceptable. Furthermore, all of the isolates were confirmed by amplification of internal transcribed spacer (ITS) region by polymerase chain reaction (PCR). For molecular characterization of Candida spp., the PCR products were digested by restriction enzymes (HaeIII and TaqI) for restriction fragment length polymorphism (RFLP) and various patterns were obtained. Furthermore, in-silico RFLP analysis was done with restriction enzymes HaeIII and TaqI, for different Candida species to obtain accurate fragment sizes. PCR-RFLP proved to be a simple, cost effective and accurate method as compared to the phenotypic based methods which are often difficult and time consuming for rapid and species level differentiation of Candida species involved in mycotic mastitis.

Keywords: Buffalo, Candida spp., Cattle, RFLP, Mastitis

Mastitis is inflammation of mammary gland associated with significant reduction in milk yield resulting in increased production cost and degraded milk quality (Kaur et al. 2025). It was estimated annual losses of around \$35 billion (Ortiz-Duran et al. 2017) in dairy industry worldwide. India alone experiencing losses of 7165.51 crores (Bansal and Gupta 2009). Bovine mastitis is a multifactorial disease involving several microorganisms such as bacteria, viruses, mycoplasma, algae and yeasts (Kaur et al. 2024). Fungal infections, particularly yeast-related mastitis, account for a small portion (2 to 13%) of mastitis cases, but their incidence has been increasing with time (Costa et al. 2012, Cilvez and Turkyilmaz 2019). Yeast-related mastitis is often associated with environmental hygiene and repeated intramammary treatments. Yeasts thrive in damp, organicrich environments and can be found on teats and milking equipment (Cavalheiro and Teixeira 2018). Several yeast species, including Candida, Cryptococcus, Rhodotorula, and Trichosporon, have been linked to mastitis in dairy

Present address: ¹Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana. [™]Corresponding author email: rchhabra59@rediffmail.com

cows, with *Candida* being the most commonly isolated genus (Tomanić *et al.* 2024). Specific virulence factors like Phospholipase B1 gene have been identified in *Candida* species (Gaffar *et al.* 2025). Some fungal species also exhibit haemolytic activity. In addition to this, *Candida*'s ability to form biofilms is a unique pathogenic trait that shields them from host immune responses and antifungal treatments (Cavalheiro and Teixeira 2018, Clivez and Turkyilmaz 2019).

Conventional identification of yeasts is based on morphological and physiological characteristics. These methods are time consuming and strongly influenced by culture conditions giving uncertain results often leading to misdiagnosis (Khalaf *et al.* 2021). To address these challenges, molecular DNA-based tests, such as PCR-RFLP analysis, have been developed for yeast identification. This method involves pattern comparison obtained by digesting specific target DNA with various restriction endonucleases. Studies have shown that this approach is highly effective for differentiating yeast species in mastitis milk samples and is faster and more accurate than traditional methods (Fadda *et al.* 2013). Therefore, the present study focused on isolation

and identification of various *Candida* species responsible for intramammary infections in dairy animals using traditional phenotypic methods and molecularly internal transcribed spacer (ITS), PCR-Restriction fragment length polymorphism (PCR-RFLP) method.

MATERIAL AND METHODS

Isolation and identification of Candida spp. from mastitic milk samples by culture examination: The College Central Laboratory (CCL), LUVAS, Hisar receives milk samples from all over the state of Haryana for routine examination of mastitis. A total of 600 milk samples from buffaloes and cows with a history of chronic mastitis and prolonged antibiotic use were processed for isolation of Candida spp. A loopful (\sim 10 μ L) of the milk sample was streaked onto Blood agar (BA) plate to isolate individual colonies. Presumptive isolates were streaked on Sabouraud Dextrose agar (SDA). The colonies were also streaked on candida differential agar (CDA) and incubated at 37°C for 48 hr for appearance of characteristic-colored colonies and morphology as per manufacture's instruction. All the agar media used in present study were procured from Hi-Media, Laboratories Pvt. Ltd. Mumbai, India. The reference strain of Candida albicans ATCC 10231, Candia parapsilosis ATCC 22019, Candida tropicalis ATCC 750 were procured from Hi-Media, Laboratories Pvt. Ltd. Mumbai, India. Candida rugosa NCIM 3462 was procured from National Chemical Laboratory, Pune. The physiological data of animals found positive for different species of Candida is presented in Table 1.

Confirmation of Candida spp. using automated VITEK 2.0 compact system: The Candida isolates were confirmed using VITEK*2 compact system (BioMerieux, France), using YST cards as per manufacturer's instruction. The Vitek 2.0 compact system is a fully automated instrument that provides a rapid colorimetric based measurement for specific species identification (Melhem et al. 2014). The results were classified as excellent (96-99 % probability), very good (93-95 % probability), good (89-92 % probability), and acceptable (85-88 % probability) based on the numerical probability calculation by comparing the unknown bio pattern to the database of reactions for each taxon.

Molecular confirmation of Candida spp.: DNA extraction was performed using the Zymo Research Kit and DNA purification was done by Wizard® DNA Clean-Up System (Promega Biotech India Pvt. Ltd.) in accordance with the manufacturer's protocol. PCR amplification of universal primers targeting internal transcribed spacer regions (ITS1 and ITS2) for Candida spp. was performed using the forward primer V9G (5'-TTACGTCCCTGCCCTTTGTA-3') and the reverse primer LS266 (5'-GCATTCCCAAACAACTCGACTC-3') as previously published by Merseguel et al. (2015). Primers were synthesised from Sigma-Aldrich Chemicals Pvt. Ltd., Bangalore, India for this study. The PCR reactions for various Candida spp. were carried out in 25 μL volumes in

a thermocycler (Bio-Rad) with reaction components as 12.5 μL 2x master mix (Promega Biotech India Pvt. Ltd.), 2.0 μl forward and reverse primer each of 10 μM concentration each, 3.0 μL template DNA and 5.5 μl Nuclease free water. The thermal cycler conditions used for PCR were initial denaturation at 94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for one minute, annealing at 56°C for 30 sec, extension at 72°C for two min and final extension at 72°C for 10 min followed by final hold at 4°C. The PCR products obtained were subjected to 1.5% agarose gel electrophoresis and bands were visualized under gel documentation system (Azure biosystems).

PCR-RFLP of Candida spp.: The PCR products were subjected to restriction enzyme treatment. For this, a reaction mixture was prepared containing 5.70 µL nuclease free water (NFW), 0.70 µL 10X buffer and 0.60 µL restriction enzyme (HaeIII and TaqI; New England Biolabs with their catalogue numbers as R0108S and R0149S) in a PCR tube. Then 7 µl of the reaction mixture was transferred to a PCR tube along with 3 µL of PCR product. Initially the reaction mixture along with PCR product was incubated at 37°C for 1 hr. Results could not be obtained, therefore, the incubation period was increased to 3 hrs. After incubation 3 µl loading dye was added to the final digested product and then agar gel electrophoresis was carried out to get the restriction fragment pattern. The power for discrimination by different restriction enzymes was measured by the formula of Simpson's index of diversity (Hunter and Gaston 1988).

Nucleotide sequencing and analysis: DNA purification was done using Wizard DNA clean-up system (Promega Biotech India Pvt. Ltd.) in accordance with manufacturer's protocol. The sanger DNA sequencing of PCR products obtained from AgriGenome Labs Pvt. Ltd. The sequences were checked for their quality and were used to blast against sequences available in Genebank, NCBI database. The sequences were processed to get complete sequence. The poor-quality sequence of each forward and reverse sequence was trimmed off and good quality sequences were used to make a contig sequence. Evolutionary analyses were conducted in MEGA6 and phylogenetic tree was generated using the UPGMA method (Tamura et al. 2013).

RESULT AND DISCUSSION

Isolation and identification of Candida spp. from mastitic milk samples by culture examination: Milk samples received from respective quarters were inoculated on blood agar (BA) at 37°C in BOD. incubator overnight. After incubation, the small, creamy-white colonies that appeared more raised and larger than normal bacterial colonies were considered as presumptive isolates of Candida. The tentative isolates of Candida subjected to crystal violet staining and demonstrated presence of distinctive yeast cells along with attachment of bud to the yeast cells (Fig. 1A). The shape, size and pattern were almost similar for all the isolates. These presumptive colonies of Candida (n=40) on the blood agar produced white to creamy, smooth, pasty

Table 1. Physiological data of the animals found positive for presence of various Candida spp. in their milk

Isolate no.	Candida species	Breed	Age (years)	Lactation	Pregnancy status
1	C. tropicalis	Non-descript	8	6^{th}	Yes
2	C. tropicalis	Non-descript	6	$3^{\rm rd}$	Yes
3	C. tropicalis	Non-descript	6	$3^{\rm rd}$	Yes
4	C. tropicalis	Murrah	5	$2^{\rm nd}$	Yes
5	C. tropicalis	Non-descript	3	1^{st}	Yes
6	C. tropicalis	Non-descript	5	2^{nd}	Yes
7	C. tropicalis	Non-descript	6	$3^{\rm rd}$	Yes
8	C. lusitaniae	Non-descript	9	5^{th}	Yes
9	C. famata	Non-descript	3	1 st	Yes
10	C. tropicalis	Non-descript	5	$2^{\rm nd}$	Yes
11	C. tropicalis	Non-descript	6	$3^{\rm rd}$	Yes
12	C. tropicalis	Non-descript	4	$2^{\rm nd}$	Yes
13	C. tropicalis	Non-descript	4	1 st	Yes
14	C. albicans	Non-descript	5	$3^{\rm rd}$	Yes
15	C. tropicalis	Non-descript	3	1^{st}	Yes
16	C. utilis	Non-descript	5	$2^{\rm nd}$	Yes
17	C. utilis	Non-descript	5	$2^{\rm nd}$	Yes
18	C. rugosa	Non-descript	10	$7^{\rm th}$	Yes
19	C. rugosa	Non-descript	6	$3^{\rm rd}$	Yes
20	C. tropicalis	Non-descript	8	$5^{\rm th}$	Yes
21	C. tropicalis	Non-descript	4	1 st	Yes
22	C. tropicalis	Murrah	5	$2^{\rm nd}$	Yes
23	C. krusei	Non-descript	5	$2^{\rm nd}$	Yes
24	C. tropicalis	Non-descript	3	$2^{\rm nd}$	Yes
25	C. glabrata	Non-descript	7	$5^{\rm th}$	Yes
26	C. tropicalis	Non-descript	4	1^{st}	Undisclosed
27	C. tropicalis	Murrah	4	1^{st}	Undisclosed
28	C. tropicalis	Non-descript	6	4^{th}	Yes
29	C. parapsilosis	Non-descript	7	4^{th}	Undisclosed
30	C. tropicalis	Murrah	4	1^{st}	Yes
31	C. tropicalis	Murrah	6	$3^{\rm rd}$	Yes
32	C. tropicalis	Non-descript	5	$2^{\rm nd}$	Yes
33	C. rugosa	Non-descript	3	1 st	Yes
34	C. rugosa	Non-descript	4	1 st	Yes
35	C. tropicalis	Non-descript	3	1 st	Yes
36	C. tropicalis	Murrah	6	4^{th}	Yes
37	C. tropicalis	Non-descript	5	$3^{\rm rd}$	Yes
38	K. ohmeri	Non-descript	5	$2^{\rm nd}$	Yes
39	C. tropicalis	Murrah	4	1 st	Yes
40	C. rugosa	Non-descript	3	1 st	Yes

and convex colonies when grown on sabouraud dextrose agar (SDA) (Fig.1B). The different isolates could not be differentiated based on the colony characteristic on SDA medium. On Candida differential agar, out of the 40 isolates were incubated for 48 hour incubation, among them, 26 isolates of *C. tropicalis* produced blue colonies (Fig. 1C), a single isolate of *C. parapsilosis* produced creamy coloured colonies with slight purple tinge (Fig. 1D), a single isolate *C.* of *albicans* produced light green coloured colonies (Fig. 1E), 5 isolates of *C. rugosa* produced light green coloured colonies with some appearing creamy coloured appearance (Fig. 1F), a single isolate of *Candida krusei* produced pink

with whitish border (Fig. 1G), 2 isolates of *Candida utilis* produced pale pink to pinkish purple (Fig. 1H), a single isolate of *Kodamaea ohmeri* produced green colored colonies (Fig.1I), a single isolate of *Candida glabrata* produced cream to white colour (Fig. 1J), a single isolate of *Candida lusitaniae* produced deep blue colour (Fig. 1K), while a single isolate of *Candida famata* produced blue with pinkish tinge (Fig. 1L).

Confirmation of Candida spp. using automated VITEK 2.0 compact system: Out of 600 milk samples, 40 samples (6.67%) were found positive for ten species of Candida by VIETK 2.0 compact system. Out of 40 isolates, 26 (65.0%),

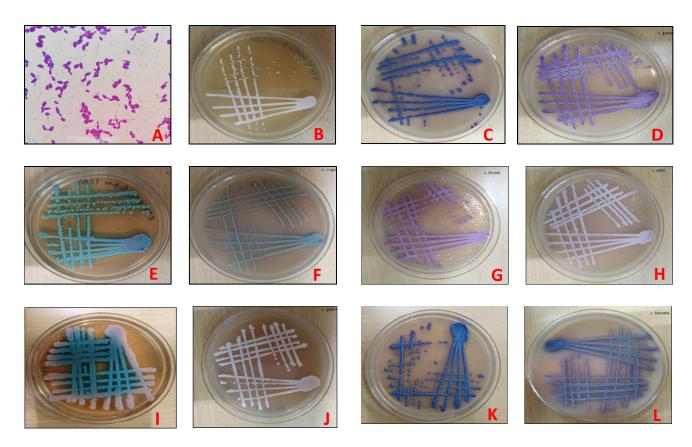


Fig.1. Identification and characterization of different *Candida* spp. isolated from mastitic milk samples. (A) Crystal violet staining of isolates showed presence of budding yeast cells, (B) Colony morphology of isolates on SDA- creamy to white, smooth, pasty convex colonies, (C) blue colored colonies of *Candida tropicalis*, (D) Creamy colored colonies with purple tinge of *Candida parapsilosis*, (E) green-colored colonies of *Candida albicans*, (F) Green colored colonies with few creamy colored colonies of *Candida rugosa*, (G) Pink with whitish border colored colonies of *Candida krusei*, (H) Pale pink to pinkish purple colored colonies of *Candida utilis*, (I) Green with pinkish border *Kodamaea ohmeri*, (J) Cream to white colored colonies of *Candida glabrata*, (K) Deep blue colored colonies of *Candida lusitaniae*, (L) Blue with pinkish tinge colored colonies of *Candida famata*

5 (12.5%), 2 (5.0%), 1 each (2.5%) were identified as *C. tropicalis*, *C. rugosa*, *C. utilis*, *C. parapsilosis*, *C. lusitaniae*, *C. albicans*, *C. krusei*, *C. glabrata*, *K. ohmeri*, *C. famata*, respectively. The probabilities of identification for each isolate were depicted in table 2. The average time taken for identification was approximate 18.25 (hrs) for all the samples.

In the present study, seven species *i.e. C. rugosa*, *C. utilis*, *C. parapsilosis*, *C. albicans*, *C. krusei*, *C. glabrata* (currently named *Nakaseomyces glabratus*), *K. ohmeri* were separately identified by the two identification methods *i.e.*, CDA and Vitek 2.0. However, the three species i.e., *C. tropicalis*, *C. lusitaniae* and *C. famata* were separately identified by Vitek 2.0 compact system while on CDA they produced similar colours.

In recent years, the cases of fungi as a cause of mastitis are increasing (Mohammed and Yassein 2020) and the cases of mycotic mastitis are incurable or difficult to treat (Kalinska et al. 2017). Several species of the yeasts including various genera such as Candida, Cryptococcus, Rhodotorula, and Trichosporon have been associated with mastitis in dairy cows (Akdouche et al. 2018). In the present study, 06.67% samples were found to be positive for ten species of Candida by VITEK 2.0 compact system.

Similar to the present study, Talukdar (2020) also reported 14.3% prevalence of mycotic mastitis caused by various Candida species. However, previous reports suggested that there was variation in both the prevalence and the Candida species reported in mycotic mastitis (Krukowski et al. 2006). Slightly higher yeasts and yeast-like fungi prevalence were reported by Khalaf et al. (2021), Asfour et al. (2009), Bekele et al. (2019) and Zhou et al. (2013) with percentages of 47.2%, 40.8%, 38.18% and 35.6% in Egypt, Ethiopia and China, respectively. This high prevalence may be due to insufficient milkers training, repetitive intramammary infusion, and poor teat hygiene prior to the intramammary infusion (Costa et al. 2012). Therefore, early detection and identification of yeast is essential for target antifungal therapy of mastitic cases and spread of this infection.

The traditional methods used for yeasts identification are generally time consuming and often not very accurate (Imran *et al.* 2020). One of the methods of identification is the use of chromogenic agar which is easy in its application, rapid yielding and helpful in species-level identification, although Talukdar (2020) also reported errors in the identification of *C. rugosa* using this method

Identification confidence level Organism Acceptable Excellent Very good Good Low Unidentified (96-99 %) (93-95%)(89-92%)(85-88%)discrimination Candida tropicalis 26 20 6 Candida rugosa 5 5 2 Candida utilis 2 Candida parapsilosis 1 1 Candida albicans Candida lusitaniae Candida krusei (P. kudriavzevii) Candida glabrata

Table 2. Identification confidence level of Vitek 2.0 compact system

Note: N is the number of isolates

(N. glabratus) Candida famata Kodamaea ohmeri

due to variability in colony colour. Many studies have evaluated the performance of chromogenic media in routine diagnosis of *C*. spp. and have found them to be rapid and efficient for better detection and identification of *Candida* spp. (Ozcan *et al.* 2010, Vijayakumar *et al.* 2012, Bhaskaran *et al.* 2020). But, variations in the colour intensity with time, similarity in colony colour of related species leading to misidentification, presence of chromogenic medium for some *Candida* species only, makes it difficult to identify using chromogenic medium. In addition, chromogenic medium couldn't be used as a sole identification tool as biochemical identification must be performed to avoid incorrect identification (Ozcan *et al.* 2010).

Molecular confirmation of Candida spp.: All the 40 Candida isolates already identified by conventional and automated methods were further subjected to molecular confirmation by PCR amplification of highly variable internal transcribed spacer regions ITS1 and ITS2. All the 40 isolates amplified internal transcribed spacer regions ITS1 and ITS2 with variable size of amplicons (Fig. 2).

The sanger DNA sequencing of PCR products obtained from AgriGenome Labs Pvt. Ltd. All the sequences were checked and analyzed for homogenicity with other Candida species worldwide, using 'nblast' tool of Genbank, NCBI database. Phylogenetic tree was generated ITS partial gene sequence obtained from various Candida species of the present study and gene bank sequences (Fig. 3). C. tropicalis, C. lusitaniae and C. famata isolates from the present study showed close homology (more than 98%) and were clusterd in same group with other Candida species strains from public domain. However, C. parapsilosis, C. albicans, C. utilis, K. ohmeri, C. rugosa, C. krusei (currently named P. kudriavzevii), C. glabrata (currently named N. glabratus) were grouped in separate cluster than Candida species strains, reflecting their unique genetic makeup.

PCR-RFLP analysis of amplified product: Furthermore, the amplified PCR products of 40 isolates were processed for PCR-RFLP analysis by HaeIII and TaqI restriction endonuclease enzymes (Fig.4A-D). There were erroneous results especially with TaqI enzyme. However, with subsequent changes in the digestion conditions, desired patterns were obtained with the enzyme. C. rugosa, C. utilis, C. krusei (currently named P. kudriavzevii), C. glabrata (currently named N. glabratus), C. albicans, C. parapsilosis, K. ohmeri produced characteristic pattern and can be distinguished separately on basis of digestion pattern. However, C. tropicalis, C. famata, C. lusitaniae

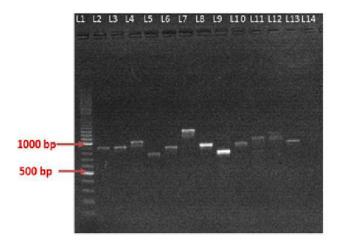


Fig.2. Agarose gel results of PCR amplification of *Candida* spp. (Lanes: L1-100 bp DNA ladder, L2: *C. lusitaniae*, L3: *C. famata*, L4- *C. utilis*, L5: *C. rugosa*, L6: *C. krusei* (currently named *Pichia kudriavzevii*), L7: *C. glabrata* (currently named *Nakaseomyces glabratus*), L8: *C. albicans*, L9: *K. ohmeri*, L10: *C. tropicalis*, L11: *C. parapsilosis*, L12: Positive control ATCC *C. arapsilosis*, L13: Positive control ATCC *C. albicans*, L14: Negative control)

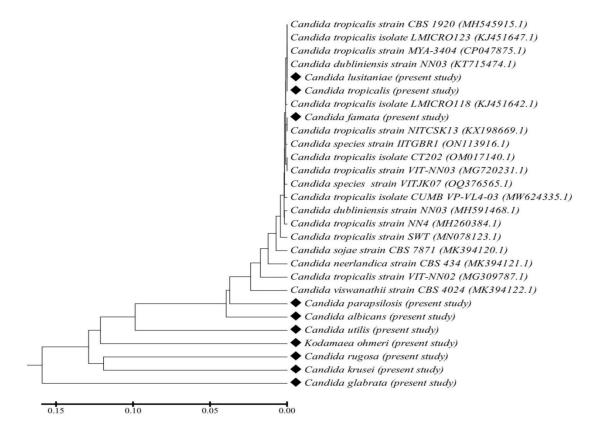


Fig. 3. Phylogenetic tree analysis of highly variable internal transcribed spacer regions (ITS) partial gene sequence obtained from various *Candida* species of the present study and public domain by UPGMA joining method using MEGA 6 software. *Note*: [C. krusei (currently named *Pichia kudriavzevii*), C. glabrata (currently named *Nakaseomyces glabratus*)]

produced similar digestion pattern and could not be distinguished from each other by the used restriction enzymes. PCR-RFLP analysis of C. lusitaniae and C. famata yielded characteristic pattern for both HaeIII and TaqI enzyme. While for C. tropicalis, characteristic pattern was obtained with HaeIII only but spurious bands were obtained with TaqI (Fig. 4A). For C. parapsilosis and C. utilis, characteristic patterns were obtained with HaeIII only but spurious bands were obtained with TaqI (Fig.4B). For C. rugosa, characteristic patterns were obtained with both enzymes. For C. krusei (currently named P. kudriavzevii) and C. glabrata (currently named N. glabratus) characteristic patterns were obtained with HaeIII only but spurious bands were obtained with TaqI (Fig. 4C). For K. ohmeri and C. albicans characteristic bands were obtained with HaeIII only but spurious bands were obtained with TaqI (Fig. 4D).

The length of contig sequences and the results of *in silico* analysis are shown in table 3. Characteristic fragment sizes were obtained with the seven *Candida* species i.e. *C. rugosa*, *C. utilis*, *C. krusei* (currently named *P. kudriavzevii*), *C. glabrata* (currently named *N. glabratus*), *C. albicans*, *C. parapsilosis*, *K. ohmeri* while the three *Candida* species *i.e. C. tropicalis*, *C. famata*, *C. lusitaniae* produced similar fragment sizes and could be distinguished from each other by any of the restriction

enzymes. Phylogenetic tree generated by PCR RFLP using *HaeIII* enzyme generated four clusters with discriminatory power of 0.53 (Fig. 5A). Whereas, *TaqI* enzyme generated three clusters with discriminatory power of 0.60 (Fig. 5B). Thus, a discriminatory power (D value) of 1.0 would indicate that a typing method was able to distinguish each member of a strain population from all other members of that population. Conversely, an index of 0.0 would indicate that all members of a strain population were of an identical type. An index of 0.50 would mean that if one strain was chosen at random from a strain population, then there would be a 50% probability that the next strain chosen at random would be indistinguishable from the first (Hunter and Gaston 1988). Thus, the *in silico* RFLP analysis results confirmed with the *in vitro* RFLP digestion results.

In the present study, PCR-RFLP assay was developed for identification of all the ten isolates. It was based on the use of fungal-specific universal primer pair to amplify the internal transcribed spacer region (ITS) region of all the ten *Candida* species followed by restriction fragment length polymorphism for species identification using *HaeIII* and *TaqI* restriction endonucleases. In our study, the seven species i.e., *C. rugosa, C. utilis, C. parapsilosis, C. albicans, C. glabrata* (currently named *N. glabratus*), *K. ohmeri* were separately identified by the three identification methods i.e., CDA, Vitek 2.0 and PCR-RFLP. But the three

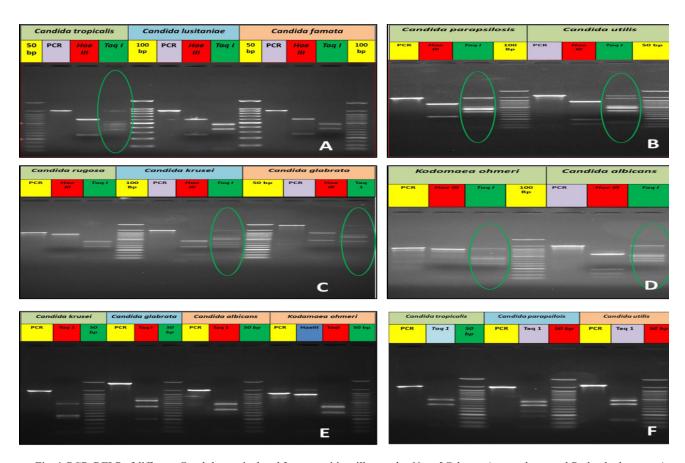


Fig. 4. PCR-RFLP of different *Candida* spp. isolated from mastitic milk samples *Note*: [*C. krusei* (currently named *Pichia kudriavzevii*), *C. glabrata* (currently named *Nakaseomyces glabratus*)]

Table 3. Length and sequence polymorphism of amplified regions in tested Candida spp. generated In-silico

Organism	Gen Bank Access. Num.	PCR fragment length (bp)	HaeIII fragments (bp)	TaqI fragments (bp)
Candida tropicalis	CP047875.1	913	43/267/603	8/18/59/361/467
Candida lusitaniae	CP047875.1	913	43/267/603	8/18/59/361/467
Candida famata	CP047875.1	913	43/267/603	8/18/59/361/467
Candida parapsilosis	MH545914.1	908	14/264/630	8/18/59/372/451
Candida utilis	MK394133.1	1008	111/195/702	18/128/390/472
Candida rugosa	GU144663.1	770	28/74/668	18/56/286/410
Candida krusei (P. kudriavzevii)	MH545928.1	889	32/38/104/279/436	18/58/325/488
Candida glabrata (N. glabratus)	CP048242.1	1271	62/451/758	8/18/59/210/418/558
Kodamaea ohmeri	MN268772.1	784	51/733	8/18/57/299/402
Candida albicans	CP025165.1	924	62/117/188/557	8/18/59/361/478

species i.e., *C. tropicalis*, *C. lusitaniae* and *C. famata* were separately identified only by Vitek 2.0 system while on CDA these species produced similar colours and showed similar pattern in PCR-RFLP. The results of this study are in concurrence with prior studies (Juyal *et al.* 2013, Vijayakumar *et al.* 2012, Daef *et al.* 2014). However, Sankari *et al.* (2019) reported that *Candida* differential agar method of speciation is unreliable compared to PCR-RFLP. The results on differential agar were not in agreement with PCR-RFLP. Percentage of disagreement

was 40.2, 50.0, 100.0 and 25.0 for *C. albicans*, *C. krusei* (currently named *P. kudriavzevii*), *C. glabrata* (currently named *N. glabratus*) and *C. tropicalis*, respectively. In the present study, restriction digestion of the ITS amplification product with *HaeIII* and *TaqI* produced the predicted specific patterns for each species. Using this method, all ATCC stains as well as clinical isolates were identified successfully. Moreover, the results of PCR-RFLP analysis of the clinical isolates examined were comparable with those obtained on CDA. However, the results were not

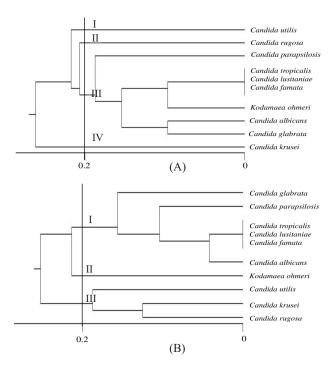


Fig. 5. Phylogenetic tree generated by PCR RFLP of ITS gene sequence obtained from various *Candida* species of the present study using *HaeIII* enzyme (A) and *TaqI* (B) enzyme. Note: [C. krusei (currently named *Pichia kudriavzevii*), C. glabrata (currently named *Nakaseomyces glabratus*)]

comparable with VITEK 2.0 compact system as digestion of *C. tropicalis*, *C. lusitaniae and C. famata* with *HaeIII* and *TaqI* yielded similar patterns and therefore additional enzymes for differentiation of these species are still required.

The findings of present study conclude that PCR-RFLP analysis may be used as diagnostic and differentiating tool for detection and differentiation of *Candida* species. Further, PCR-RFLP method is more reliable for identifying *Candida* species than *Candida* differential agar even though it may be a preferred method in a resource - limited lab setting. However, further studies are required to design PCR-RFLP as a rapid, sensitive and specific method for detection and identification of *Candida* species directly from milk samples from mastitic animals.

ACKNOWLEDGMENTS

We thank the Head, Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India for providing laboratory facilities, consumables and man power for conducting this study.

REFERENCES

Akdouche L, Miriem A and Saadi A. 2018. Prevalence and identification of yeasts responsible for mastitis in dairy cattle farms in the Sidi Lahcene Region in the Wilaya of Sidi Bel abbes- Algeria. *Advances in Dairy Research* 6(2): 1000206.

Asfour H A E, El-Metwally, A E and Kotb M H. 2009. Yeast as a cause of bovine mastitis and their histopathological effect

on the mammary gland tissues. *Journal of the Egyptian Veterinary Medical Association* **69**: 41-72.

Bansal B K and Gupta D K. 2009. Economic analysis of bovine mastitis in India and Punjab- A review. *Indian Journal of Dairy Science* **62**: 337-45.

Bekele T, Lakew M, Terefe G, Koran T, Olani A, Yimesgen L, Tamiru M and Demissie T. 2021. Study on bovine mastitis with isolation of bacterial and fungal causal agents and assessing antimicrobial resistance patterns of isolated *Staphylococcus* species in and around Sebeta Town. *International Journal of Veterinary Sciences Research* 13: 23-32.

Bhaskaran R, Valsan C and Sathiavathy K A. 2020. Molecular speciation and antifungal susceptibility profile of *Candida* species in a tertiary care centre in Central Kerala. *Journal of Evolution of Medical and Dental Sciences* 9(6): 357-63.

Cavalheiro M and Teixeira M C. 2018. *Candida* Biofilms: Threats, Challenges, and Promising Strategies. *Frontiers in Medicine* 5.

Cilvez P and Turkyilmaz S. 2019. Molecular diagnosis of *Candida* species isolated from cases of subclinical bovine mastitis. *Israel Journal of Veterinary Medicine* **74**(3): 134-40.

Costa GM, Pereira UP. Souza-Dias MG. and Silva N. 2012. Yeast mastitis outbreak in a Brazilian dairy herd. *Brazilian Journal of Veterinary Research and Animal Science* **49**(3): 239-43.

Daef E, Moharram A, Eldin S S, Elsherbiny N and Mohammed M. 2014. Evaluation of chromogenic media and semi nested PCR in the identification of *Candida* species. *Brazilian Journal of Microbiology* 45(1): 255-62.

Fadda M, Pisano M B, Scaccabarozzi L, Mossa V, Deplano M, Moroni P, Liciard M and Cosentino S. 2013. Use of PCR-restriction fragment length polymorphism analysis for identification of Yeast species isolated from bovine intramammary infection. *Journal of Dairy Science* 96: 7692-7.

Gaffar N R, Valand N and Girija U V. 2025. Candidiasis: Insights into virulence factors, complement evasion and antifungal drug resistance. *Microorganisms* 13(2): 272.

Hunter P R and Gaston M A. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. *Journal of Clinical Microbiology* 26(11): 2465-66.

Imran M, Cao S, Wan S F, Chen Z, Saleemi K, Wang N, Naseem M N and Munawar J. 2020. Mycotoxins - a global one health concern: A review. *Agrobiological Records* 2: 1-16.

Juyal D, Sharma M, Pal S, Rathaur V K and Sharma N. 2013. Emergence of non albicans *Candida* species in neonatal candidemia. *North American Journal of Medical Sciences* 5: 541-45.

Kalinska A, Gołębiewski M and Wójcik A. 2017. Mastitis pathogens in dairy cattle–a review. *World Scientific News*, **89**: 22-31.

Kaur J, Lather A, Kamboj S, Singh M, Manoj J and Chhabra R. 2024. Antimicrobial susceptibility profile of methicillin resistant and methicillin sensitive *Staphylococcus aureus* from bovine milk in the state of Haryana, India. *Exploratory Animal and Medical Research* 14: 74-80.

Kaur J, Lather A, Cheema PS, Jangir BL, Manoj J, Singh M, Joshi V G and Chhabra R. 2025. Designing, synthesis and in vitro antimicrobial activity of peptide against biofilm forming methicillin resistant Staphylococcus aureus. Current Microbiology 82: 159.

Khalaf D D, Soliman M M H and Mansour A S. 2021. Conventional and molecular identification of mycotic mastitis caused by *Candida* in farm animals. *International Journal of*

- Veterinary Sciences Research 10(1): 64-68.
- Krukowski H, Lisowski A, Rozanski P, Skorka A. 2006. Yeasts and algae isolated from cows with mastitis in the southeastern part of Poland. *Polish Journal of Veterinary Sciences* **9**:181-84.
- Melhem M S, Bertoletti A, Lucca H R, Silva R B, Meneghin F A, Szeszs M W. 2014. Use of the VITEK2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. *Brazilian Journal of Microbiology* **44**(4): 1257-66.
- Merseguel K B, Nishikaku A S, Rodrigues A M, Padovan A C, Ferreira R C, de Azevedo Melo, A S, da Silva Briones M R and Colombo A L. 2015. Genetic diversity of medically important and emerging *Candida* species causing invasive infection. BMC Infectious Disease 15(1): 1-11.
- Mohammed S J and Yassein S N. 2020. Characterization of some virulence factors of *Candidaalbicans* isolated from subclinical bovine mastitis. *Plant Archives* **20**: 238-42.
- Ortiz-Duran E P, Pérez-Romero R A and Orozco-Sanabria C A. 2017. Identification of mycotic agents in milk cooling tanks. *Revista de Ciências Agrárias*, **14**: 99-106.
- Ozcan K, Ilkit M, Ates A, Turac-Bicer A, Demirhindi H. 2010. Performance of chromogenic *Candida* agar and CHROM agar *Candida* in recovery and presumptive identification of monofungal and polyfungal vaginal isolates. *Medicine* 48: 29-34

- Sankari S, Mahalakshmi K and Naveen K V. 2019. Chromogenic medium versus PCR–RFLP in the speciation of *Candida*: a comparative study. *BMC Research Notes* 12(1): 1-4.
- Talukdar S J. 2020. Phenotypic and molecular characterization of *Candida* spp. associated with bovine mastitis. M.V.Sc. Thesis, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana.
- Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. 2013.
 MEGA6: Molecular evolutionary genetics analysis version
 6.0. Molecular Biology and Evolution 30: 2725-29.
- Tomanić D, Božić D D, Kladar N, Samardžija M, Apić J, Baljak J and Kovačević Z. 2024. Clinical evidence on expansion of essential oil-based formulation's pharmacological activity in bovine mastitis treatment: antifungal potential as added value. *Antibiotics* **13**(7): 575.
- Vijayakumar R, Giri S and Kindo A J. 2012. Molecular species identification of *Candida* from blood samples of intensive care unit patients by polymerase chain reaction-restricted fragment length polymorphism. *Journal of Laboratory Physicians* 4:1-4.
- Zhou Y, Ren Y, Fan C, Shao H, Zhang Z, Mao W, Wei C, Ni H, Zhu Z, Hou X, Piao F and Cui Y. 2013. Survey of mycotic mastitis in dairy cows from Heilongjiang Province, China. *Tropical Animal Health and Production* **45**: 1709-14.