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ABSTRACT

Bovine tuberculosis (BTB) is a chronic bacterial disease, caused by Mycobacterium bovis. It is a globally 
significant disease affecting cattle production and health. In the present meta-analysis study, alveolar macrophage 
tissue from three independent studies was analyzed, comprising 21 biological replicates (100 RNA-Seq data) from 
BTB infected and non-infected cattle. RNA-Seq analysis was performed on individual studies to obtain count 
matrices, followed by meta-analysis using one-sided NOISeq method. Fisher’s and Stouffer’s methods yielded 
5904 and 2631 DEGs respectively. Functional annotation and pathway enrichment analysis revealed key biological, 
molecular, and cellular functions involved in pathogenesis. A protein interaction network identified ten hub genes that 
were mainly associated with the proteasome complex playing role in host immune response. JAK/STAT signaling 
pathway, Notable pathways included Pentose phosphate pathway, Ubiquitin proteasome pathway, Toll receptor 
signaling pathway, Interleukin signaling pathway among the 36 enriched pathways. The findings highlighted the role 
of immunological pathways and genes upregulated during BTB in cattle. Meta-analysis improved statistical power 
and robustness compared to individual studies, offering insights into potential biomarkers compared to individual 
studies. The findings enhance the understanding of BTB pathogenesis and offer direction to bovine breeders in 
endeavour of improved production and management.
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INTRODUCTION
Bovine tuberculosis (BTB) is caused by Mycobacterium 

bovis, belonging to the Mycobacterium tuberculosis 
complex and affects various mammals, especially cattle. 
It is contagious and spreads through infected animals, 
inhaling infectious droplets, or by drinking unpasteurized 
milk from sick calves. It contributes to about 10% of human 
tuberculosis cases in some regions (World Organisation 
for Animal Health) and remains a serious issue in tropical 
and sub-tropical countries (Borham et al. 2022). Globally, 
it is the fourth most significant cattle disease with about 
50 million infected cattle causing annual losses of $3 
billion (Abdelaal et al. 2022). In India, BTB is endemic 
affecting an estimated 7.3% cattle with increasing numbers 
due to intensified dairy farming practices (Ramanujam 
and Palaniyandi 2023).  BTB causes reduction in milk 
(10–12%) and meat production (6–12%), higher death 
rates, and lower fertility rates causing substantial economic 
losses (Tschopp et al. 2021).

 Advances in transcriptomics technology (RNA-Seq) 
facilitated understanding of the host response mechanisms 
to M. bovis infection by revealing genes responsible 

for immune responses (Garg et al. 2024). For instance, 
transcriptome studies involving peripheral blood and 
macrophage tissues in BTB infected and healthy cattle 
and across different time points of infection have been 
performed to identify biomarkers associated with M. 
bovis infection in cattle (Blanco et al. 2023). Since the 
mycobacterium invades the host alveolar macrophage 
and evades the host immune system, understanding the 
host-pathogen interactions during infection is important 
to uncovering the disease mechanism. Molecular host-
pathogen interaction studies generated vast data, but 
variability in sample size, design, and biological variances 
complicates identifying common gene expression 
patterns. Meta-analysis overcomes this by integrating 
data from multiple studies, enhancing sample size and 
statistical power to reveal BTB-related gene expressions 
(Vijayakumar et al. 2019). This study performs a meta-
analysis on the transcriptome of 100 RNA-seq data 
across three studies involving macrophage tissue from 
infected and healthy cattle across diverse ages and sexes. 
By identifying conserved gene expression patterns and 
molecular pathways across diverse populations, this 
research aims to provide a comprehensive understanding 
of BTB pathophysiology and host immune responses. 

MATERIAL AND METHODS
Data selection and retrieval: A comprehensive search 
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was performed to find RNA-seq studies profiling gene 
expression to understand molecular mechanism underlying 
bovine tuberculosis in cattle. Three independent RNA-Seq 
studies involving BTB infected and healthy macrophage 
tissue from Bos taurus were obtained from NCBI, providing 
a total of 21 biological replicates for meta-analysis. The 
study details are outlined in Table 1.

RNA-Seq analysis: For maintaining the coherence and 
reliability of data, three RNA-Seq studies were analyzed 
by a uniform, standardized bioinformatics pipeline. Raw 
reads were assessed with FASTQC (Andrews 2016) 
followed by trimming of adapters, removal of low-quality 
bases and short reads using the Trimmomatic (v0.39) 
(http://www.usadellab.org/cms/?page=trimmomatic) 
tool. The cleaned reads were aligned to the ARS-UCD1.3 
(GCF_002263795.2) cattle reference genome using HISAT2 
(Kim et al. 2019) retaining samples with unique mapping 
rates > 90%. The reads were assembled using StringTie 
v2.1.4 (Pertea et al. 2016), incorporating the reference 
genome for accurate gene annotation. The merge-stringtie 
mode created a unified, non-redundant set of transcripts 
across all samples. Transcript abundance was estimated 
with RSEM (v1.3.1) (Li and Dewey 2011), generating 
count matrices and normalized read counts in Transcripts 
Per Million (TPM) accounting for sequencing depth and 
gene length variation that allows accurate comparisons 
of expression levels between samples.  Annotation of 
transcript ids from StringTie was performed using the 
NCBI’s Batch Entrez tool. 

Meta-analysis for identification of differentially 
expressed genes: The count matrices from each study 
were utilized for transcriptome meta-analysis.  Transcripts 
with zero counts across all sample were filtered, and the 
remaining transcripts were analysed using the one-sided 
NOISeq method in the MetaSeq R package (Tsuyuzaki and 
Nikaido 2021). The transcript abundance was normalized 
across studies using TMM (Trimmed mean of M-values) 
method. The parameters used for meta-analysis include k = 
0.5 (number used to replace zero counts), nss = 5 (numbers 
of samples required to simulate for each condition), v = 0.02 
(variability in each simulated sample) and lc = 1 (length 
correction). The differentially expressed genes (DEG) 
were identified using Fisher’s and Stouffer’s method with 
p-value <0.05. Fig.1 shows the overall methodology used 
in the study. 

Functional annotation, pathway analysis and PPI 
network construction: Functional annotation and pathway 

analysis were performed using the Panther Classification 
System (https://www.pantherdb.org/). Fisher’s exact test 
with FDR correction (p < 0.05) identified significantly 
enriched GO terms (biological processes, molecular 
functions, and cellular components) and pathways. 

The Protein-Protein Interaction (PPI) network was built 
using the STRINGdb (v12.0) R package, mapping DEGs 
to the Bos taurus reference genes. Using this package, 
we identified and mapped potential interactions between 
the proteins encoded by the DEGs. Cytoscape (https://
cytoscape.org/)  was used to visualize the PPI network and 
CytoHubba (https://apps.cytoscape.org/apps/cytohubba)  
plugin was employed to identify most significant hub genes 
using the Maximal Clique Centrality (MCC) algorithm. 
“STRING enrichment” module of Cytoscape further 

 Table 1. Description of the selected transcriptome studies

BioProject ID No. of RNA-
Seq data

Number of biological 
replicates gender breed Developmental 

stage
Sequencing 
Instrument

Library 
layout Reference

PRJNA480009 8 4 F Holstein–
Friesian 4 months Illumina HiSeq 

4000 paired (Hall et al. 
2020)

PRJNA264301 78 10 M Holstein–
Friesian 7-12 weeks Illumina HiSeq 

2000 paired (Nalpas et 
al. 2015)

PRJNA194043 14 7 F Holstein–
Friesian 4 Years Illumina Genome 

Analyzer IIx single (Nalpas et 
al. 2013)

Fig.1. Over-all methodology used in the meta-analysis study
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analyzed functional associations.

RESULTS AND DISCUSSION

The RNA-Seq analysis produced an average 29.35 
million paired-end and 9.9 million single-end reads with 
an average mapping score of 96%. The combined count 
matrix consisted of 148383 transcripts in total which after 
filtering for lowly expressed genes resulted in 128487 
transcripts that showed expression in at least one study. 
Table 2 summarizes the RNA-Seq analysis results and 
number of DEGs in the reference studies.  PCA analysis 
of the normalized gene expression values explained 80% 
of the variation with study differences being the primary 
source (Supplementary Fig.1) along with clear separation 
between BTB-infected and non-infected cattle across all 
three studies.

In order to increase statistical power and identify true 
DEGs, meta-analysis of the three studies was performed 
using One-sided NOISeq method specifically designed for 
meta-analysis of RNA-seq data, as it handles read size effect; 
a bias that can occur in meta-analysis due to differences 
in sequencing depths across studies. It does not assume 
a specific data distribution thus allowing for flexibility 
in capturing complex data distributions from multiple 
studies. Differential expression analysis between BTB 
infected and non-infected cattle using Fisher’s and Stouffer 
test identified upregulated and downregulated genes with 
a probability < 0.05. Stouffer’s test combines z-scores 
obtained from p-values rather than directly combining 
p-values, whereas Fisher’s approach combines p-values 
from separate tests into a single test statistic (Alves and 
Yu 2014). A total of 5904 genes were identified as DEGs 
by Fisher’s test of which 5868 genes were upregulated in 
the infected cattle while 36 were downregulated. Stouffer’s 
test identified 2631 genes as upregulated while no genes 
were identified as downregulated. A total of 2520 genes 
were commonly upregulated by both methods including 
8 unannotated or novel transcripts. Notable genes such 
as IL1B, FTH1, COX1, CXCL5, CXCL8 and MMP12 
showed high expression. As previously reported, IL-1 
(Interleukin-1) plays a critical role in inflammation and 
immune cell recruitment during infection. Dysregulation 
of IL-1 contributed to enhanced illness in M. tuberculosis 
infected mice, making it a targeted for host-directed 
TB drug strategies (Silvério et al. 2021). MMP12 
(macrophage metalloelastase) gene, participate in cell 
migration, leukocyte activation, antimicrobial defence, 
and many other crucial processes of immunity and repair 
(Parasa et al. 2017). Similarly, CXCL5, aids in immune 

defence against M. bovis through its involvement in 
chemokine mediated immune responses. Studies show that 
lungs of CXCL5-deficient mice reconstituted with wild-
type bone marrow produced CXCL5, suggesting that lung 
tissue cells and blood-activated platelets release CXCL5 
during infection (Nouailles et al. 2014). Table 3 lists the 
top 20 DEGs, with the full list and p-values available in 
Supplementary table 1.

Functional annotation and overrepresentation test: 
To investigate the functional role of identified DEGS, 
statistical overrepresentation test for biological processes, 
molecular functions and cellular components was 
performed which revealed 1421 significant biological 
processes, primarily associated with immune responses. 
Notably, 12 genes were associated with natural killer T-cell 
activation (GO:0051135; GO:0051133), proliferation 
(GO:0051142; GO:0051140) and regulation. Bovine 
natural killer cells have been shown to reduce M. bovis 
BCG in infected macrophages by acquiring cytotoxic/
effector activity following activation with IL-12/15 
(Endsley et al. 2005). Key innate immune response 
mechanisms included the regulation of MyD88-dependent 
toll-like receptor signalling pathway (GO:0034124), 

Table 2. Information on RNA-seq data from three BTB studies 

BioProject ID Average number of 
reads (million)

Average mapping 
rate (%)

Number of 
transcripts Num of DEGs in reference study p-value used in 

reference study
PRJNA480009 39.2 96.93 95381 7757 0.1
PRJNA264301 19.5 98.17 132259 95 (2h), 1290 (6h), 5515 (24h), 7321 (48 h) 0.05
PRJNA194043 9.95 93.57 95335 2,584 0.05

Table 3.The 20 most highly differentially expressed genes and 
their p-values

Entrez Transcript id Gene 
symbol Fisher value Stouffer 

value
KEH36_p11 COX1 6.65E-06 6.00E-05
NM_001002885.1 TMSB4X 8.30E-05 5.36E-04
NM_001033617.2 CTSC 6.62E-06 1.48E-04
NM_001033618.1 ACTG1 5.69E-04 3.40E-04
NM_001206640.1 MMP12 0.00E+00 0.00E+00
NM_173893.3 B2M 3.80E-09 1.06E-05
NM_173925.2 CXCL8 0.00E+00 0.00E+00
NM_173969.3 VIM 3.24E-046 7.29E-04
NM_173979.3 ACTB 1.95E-04 1.60E-04
NM_174062.4 FTH1 9.65E-09 1.69E-06
NM_174093.1 IL1B 0.00E+00 0.00E+00
NM_174187.2 SPP1 1.77E-06 6.07E-04
NM_174300.2 CXCL5 6.73E-12 1.24E-07
NM_174345.4 HSPA8 1.12E-08 1.09E-05
NM_174431.1 PRDX1 2.24E-08 6.39E-06
NM_174744.2 MMP9 2.67E-06 4.41E-05
NM_001077835.1 CTSZ 7.91E-10 1.08E-05
NM_181016.3 SAA3 1.00E-12 1.07E-07
XM_002691119.5 LOC783680 3.40E-09 2.51E-05
XM_005203612.3 S100A12 2.39E-10 6.80E-07
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TRIF-dependent toll-like receptor signalling pathway 
(GO:0035666), regulation of interleukin-1-mediated 
signalling pathway (GO:2000659), regulation of T-helper 
1 cell cytokine production (GO:2000554), NLRP3 
inflammasome complex assembly (GO:0044546), etc. 
These pathways are crucial for recognizing pathogens 
via PAMPs (pathogen-associated molecular patterns) and 
initiating immune response. The MyD88 pathway activates 
pro-inflammatory cytokines, while the TRIF pathway 
enhances antiviral activity by inducing type I interferons, 
demonstrating how innate immunity quickly responds 
to pathogens (Chaplin 2010). Genes such as IRF1 and 
IRF7 mapped to the MyD88-dependent toll-like receptor 
signalling pathway whereas IRF3, TICAM1, TICAM2 and 
TLR4 mapped to the TRIF-dependent signalling pathway. 
NLRP3 inflammasome, a protein complex aids in body’s 
response to infection and cellular damage are activated 
by PAMPS or damage-associated molecular patterns 
(DAMPs) (Leu et al. 2023) is essential for processing pro-
inflammatory cytokines such as IL-1β and IL-18, required 
for initiation of inflammatory responses, potentiating host 
defence against pathogens and maintaining immune system 
homeostasis (Paludan et al. 2021). SIRT2, PYCARD and 
NLRP3 genes mapped to the NLRP3 inflammasome 
complex assembly. The innate immune system defends 
against pathogens via these complex network cellular 
processes and signalling pathways. This system recognizes 
infections, controls inflammation, and triggers adaptive 
responses. Understanding these mechanisms is important 
for developing of therapeutic strategies against infectious 

agents and inflammatory conditions. Significant molecular 
functions (237) included Rho-dependent protein serine/
threonine kinase activity (GO:0072518), proteasome-
activating activity (GO:0036402), nucleobase binding 
(GO:0002054), histone H4 demethylase activity 
(GO:0141058), 2’-5’-oligoadenylate synthetase activity 
(GO:0001730) as the top five with fold enrichment of 
5.88. Thirteen out of 224 significant cellular components 
had a fold enrichment of 5.88 (the highest) which included 
macrophage migration inhibitory factor receptor complex 
(GO:0035692), IkappaB kinase complex (GO:0008385), 
bleb (GO:0032059), DSIF complex (GO:0032044), CKM 
complex (GO:1990508), etc. Full list of enriched gene 
ontologies is provided in supplementary table 2.

Overrepresentation test for Panther pathways identified 
36 significant pathways (Fig. 2), included JAK/STAT 
signalling pathway, Pentose phosphate pathway, Ubiquitin 
proteasome pathway, Toll receptor signalling pathway, P53 
pathway feedback loops 1, Interleukin signalling pathway, 
etc. as the key pathways. The JAK/STAT signalling 
pathway critical for inflammation and immune response 
is often supressed by M. bovis through SOCS proteins, 
enabling immune invasion. (Hasankhani et al. 2022). The 
ubiquitin-proteasome pathway which is responsible for 
protein degradation and immunological events play a role in 
BTB by regulating the turnover of proteins associated with 
apoptosis and inflammation. To enhance its survival within 
host macrophages, M. bovis has the potential to manipulate 
protein degradation pathways through alterations in 
host cell signalling cascades. The ubiquitin proteasome 

Fig. 2. Dot plot of enriched pathways from functional overrepresentation analysis. Dot size indicates fold enrichment, and colour 
scale shows adjusted p-values.
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pathway mapped to nearly 45 genes in cattle that included 
genes related to ubiquitin conjugating enzymes (UBE2V2, 
UBE2A, UBE2K, UBE2L6, UBE2E1, UBE2L6, UBE2L3) 
and proteasome complex subunits (PSMD8, PSMD11, 
PSMC6, PSMC4, PSMD7, PSMC1, PSMD13, PSMC3, 
PSMD6, PSMD4, PSMD14, PSMD2 and PSMD3). 

Hub genes identification from the protein-protein 
interaction network: The protein-protein interaction 
network consisted of 3512 nodes and 132474 edges with an 
average of 37.74 neighbours per node, clustering coefficient 
of 0.246 and network density of 0.011. The topological 
analysis revealed GAPDH (ENSBTAP00000037577) 
node has the highest degree (k = 812) that can be 
considered as a hub (Chen et al. 2019) and a bottleneck 
(2nd highest Betweenness centrality = 0.029) gene. CDC5L 
(ENSBTAP00000026654) emerged as the bottleneck gene 
with the highest betweenness centrality (BC=0.033) and a 
degree (k = 712) higher than average. The top 10% genes 
based on degree is given in supplementary table 3.

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) 
beyond its glycolytic role, interacts with the antimicrobial 
peptide lactoferrin, enhancing the internalization of the 
peptide by macrophages and promoting autophagy for 
better intracellular pathogens removal. This process is 
necessary in reducing the amount of bacterial burden in 
infected cells (Dhiman et al. 2023).  Ten hub genes, namely 
PSMB3, PSMD8, PSMA5, PSMA1, PSMB2, PSMA4, 
PSMB10, PSMA7, PSMD1 and PSMB4 were identified by 
ranking the genes based on the MCC algorithm that are 
largely associated with proteasome complex. Hub genes are 
often considered essential for the stability and function of 
the overall network and may serve as potential biomarkers 
or therapeutic targets (Fu et al. 2019). The description of 
each hub gene is given in supplementary table 4. Proteases 
are highly involved in the breakdown and regulation of 
proteins, especially in immunological reactions where 
they degrade antigens to make them presentable via the 
major histocompatibility complex (MHC) pathway. The 

immune system uses a proteasome to degrade destructive 
proteins in diseases such as BTB so that immune cells 
can construct a defence (Paludan et al. 2021). Thus, these 
genes play a very vital role in regulating the host immune 
response to M. bovis. Genes encoding 20S proteasome 
subunits (PSMB3, PSMB2, PSMB10, and PSMB4) mediate 
proteolytic degradation of damaged or misfolded proteins 
while proteasome subunits encoded by PSMA1, PSMA5, 
PSMA4, and PSMA7 maintain proteasome structure and 
function during infection. Previous studies have reported 
the upregulation of proteasomal complex genes such as 
PSMB2, PSMB3, PSMA2, PSMD2, PSMD8, PSMB6 and 
PSMB9 in Mb04-303 (virulent strain of M. bovis) infections 
(Blanco et al. 2023). The upregulation of these genes 
likely indicates an increased need for antigen processing, 
enhancing the immune system’s ability to detect and fight 
the infection. However, these genes are also linked to the 
ubiquitin proteasome pathway, which pathogens like M. 
bovis may exploit to degrade host immune cells, similar 
to the mechanism in M. tuberculosis infections in humans. 
A thorough investigation of this pathway is needed to 
understand its impact on cattle immunity. Figures 3(a) 
and 3(b) display a subnetwork of hub-genes and their 
interactions with neighbouring genes, respectively. 

In the present study, 2520 common DEGs were 
identified in meta-analysis, identifying important 
immune-related pathways together with important hub 
genes involved in BTB pathogenesis. Hub genes such as 
those linked with ubiquitin proteasome pathway, present 
potential biomarkers and therapeutic targets. Genes 
elevated during BTB, like CXCL5 and MMP12, may 
serve as early diagnostic markers of disease progression 
and treatment efficacy. Future work can be focussed on 
functional validation of the identified DEGs such as by 
using CRISPR-Cas9 gene editing methods. This will help 
in identifying targets for vaccine development for BTB in 
cattle. Thus, this work offers a comprehensive perspective 
on the understanding of host-pathogen interactions in the 

Fig. 3(a) Network of all the ten hub genes identified by the MCC algorithm in PPI network. 3(b) Hub genes and its neighbour proteins 
in expanded network

(a) (b)
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situation of BTB and opens novel possibilities for future 
research on diagnostics and therapeutic interventions.
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