Molecular detection and predisposing factors influencing *Anaplasma marginale* prevalence in dairy cattle of Chhattisgarh, India

S K SAO¹, S BISEN^{2⊠}, K R BAGHEL², S PAL ² and S PRUSTY²

College of Veterinary Science and Animal Husbandry, Anjora, DSVCKV, Durg, Chhattisgarh 491001 India

Received: 25 September 2024; Accepted: 16 May 2025

ABSTRACT

Anaplasma marginale, the most common etiological agent of bovine anaplasmosis is an important cause of economic losses in livestock farming, both in the tropical and temperate regions. In the present study, 250 blood samples of cattle from organised and unorganised dairy farms in five districts of the state of Chhattisgarh, India were examined for prevalence of *A. marginale*. DNA extracted from the blood samples of these cattle was subjected to Polymerase Chain Reaction (PCR) using *A. marginale* msp1β gene. It resulted in the amplification of 265 bp PCR product in 63.6% (159/250) of animals. The prevalence of anaplasmosis was found to be significantly higher in the animals of organized dairy farms when compared with un-organized farms. Age of cattle seemed to influence the occurrence of infection with young cattle (<1 year) being more susceptible to the pathogen. Relationship between the presence of *A. marginale* in cattle and certain selected epidemiological factors was also explored. Different cattle breeds seemed to be equally susceptible to *A. marginale* infection. The study revealed a large cattle population (63.6%) in the study area as carriers of *A. marginale* infection.

Keywords: *Anaplasma marginale*, Carrier, Cattle, Chhattisgarh, Epidemiological factors, Prevalence, Polymerase chain reaction

Anaplasma marginale, a globally prevalent intracellular rickettsia found in red blood cells is an important pathogen impacting cattle health and productivity. Bovine anaplasmosis, due to A. marginale, leads to considerable monetary losses, including lower milk yield, slower weight gain, higher veterinary expenses and in severe cases, high fatality rate (M'ghirbi et al. 2016). Anaplasma marginale is biologically transmitted by ticks, particularly Rhipicephalus microplus, and mechanically through blood-feeding flies or contaminated instruments like needles, dehorning tools, ear tag applicators and surgical tools (Kocan et al. 2010). In cattle, transmission can also occur via placenta, resulting in calves that appear healthy but remain chronically infected (Kocan et al. 2015). The disease in cattle manifests through clinical signs such as pyrexia, reduced red blood cell count, pale mucous membranes, reduced weight gain, lethargy, jaundice, gastrointestinal problems and occasionally abortion. Animals that recover from acute anaplasmosis continue to carry a persistent infection, characterized by recurring cycles of rickettsaemia (Eriks et al. 1993). These animals act as carriers, capable of spreading the infection to others.

Diagnosis of carrier status is important for

Present address: ¹Government Veterinary Hospital, Gokulnagar, Rajnandgaon, Chhattisgarh. ²College of Veterinary Science and Animal Husbandry, Durg, DSVCKV, Chhattisgarh.

□Corresponding author email: savitabisen000@gmail.com

implementation of appropriate control measures. PCR identifies A. marginale in carrier cattle and provides insights into the epidemiological status of anaplasmosis in bovines from enzootic regions (Torina et al. 2008). Major Surface Proteins (MSPs) are the key players in the interaction between A. marginale and host cells, aiding in the establishment of infection. Researchers have identified six A. marginale major surface proteins-MSP1α, MSP1β, MSP2, MSP3, MSP4 and MSP5 isolated from bovine erythrocytes. These proteins have proven valuable for both serological and molecular diagnosis of anaplasmosis (Kocan et al. 2003). A. marginale msp1β is a specific and reliable marker for detecting infections in cattle and ticks (Carelli et al. 2007).

In addition to molecular detection, evaluating the risk factors associated with bovine anaplasmosis involves a multi-faceted approach. Sampling sites, age of the animal, housing system, herd management practices, use of acaricides as well as the climatic conditions play a significant role in disease dynamics (Bursakov and Kovalchuk 2019). Additionally, the antigenic and genetic variation of the pathogen, along with the genetic susceptibility of various cattle breeds to *A. marginale* infections, can affect the transmission and severity of the disease. Therefore, this study was conducted to assess the prevalence of A. marginale in cattle population of the Chhattisgarh region and to evaluate the risk factors contributing to its occurrence.

MATERIALS AND METHODS

Place of Study: The study was conducted in five districts of Chhattisgarh, India including Durg, Rajnandgaon, Dhamtari, Kabirdham and Balod (Fig.1). The region explored in the study features a subtropical climate, marked by hot summers with monsoon rainfall, transitioning into a dry and cool winter season. The area receives an average of 1,292 mm of rainfall annually, with summer temperatures fluctuating between 30°C and 47°C, while winter temperatures range from 5°C to 25°C.

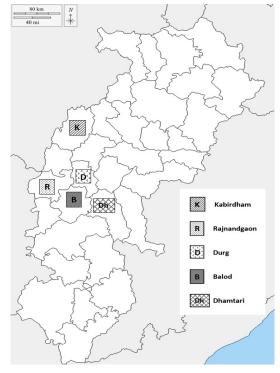


Fig. 1. A map illustrating the districts of Chhattisgarh included in the study

Collection of Blood Samples: Blood samples of 250 cattle from Durg and adjoining districts viz. Rajnandgaon, Dhamtari, Kabirdham and Balod were investigated during the period from January 2022 to December 2022. Cattle (cows only) were selected from the two managemental systems of un-organized dairy units (with ≤15 cattle) and organized dairy farms (with >15 cattle). A total of 25 blood samples from five organized dairy farms (5 samples from each dairy farm) and 25 samples from un-organised dairy units of each district were randomly collected. These biological samples belonged to apparently healthy cattle and those with clinical signs of fever, weight reduction, reduced milk output and low red blood cell count, suggestive of A. marginale infection. Blood sample of

each cattle was collected from the jugular vein in a 2 mL EDTA coated vacutainer, using a sterile 18-gauge needle. The whole blood samples were brought to the Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, for investigation and were stored at -20°C for isolation of genomic DNA. Blood samples from healthy cattle with no history of anaplasmosis and with no clinical signs and confirmed negative by PCR were considered as negative controls. Questionnaire based information regarding breed, age, clinical status of the animal and also management conditions of the farm were collected to evaluate their association with the prevalence of *A. marginale*.

Detection of A. marginale infection in cattle by PCR: Genomic DNA was extracted from 100 μ L of whole blood from each sample using the Hipura multi-sample DNA purification kit (Himedia, India), following the manufacturer's instructions. The isolated DNA was eluted in 50 μ L of DNA elution buffer and stored at -20°C for future use in PCR. A. marginale msp1 β gene was used in the PCR for detection of infection in these animals.

Polymerase chain reaction was performed with msp1\beta specific primers (Table 1). Each PCR was performed in a 25 μL volume using a thermal cycler (Model LI96G LARK, India). The PCR master mix included 2.5 µL of 10X PCR buffer, 0.5 μ L of 10 mM dNTP mix, 1.0 U of Taq DNA polymerase, 0.5 µL (20 pmol/µL) each of the forward and reverse primer and 3-4 µL of template DNA, with the final volume adjusted to 25 µL using nuclease-free water. The PCR cycling conditions included an initial denaturation at 94°C for 3 min, followed by 35 cycles of denaturation at 95°C for 45 sec, primer annealing at 50°C for 45 sec and primer extension at 72°C for 1 min. The amplification of the specific 265 bp PCR product was confirmed on a 1.5% agarose gel stained with ethidium bromide and the results were visualized with a gel documentation system (Bio-Rad, USA) (Syngene, UK). Twelve PCR amplicons were sequenced to confirm the identity of A. marginale. Additionally, the specificity of the PCR primers was assessed by testing them against the genomic DNAs of Babesia bigemina, Theileria annulata, and Trypanosoma evansi.

Statistical analysis: The Chi-square test was used to compare the prevalence of anaplasmosis between different sampling districts, management systems, breed, sampling age, season and health status of cattle, in accordance with Snedecor and Cochran (1994). Significance levels were set up at p=0.05.

RESULTS AND DISCUSSION

Prevalence of A. marginale infection: Polymerase

Table 1. Details of primers used in the study

Gene	Primer name	Primer length	Primer Sequence $(5' \rightarrow 3')$	Amplicon size	Reference
10	msp1β- F	20 bp	GCTCTAGCAGGT TATGCGTC	265 1	Bilgic et al. 2013
msp1β	msp1β- R	19 bp	CTGCTTGGGAGATGCACCT	265 bp	

Chain Reaction amplified 265 bp of msp1β gene in 63.6% (159/250) of the cattle screened from January 2022 to December 2022 (Fig. 2). Twelve PCR amplicons were randomly sequenced, showing nucleotide sequences specific to A. marginale, with a variation of 2–4 nucleotides among the isolates. The PCR primers used in this assay did not produce any amplicons when genomic DNA of T. annulata, B. bigemina, and T. evansi was used as the template. Singh et al. (2012) identified 73.1% carrier cattle for A. marginale from Punjab by nested-PCR based on msp5 gene. George et al. (2017) reported an occurrence of 16.4% of A. marginale by PCR in cattle of Seemandhra and Telangana region using msp4 gene. Various studies have reported a wide prevalence difference (5.2% to 87.9%) of bovine anaplasmosis across different regions of the country, using different marker genes in PCR assays (Kumar et al. 2019, Bisen et al. 2021, Bhanot and Jindal 2022).

The differences in the prevalence of A. marginale observed across various regions of India are likely due to factors such as effectiveness of tick control programmes, suitability of local climate for tick development, diversity of farm management techniques, animal husbandry

Fig. 2. A. marginale amplicons visualized by agarose gel electrophoresis [Lane M: 100bp DNA ladder; Lanes 1, 3, 4, 7: Samples showing A. marginale specific 265 bp product of msp1β gene; Lane 2: Positive control; Lane 5: Sample negative for A. marginale; Lane 6: Negative control

practices in those regions and analytical sensitivity of the PCR assay (Zafar *et al.* 2022). In this study, msp1β-based PCR detected *A. marginale* infection in 63.6% of cattle, demonstrating high detection sensitivity of this PCR assay. The study also revealed that a significant proportion of cattle in this region of Central India are carriers of *A. marginale* infection. Chhattisgarh region, characterized by its sub-tropical climate with high temperature and humidity, provides an ideal habitat for ticks specifically *R. microplus* (Sarangi *et al.* 2021) thus accounting for high occurrence of *A. marginale* infection.

Prevalence under different cattle management systems: The management system adopted by the dairy owners influenced the occurrence of anaplasmosis in cattle. The prevalence of anaplasmosis was significantly higher (p<0.05) in animals from organized dairy farms compared to those from unorganized dairy units (Table 2). In the current study, it appears that high density of animals and suboptimal management in organized farms, likely increased the risk of infection spread through ticks and biting flies, compared to smaller, more dispersed operations. Kumar and Sangwan (2010) similarly reported significant variations in anaplasmosis prevalence across different cattle management systems. The differences could be attributed to farm management practices, including the use of acaricides for tick control, medication protocols, sanitation measures and other scientific methods that reduce the risk of iatrogenic transmission within the farm.

District-wise prevalence: The infection rate of A. marginale was significantly higher in cattle from Kabirdham district (p<0.001), while Dhamtari district reported the lowest prevalence (Table 2). As one of Chhattisgarh's leading districts in agriculture and dairy production, Dhamtari benefits from increased awareness among cattle owners and adoption of effective management practices for vector control, contributing to the reduced infection rate. In contrast, the high occurrence of anaplasmosis in Kabirdham can be attributed to limited awareness about scientific methods for tick control among cattle owners.

Breed-wise prevalence: PCR analysis detected A. marginale in 61.50% of crossbred cattle and 67.4% of indigenous cattle (Table 3), with no significant difference between the two groups (p>0.05). Similarly, Sarangi et

Table 2. Association of A. marginale prevalence and farm management systems

District	Samples screened			Samples Positive		Percent Positive (%)			
	UDU	OF	Total	UDU	OF	Total	UDU	OF	Average Prevalence (%)
Durg	25	25	50	16	14	30	64	56	60
Rajnandgaon	25	25	50	14	18	32	56	72	64
Kabirdham	25	25	50	20	22	42	80	88	84
Balod	25	25	50	11	21	32	44	84	64
Dhamtari	25	25	50	10	13	23	40	52	46
Total	125	125	250	71	88	159	56.8	70.4	63.6
χ^2 value	Between farm management systems and prevalence					4.99*			
χ^2 value	Between districts and prevalence								28.15***

^{*}Significant at 5% level (p<0.05), ***Significant at 0.1% level (p<0.001), UDU: Un-organized dairy units, OF: Organized farms

Season

12.91***

Cross-bred 99 (61.5) 62 Healthy 122 (60.1) 81 Pyrexia 37 (78.7) 10 <1 year 31 (77.5) 09 Age 1-5 years 71 (65.7) 37 >5 years 57 (55.9) 45			A. marginale positive	A. marginale negative	Degree of freedom	χ^2 value	
Cross-bred 99 (61.5) 62 Healthy 122 (60.1) 81 Pyrexia 37 (78.7) 10 <1 year 31 (77.5) 09 Age 1-5 years 71 (65.7) 37 >5 years 57 (55.9) 45	D 1	Indigenous	60 (67.4)	29	1	0.07	
Pyrexia 37 (78.7) 10 4 year 31 (77.5) 09 Age 1-5 years 71 (65.7) 37 2 5 years 57 (55.9) 45	Breed	Cross-bred	99 (61.5)	62	1	0.87	
Pyrexia 37 (78.7) 10 <1 year 31 (77.5) 09 Age 1-5 years 71 (65.7) 37 2 <5 years 57 (55.9) 45	TT1414-4	Healthy	122 (60.1)	81	1	5.72*	
Age 1-5 years 71 (65.7) 37 2 6 >5 years 57 (55.9) 45	Health Status	Pyrexia	37 (78.7)	10	1		
>5 years 57 (55.9) 45		<1 year	31 (77.5)	09			
	Age	1-5 years	71 (65.7)	37	2	6.17*	
Summer 78 (75.7) 25		>5 years	57 (55.9)	45			
20 (1011) 20		Summer	78 (75.7)	25			

Table 3. Association of A. marginale prevalence and epidemiological parameters

*Significant at 5% level (p<0.05), ***Significant at 0.5% level (p<0.005), (Figures in parentheses indicate percentages to the respective total)

38

28

55 (59.1)

26 (48.2)

al. (2021) reported anaplasmosis prevalence of 59.30% in indigenous cattle and 57.16% in crossbred cattle across different states in India. The present study suggests that A. marginale is prevalent in cattle of Chhattisgarh, regardless of breed, although indigenous cattle are often observed to serve as carriers of haemoprotozoan and haemorickettsial infections (Ringo et al. 2022).

Rainy

Winter

Prevalence based on the clinical status of cattle: In the present study, prevalence of A. marginale infection was significantly (p<0.05) higher in cattle with history of fever as compared to apparently healthy ones (Table 3). The result is evidenced by the fact that pyrexia is usually the first recorded sign of clinical anaplasmosis (Kocan et al. 2010). Similar findings by Jaswal et al. (2014) revealed significant difference in the prevalence of anaplasmosis in animals with the history of fever and those without clinical condition. The detection of A. marginale in apparently healthy cattle suggests that such animals harbor subclinical infections, acting as silent carriers and potential sources of infection.

Season-wise and Age-wise prevalence: In this study, the prevalence of A. marginale infection was found to be significantly higher (p<0.005) during the summer and rainy seasons compared to winter, likely due to the greater abundance of ticks and blood-sucking flies during these months of the year (Table 3). A significant (p<0.05) association between age of the animal and prevalence of anaplasmosis was revealed by chi-square analysis. A distinctive aspect of A. marginale infection is that calves show more immunity compared to adult and older cattle (Jonsson et al. 2012). On the contrary, in the current study, the prevalence rate was higher in cattle under 1 year (77.5%), followed by those between 1-5 years (65.7%) and more than 5 years of age (55.9%). Thus, the results suggest that there is no inverse age resistance in calves to A. marginale and is in agreement with the reports by Sharma et al. (2013). This further indicates that anaplasmosis is endemic in Chhattisgarh region wherein animals are typically exposed to the infection early in life, developing immunity that allows the disease to persist in the population with minimal

tick infestation and few clinical cases (Oliveira et al. 2003).

2

In conclusion, bovine anaplasmosis appears to have a significant impact on animal health and productivity in regions like Chhattisgarh, where the combination of climatic conditions and traditional management practices fosters an environment that facilitates the spread of the disease. High-precision PCR tools and serological methods need to be standardized and validated for better diagnosis and control of bovine anaplasmosis.

ACKNOWLEDGEMENT

The authors are thankful to the Dau Shri Vasudev Chandrakar Kamdhenu University, Durg, Chhattisgarh for providing the necessary facilities to carry out the research.

REFERENCES

Bhanot V and Jindal N. 2022. Molecular detection of anaplasmosis in crossbred cattle. *Indian Journal of Veterinary Sciences and Biotechnology* **18**(2): 109-12.

Bilgiç H B, Karagenç T, Simuunza M, Shiels B, Tait A, Eren H and Weir W. 2013. Development of a multiplex PCR assay for simultaneous detection of *Theileria annulata*, *Babesia bovis* and *Anaplasma marginale* in cattle. *Experimental Parasitology* **133**(2): 222-9.

Bisen S, Aftab A, Jeeva K, Silamparasan M, Yadav S, Chandra D, Sankar M, Garg R and Raina O K. 2021. Molecular and serological detection of *Anaplasma* infection in carrier cattle in North India. Veterinary Parasitology, Regional studies and Reports 24: 100550.

Bursakov S A and Kovalchuk S N. 2019. Co-infection with tick-borne disease agents in cattle in Russia. Ticks and Tickborne Diseases 10(3): 709–13.

Carelli G, Decaro N, Lorusso A, Elia G, Lorusso E, Mari V and Buonavoglia C. 2007. Detection and quantification of *Anaplasma marginale* DNA in blood samples of cattle by real-time PCR. *Veterinary Microbiology* **124** (1-2): 107-114.

Eriks I S, Stiller D and Palmer G H. 1993. Impact of persistent *Anaplasma marginale* rickettsemia on tick infection and transmission. Journal of Clinical Microbiology **31**(8): 2091-6.

George N, Bhandari V and Sharma P. 2017. Phylogenetic relationship and genotypic variability in *Anaplasma marginale* strains causing anaplasmosis in India. Infection, Genetics and Evolution 48: 71-5.

- Jaswal H, Bal M S, Singla L D, Amrita K P, Mukhopadhyay C S and Juyal P D. 2014. Application of msp1β PCR and 16S rRNA semi nested PCR-RFLP for detection of persistent anaplasmosis in tick infested cattle. International Journal of Advanced Research 2(8): 188-96.
- Jonsson N N, Bock R E, Jorgensen W K, Morton J M and Stear M J. 2012. Is endemic stability of tick-borne disease in cattle a useful concept? *Trends in Parasitology* 28(3): 85-9.
- Kocan K M, de la Fuente J and Cabezas-Cruz A. 2015. The genus *Anaplasma*: new challenges after reclassification. *Revue scientifique et technique* **34**: 577–86.
- Kocan K M, de la Fuente J, Blouin E F, Coetzee J F and Ewing S A. 2010. The natural history of *Anaplasma marginale*. *Veterinary Parasitology* **167**(2-4): 95–107.
- Kocan K M, de la Fuente J, Guglielmone A A and Melendez R D. 2003. Antigens and alternatives for control of *Anaplasma marginale* infection in cattle. *Clinical Microbiology Reviews* 16(4): 698–712.
- Kumar N, Solanki J B, Varghese A, Jadav M, Das B, Patel M D and Patel D C. 2019. Molecular assessment of *Anaplasma marginale* in Bovine and *Rhipicephalus (Boophilus) microplus* tick of endemic tribal belt of coastal South Gujarat, India, *Acta Parasitologica* 64: 700-9.
- Kumar P P and Sangwan A K. 2010. Comparative prevalence of subclinical bovine anaplasmosis under different cattle management systems in Haryana. The Haryana Veterinarian 49: 1–5.
- M'ghirbi Y, Bèji M, Oport B, Khrouf F, Hurtado A and Bouattour A. 2016. *Anaplasma marginale* and *A. phagocytophilum* in cattle in Tunisia. *Parasites & Vectors* **9**(1): 1-8.
- Oliveira J B, Madruga C R, Schenk M A, Kessler R H, Miguita M and Araújo F R. 2003. Antigenic characterization of

- Brazilian isolates of *Anaplasma marginale*. *Memórias do Instituto* Oswaldo Cruz **98**: 395-400.
- Ringo A E, Nonga H E, Galon E M, Ji S, Rizk M A, El-Sayed S A, Mohanta U K, Ma Z, Chikufenji B, Do T T and Xuan X. 2022. Molecular investigation of tick-borne haemoparasites isolated from indigenous zebu cattle in the Tanga Region, Tanzania. *Animals* 12(22): 3171.
- Sarangi L N, Rana S K, Prasad A, Ponnanna, N M. and Sharma G K. 2021. Prevalence of antibodies to *Anaplasma* in cattle and buffaloes of different organized herds in India. *Journal of Parasitic Diseases* 45: 359-65.
- Sharma A, Singla L D, Kaur P, Bal M S, Batth B K and Juyal P D. 2013. Prevalence and haematobiochemical profile of Anaplasma marginale infection in dairy animals of Punjab (India). Asian Pacific Journal of Tropical Medicine 6: 139-44.
- Singh H, Haque M, Singh N K and Rath S S. 2012. Molecular detection of *Anaplasma marginale* infection in carrier cattle. Ticks and Tick-borne Diseases 3(1): 55-8.
- Snedecor G W and Cochran W G. 1994. Statistical Methods. 6edn. The Iowa State University Press, Ames, Iowa, USA.
- Torina A, Alongi A, Naranjo V, Estrada-Peña A, Vicente J and Scimeca S. 2008. Prevalence and genotypes of *Anaplasma* species and habitat suitability for ticks in a Mediterranean ecosystem. *Applied and Environmental Microbiology* 74(24): 7578-84.
- Zafar S N U A, Khan A, Niaz S, Aktas M, Ozubek S, Farooq M, Adil M M, Zając Z, Iqbal F, Alhimaidi A R and Swelum A A. 2022. Prevalence of *Anaplasma marginale* in cattle blood samples collected from two important livestock regions in Punjab (Pakistan) with a note on epidemiology and phylogeny of parasite. *Saudi Journal of Biological Sciences* 29(3): 1515-20.