| SUPPLEMENTARY MATERIAL AVAILABLE ONLINE |

M Indian Journal of Animal Sciences 95 (2): 163—168, February 2025/Article

e
ICAR

https://doi.org/10.56093/ijans.v95i2.157409

Uncovering the molecular mechanisms of bovine tuberculosis through
meta-analysis of differentially expressed genes

NAINA KUMARI'2, SARIKA JAISWAL"™, MIR ASIF IQUEBAL' and DINESH KUMAR!
ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India, 110012

Received: 10 October 2024; Accepted: 23 December 2024

ABSTRACT

Bovine tuberculosis (BTB) is a chronic bacterial disease, caused by Mycobacterium bovis. It is a globally
significant disease affecting cattle production and health. In the present meta-analysis study, alveolar macrophage
tissue from three independent studies was analyzed, comprising 21 biological replicates (100 RNA-Seq data) from
BTB infected and non-infected cattle. RNA-Seq analysis was performed on individual studies to obtain count
matrices, followed by meta-analysis using one-sided NOISeq method. Fisher’s and Stouffer’s methods yielded
5904 and 2631 DEGs respectively. Functional annotation and pathway enrichment analysis revealed key biological,
molecular, and cellular functions involved in pathogenesis. A protein interaction network identified ten hub genes that
were mainly associated with the proteasome complex playing role in host immune response. JAK/STAT signaling
pathway, Notable pathways included Pentose phosphate pathway, Ubiquitin proteasome pathway, Toll receptor
signaling pathway, Interleukin signaling pathway among the 36 enriched pathways. The findings highlighted the role
of immunological pathways and genes upregulated during BTB in cattle. Meta-analysis improved statistical power
and robustness compared to individual studies, offering insights into potential biomarkers compared to individual
studies. The findings enhance the understanding of BTB pathogenesis and offer direction to bovine breeders in
endeavour of improved production and management.
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INTRODUCTION

Bovine tuberculosis (BTB) is caused by Mycobacterium
bovis, belonging to the Mycobacterium tuberculosis
complex and affects various mammals, especially cattle.
It is contagious and spreads through infected animals,
inhaling infectious droplets, or by drinking unpasteurized
milk from sick calves. It contributes to about 10% of human
tuberculosis cases in some regions (World Organisation
for Animal Health) and remains a serious issue in tropical
and sub-tropical countries (Borham et al. 2022). Globally,
it is the fourth most significant cattle disease with about
50 million infected cattle causing annual losses of $3
billion (Abdelaal et al. 2022). In India, BTB is endemic
affecting an estimated 7.3% cattle with increasing numbers
due to intensified dairy farming practices (Ramanujam
and Palaniyandi 2023). BTB causes reduction in milk
(10-12%) and meat production (6—12%), higher death
rates, and lower fertility rates causing substantial economic
losses (Tschopp et al. 2021).

Advances in transcriptomics technology (RNA-Seq)
facilitated understanding of the host response mechanisms
to M. bovis infection by revealing genes responsible
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for immune responses (Garg et al. 2024). For instance,
transcriptome studies involving peripheral blood and
macrophage tissues in BTB infected and healthy cattle
and across different time points of infection have been
performed to identify biomarkers associated with M.
bovis infection in cattle (Blanco et al. 2023). Since the
mycobacterium invades the host alveolar macrophage
and evades the host immune system, understanding the
host-pathogen interactions during infection is important
to uncovering the disease mechanism. Molecular host-
pathogen interaction studies generated vast data, but
variability in sample size, design, and biological variances
complicates identifying common gene expression
patterns. Meta-analysis overcomes this by integrating
data from multiple studies, enhancing sample size and
statistical power to reveal BTB-related gene expressions
(Vijayakumar et al. 2019). This study performs a meta-
analysis on the transcriptome of 100 RNA-seq data
across three studies involving macrophage tissue from
infected and healthy cattle across diverse ages and sexes.
By identifying conserved gene expression patterns and
molecular pathways across diverse populations, this
research aims to provide a comprehensive understanding
of BTB pathophysiology and host immune responses.

MATERIAL AND METHODS

Data selection and retrieval: A comprehensive search
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was performed to find RNA-seq studies profiling gene
expression to understand molecular mechanism underlying
bovine tuberculosis in cattle. Three independent RNA-Seq
studies involving BTB infected and healthy macrophage
tissue from Bos taurus were obtained from NCBI, providing
a total of 21 biological replicates for meta-analysis. The
study details are outlined in Table 1.

RNA-Seq analysis: For maintaining the coherence and
reliability of data, three RNA-Seq studies were analyzed
by a uniform, standardized bioinformatics pipeline. Raw
reads were assessed with FASTOC (Andrews 2016)
followed by trimming of adapters, removal of low-quality
bases and short reads using the Trimmomatic (v0.39)
(http://www.usadellab.org/cms/?page=trimmomatic)
tool. The cleaned reads were aligned to the ARS-UCD1.3
(GCF _002263795.2) cattle reference genome using HISAT?2
(Kim et al. 2019) retaining samples with unique mapping
rates > 90%. The reads were assembled using StringTie
v2.1.4 (Pertea et al. 2016), incorporating the reference
genome for accurate gene annotation. The merge-stringtie
mode created a unified, non-redundant set of transcripts
across all samples. Transcript abundance was estimated
with RSEM (v1.3.1) (Li and Dewey 2011), generating
count matrices and normalized read counts in Transcripts
Per Million (TPM) accounting for sequencing depth and
gene length variation that allows accurate comparisons
of expression levels between samples. Annotation of
transcript ids from StringTie was performed using the
NCBI’s Batch Entrez tool.

Meta-analysis  for identification of differentially
expressed genes: The count matrices from each study
were utilized for transcriptome meta-analysis. Transcripts
with zero counts across all sample were filtered, and the
remaining transcripts were analysed using the one-sided
NOISeq method in the MetaSeq R package (Tsuyuzaki and
Nikaido 2021). The transcript abundance was normalized
across studies using TMM (Trimmed mean of M-values)
method. The parameters used for meta-analysis include & =
0.5 (number used to replace zero counts), nss =5 (numbers
of samples required to simulate for each condition), v =0.02
(variability in each simulated sample) and /c = 1 (length
correction). The differentially expressed genes (DEG)
were identified using Fisher’s and Stouffer’s method with
p-value <0.05. Fig.1 shows the overall methodology used
in the study.

Functional annotation, pathway analysis and PPI
network construction: Functional annotation and pathway

Table 1. Description of the selected transcriptome studies
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Fig.1. Over-all methodology used in the meta-analysis study

analysis were performed using the Panther Classification
System (https://www.pantherdb.org/). Fisher’s exact test
with FDR correction (p < 0.05) identified significantly
enriched GO terms (biological processes, molecular
functions, and cellular components) and pathways.

The Protein-Protein Interaction (PPI) network was built
using the STRINGdb (v12.0) R package, mapping DEGs
to the Bos taurus reference genes. Using this package,
we identified and mapped potential interactions between
the proteins encoded by the DEGs. Cyfoscape (https://
cytoscape.org/) was used to visualize the PPI network and
CytoHubba  (https://apps.cytoscape.org/apps/cytohubba)
plugin was employed to identify most significant hub genes
using the Maximal Clique Centrality (MCC) algorithm.
“STRING enrichment” module of Cytoscape further

BioProject ID N%ezf(ilt\;A_ Nmnbreerp(l)it;l;iglogical gender  breed Deve;i)i)gnelental ?ﬁg;i?;;ﬁ% %;2?3 Reference
PRINA480009 8 4 F I;‘;:Zt::: 4 months m“mj{(‘%giseq paired (Hgg;o’)“l'
PRINA264301 78 10 M HF‘:?;:: 7-12 weeks m“m;‘)%giseq paired (Zf‘]zpoalsse)t
PRINA194043 14 7 HF‘;:?::: 4 Years I“ﬂ;‘;gf}‘;’;“e single %g"&fj;
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Table 2. Information on RNA-seq data from three BTB studies

Average number of Average mapping Number of

p-value used in

BioProject ID reads (million) rate (%) transcripts Num of DEGs in reference study reference study
PRINA480009 39.2 96.93 95381 7757 0.1
PRINA264301 19.5 98.17 132259 95 (2h), 1290 (6h), 5515 (24h), 7321 (48 h) 0.05
PRINA194043 9.95 93.57 95335 2,584 0.05
analyzed functional associations. Table 3.The 20 most highly differentially expressed genes and
their p-values
RESULTS AND DISCUSSION

The RNA-Seq analysis produced an average 29.35
million paired-end and 9.9 million single-end reads with
an average mapping score of 96%. The combined count
matrix consisted of 148383 transcripts in total which after
filtering for lowly expressed genes resulted in 128487
transcripts that showed expression in at least one study.
Table 2 summarizes the RNA-Seq analysis results and
number of DEGs in the reference studies. PCA analysis
of the normalized gene expression values explained 80%
of the variation with study differences being the primary
source (Supplementary Fig.1) along with clear separation
between BTB-infected and non-infected cattle across all
three studies.

In order to increase statistical power and identify true
DEGs, meta-analysis of the three studies was performed
using One-sided NOISeq method specifically designed for
meta-analysis of RNA-seq data, as it handles read size effect;
a bias that can occur in meta-analysis due to differences
in sequencing depths across studies. It does not assume
a specific data distribution thus allowing for flexibility
in capturing complex data distributions from multiple
studies. Differential expression analysis between BTB
infected and non-infected cattle using Fisher’s and Stouffer
test identified upregulated and downregulated genes with
a probability < 0.05. Stouffer’s test combines z-scores
obtained from p-values rather than directly combining
p-values, whereas Fisher’s approach combines p-values
from separate tests into a single test statistic (Alves and
Yu 2014). A total of 5904 genes were identified as DEGs
by Fisher’s test of which 5868 genes were upregulated in
the infected cattle while 36 were downregulated. Stouffer’s
test identified 2631 genes as upregulated while no genes
were identified as downregulated. A total of 2520 genes
were commonly upregulated by both methods including
8 unannotated or novel transcripts. Notable genes such
as ILIB, FTHI, COXI, CXCL5, CXCL8 and MMPI2
showed high expression. As previously reported, IL-1
(Interleukin-1) plays a critical role in inflammation and
immune cell recruitment during infection. Dysregulation
of IL-1 contributed to enhanced illness in M. tuberculosis
infected mice, making it a targeted for host-directed
TB drug strategies (Silvério et al. 2021). MMPI2
(macrophage metalloelastase) gene, participate in cell
migration, leukocyte activation, antimicrobial defence,
and many other crucial processes of immunity and repair
(Parasa et al. 2017). Similarly, CXCLS5, aids in immune

Entrez Transcript id Gene Fisher value Stouffer
symbol value

KEH36_pll COX1 6.65E-06 6.00E-05
NM_001002885.1 TMSB4X  8.30E-05 5.36E-04
NM_001033617.2  CTSC 6.62E-06 1.48E-04
NM_001033618.1 ACTGI1 5.69E-04 3.40E-04
NM_001206640.1 MMP12 0.00E+00  0.00E+00
NM_173893.3 B2M 3.80E-09 1.06E-05
NM_173925.2 CXCLS 0.00E+00  0.00E+00
NM_173969.3 VIM 3.24E-046  7.29E-04
NM_173979.3 ACTB 1.95E-04 1.60E-04
NM_174062.4 FTH1 9.65E-09 1.69E-06
NM_174093.1 IL1B 0.00E+00  0.00E+00
NM_174187.2 SPP1 1.77E-06 6.07E-04
NM_174300.2 CXCLS5 6.73E-12 1.24E-07
NM_174345.4 HSPAS8 1.12E-08 1.09E-05
NM_174431.1 PRDX1 2.24E-08 6.39E-06
NM_174744.2 MMP9 2.67E-06 4.41E-05
NM_001077835.1 CTSZ 7.91E-10 1.08E-05
NM_181016.3 SAA3 1.00E-12 1.07E-07
XM_002691119.5 LOC783680 3.40E-09 2.51E-05
XM_005203612.3  S100A12 2.39E-10 6.80E-07

defence against M. bovis through its involvement in
chemokine mediated immune responses. Studies show that
lungs of CXCL5-deficient mice reconstituted with wild-
type bone marrow produced CXCLS, suggesting that lung
tissue cells and blood-activated platelets release CXCLS5
during infection (Nouailles et al. 2014). Table 3 lists the
top 20 DEGs, with the full list and p-values available in
Supplementary table 1.

Functional annotation and overrepresentation test:
To investigate the functional role of identified DEGS,
statistical overrepresentation test for biological processes,
molecular functions and cellular components was
performed which revealed 1421 significant biological
processes, primarily associated with immune responses.
Notably, 12 genes were associated with natural killer T-cell
activation (GO:0051135; GO:0051133), proliferation
(GO:0051142; GO:0051140) and regulation. Bovine
natural killer cells have been shown to reduce M. bovis
BCG in infected macrophages by acquiring cytotoxic/
effector activity following activation with IL-12/15
(Endsley et al. 2005). Key innate immune response
mechanisms included the regulation of MyD88-dependent
toll-like receptor signalling pathway (GO:0034124),
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TRIF-dependent toll-like receptor signalling pathway
(GO:0035666), regulation of interleukin-1-mediated
signalling pathway (GO:2000659), regulation of T-helper
1 cell cytokine production (GO:2000554), NLRP3
inflammasome complex assembly (GO:0044546), etc.
These pathways are crucial for recognizing pathogens
via PAMPs (pathogen-associated molecular patterns) and
initiating immune response. The MyD88 pathway activates
pro-inflammatory cytokines, while the TRIF pathway
enhances antiviral activity by inducing type I interferons,
demonstrating how innate immunity quickly responds
to pathogens (Chaplin 2010). Genes such as /RF/ and
IRF7 mapped to the MyD88-dependent toll-like receptor
signalling pathway whereas IRF3, TICAMI, TICAM2 and
TLR4 mapped to the TRIF-dependent signalling pathway.
NLRP3 inflammasome, a protein complex aids in body’s
response to infection and cellular damage are activated
by PAMPS or damage-associated molecular patterns
(DAMPs) (Leu ef al. 2023) is essential for processing pro-
inflammatory cytokines such as IL-1J and IL-18, required
for initiation of inflammatory responses, potentiating host
defence against pathogens and maintaining immune system
homeostasis (Paludan et al. 2021). SIRT2, PYCARD and
NLRP3 genes mapped to the NLRP3 inflammasome
complex assembly. The innate immune system defends
against pathogens via these complex network cellular
processes and signalling pathways. This system recognizes
infections, controls inflammation, and triggers adaptive
responses. Understanding these mechanisms is important
for developing of therapeutic strategies against infectious
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agents and inflammatory conditions. Significant molecular
functions (237) included Rho-dependent protein serine/
threonine kinase activity (GO:0072518), proteasome-
activating activity (G0O:0036402), nucleobase binding
(GO:0002054), histone H4 demethylase activity
(GO:0141058), 2’-5’-oligoadenylate synthetase activity
(GO:0001730) as the top five with fold enrichment of
5.88. Thirteen out of 224 significant cellular components
had a fold enrichment of 5.88 (the highest) which included
macrophage migration inhibitory factor receptor complex
(GO:0035692), IkappaB kinase complex (GO:0008385),
bleb (GO:0032059), DSIF complex (GO:0032044), CKM
complex (GO:1990508), etc. Full list of enriched gene
ontologies is provided in supplementary table 2.
Overrepresentation test for Panther pathways identified
36 significant pathways (Fig. 2), included JAK/STAT
signalling pathway, Pentose phosphate pathway, Ubiquitin
proteasome pathway, Toll receptor signalling pathway, P53
pathway feedback loops 1, Interleukin signalling pathway,
etc. as the key pathways. The JAK/STAT signalling
pathway critical for inflammation and immune response
is often supressed by M. bovis through SOCS proteins,
enabling immune invasion. (Hasankhani et al. 2022). The
ubiquitin-proteasome pathway which is responsible for
protein degradation and immunological events play a role in
BTB by regulating the turnover of proteins associated with
apoptosis and inflammation. To enhance its survival within
host macrophages, M. bovis has the potential to manipulate
protein degradation pathways through alterations in
host cell signalling cascades. The ubiquitin proteasome
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Fig. 3(a) Network of all the ten hub genes identified by the MCC algorithm in PPI network. 3(b) Hub genes and its neighbour proteins

in expanded network

pathway mapped to nearly 45 genes in cattle that included
genes related to ubiquitin conjugating enzymes (UBE2V2,
UBE24, UBE2K, UBE2L6, UBE2EI1, UBE2L6, UBE2L3)
and proteasome complex subunits (PSMDS, PSMDII,
PSMC6, PSMC4, PSMD7, PSMCI, PSMDI13, PSMCS3,
PSMD6, PSMD4, PSMD14, PSMD2 and PSMD3).

Hub genes identification from the protein-protein
interaction network: The protein-protein interaction
network consisted of 3512 nodes and 132474 edges with an
average of 37.74 neighbours per node, clustering coefficient
of 0.246 and network density of 0.011. The topological
analysis revealed GAPDH (ENSBTAP00000037577)
node has the highest degree (k = 812) that can be
considered as a hub (Chen et al. 2019) and a bottleneck
(2" highest Betweenness centrality = 0.029) gene. CDC5L
(ENSBTAP00000026654) emerged as the bottleneck gene
with the highest betweenness centrality (BC=0.033) and a
degree (k = 712) higher than average. The top 10% genes
based on degree is given in supplementary table 3.

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase)
beyond its glycolytic role, interacts with the antimicrobial
peptide lactoferrin, enhancing the internalization of the
peptide by macrophages and promoting autophagy for
better intracellular pathogens removal. This process is
necessary in reducing the amount of bacterial burden in
infected cells (Dhiman ef al. 2023). Ten hub genes, namely
PSMB3, PSMDS, PSMA5, PSMAI, PSMB2, PSMA4,
PSMB10, PSMA7, PSMD1 and PSMB4 were identified by
ranking the genes based on the MCC algorithm that are
largely associated with proteasome complex. Hub genes are
often considered essential for the stability and function of
the overall network and may serve as potential biomarkers
or therapeutic targets (Fu et al. 2019). The description of
each hub gene is given in supplementary table 4. Proteases
are highly involved in the breakdown and regulation of
proteins, especially in immunological reactions where
they degrade antigens to make them presentable via the
major histocompatibility complex (MHC) pathway. The

immune system uses a proteasome to degrade destructive
proteins in diseases such as BTB so that immune cells
can construct a defence (Paludan et al. 2021). Thus, these
genes play a very vital role in regulating the host immune
response to M. bovis. Genes encoding 20S proteasome
subunits (PSMB3, PSMB2, PSMB10, and PSMB4) mediate
proteolytic degradation of damaged or misfolded proteins
while proteasome subunits encoded by PSMA1, PSMAS5,
PSMA4, and PSMA7 maintain proteasome structure and
function during infection. Previous studies have reported
the upregulation of proteasomal complex genes such as
PSMB2, PSMB3, PSMA2, PSMD2, PSMDS8, PSMB6 and
PSMBY9 in Mb04-303 (virulent strain of M. bovis) infections
(Blanco et al. 2023). The upregulation of these genes
likely indicates an increased need for antigen processing,
enhancing the immune system’s ability to detect and fight
the infection. However, these genes are also linked to the
ubiquitin proteasome pathway, which pathogens like M.
bovis may exploit to degrade host immune cells, similar
to the mechanism in M. tuberculosis infections in humans.
A thorough investigation of this pathway is needed to
understand its impact on cattle immunity. Figures 3(a)
and 3(b) display a subnetwork of hub-genes and their
interactions with neighbouring genes, respectively.

In the present study, 2520 common DEGs were
identified in meta-analysis, identifying important
immune-related pathways together with important hub
genes involved in BTB pathogenesis. Hub genes such as
those linked with ubiquitin proteasome pathway, present
potential biomarkers and therapeutic targets. Genes
elevated during BTB, like CXCL5 and MMPI12, may
serve as early diagnostic markers of disease progression
and treatment efficacy. Future work can be focussed on
functional validation of the identified DEGs such as by
using CRISPR-Cas9 gene editing methods. This will help
in identifying targets for vaccine development for BTB in
cattle. Thus, this work offers a comprehensive perspective
on the understanding of host-pathogen interactions in the
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situation of BTB and opens novel possibilities for future
research on diagnostics and therapeutic interventions.

REFERENCES

Abdelaal H F M, Thacker T C, Wadie B, Palmer M V and
Talaat A M. 2022. Transcriptional profiling of early and late
phases of bovine tuberculosis. Infection and Immunity 90(2).

Alves G and Yu Y K. 2014. Accuracy Evaluation of the unified
P-value from combining correlated P-values. PLoS ONE 9(3).

Andrews S. 2016. FastQC - A Quality Control Tool for High
Throughput Sequence Data. Available online at: http:/www.
bioinformatics.babraham.ac.uk/projects/fastqc/

Blanco F C, Bigi M M, Garcia E A, Elola M T, Vazquez C L and
Bigi F. 2023. A transcriptional analysis of cattle immune cells
reveals a central role of type 1 interferon in the in vitro innate
immune response against Mycobacterium bovis. Pathogens
12(9): 1159.

Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa H O,
Al-Gaabary M and Matsumoto T. 2022. Review on bovine
tuberculosis: an emerging disease associated with multidrug-
resistant Mycobacterium species. Pathogens 11(7): 715.

Chaplin D D. 2010. Overview of the immune response. Journal of
Allergy and Clinical Immunology 125(2): S3—-S23.

Chen S J, Liao D L, Chen C H, Wang T 'Y and Chen K C. 2019.
Construction and analysis of protein-protein interaction
network of heroin use disorder. Scientific Reports 9(1): 4980.

Dhiman A, Talukdar S, Chaubey G K, Dilawari R, Modanwal R,
Chaudhary S, Patidar A, Boradia V M, Kumbhar P, Raje C [
and Raje M. 2023. Regulation of macrophage cell surface
GAPDH alters LL-37 internalization and downstream effects
in the cell. Journal of Innate Immunity 15(1): 581-598.

Endsley J J, Endsley M A and Estes D M. 2005. Bovine natural
killer cells acquire cytotoxic/effector activity following
activation with IL-12/15 and reduce Mycobacterium bovis
BCG in infected macrophages. Journal of Leukocyte Biology
79(1): 71-9.

FuY, Zhou Q Z, Zhang X L, Wang Z Z and Wang P. 2019.
Identification of hub genes using co-expression network
analysis in breast cancer as a tool to predict different stages.
Medical Science Monitor 25: 8873-90.

Garg P, Vanamamalai V K and Sharma S. 2024. [n-silico analysis
of cattle blood transcriptome to identify IncRNAs and their
role during bovine tuberculosis. Scientific Reports 14(1):
16537.

Hall T J, Vernimmen D, Browne J A, Mullen M P,
Gordon S V, MacHugh D E and O’Doherty A M. 2020.
Alveolar Macrophage Chromatin Is Modified to Orchestrate
Host Response to Mycobacterium bovis Infection. Frontiers
in Genetics 10.

Hasankhani A, Bahrami A, Mackie S, Maghsoodi S,
Alawamleh H S K, Sheybani N, Safarpoor Dehkordi F, Rajabi
F, Javanmard G, Khadem H, Barkema H W and De Donato
M. 2022. In-depth systems biological evaluation of bovine
alveolar macrophages suggests novel insights into molecular
mechanisms underlying Mycobacterium bovis infection.
Frontiers in Microbiology 13.

Kim D, Paggi J] M, Park C, Bennett C and Salzberg S L. 2019.
Graph-based genome alignment and genotyping with HISAT2
and HISAT-genotype. Nature Biotechnology 37(8): 907-915.

Koki T and Itoshi N. 2021. metaSeq: Meta-analysis of RNA-Seq

[Indian Journal of Animal Sciences 95 (2)

count data in multiple studies. R package version 1.34.0.

LeuSY, Tsang Y L, Ho L C, Yang C C, Shao A N, Chang CY,
Lin H K, Tsai P J, Sung J M and Tsai Y S. 2023. NLRP3
inflammasome activation, metabolic danger signals, and
protein binding partners. Journal of Endocrinology 257(2).

Li B and Dewey C N. 2011. RSEM: accurate transcript
quantification from RNA-Seq data with or without a reference
genome. BMC Bioinformatics 12(1): 323.

Nalpas N C, Magee D A, Conlon K M, Browne J A, Healy C,
McLoughlin K E, Rue-Albrecht K, McGettigan P A, Killick
K E, Gormley E, Gordon S V and MacHugh D E. 2015. RNA
sequencing provides exquisite insight into the manipulation of
the alveolar macrophage by tubercle bacilli. Scientific Reports
5(1): 13629.

Nalpas N C, Park S DE, Magee D A, Taraktsoglou M, Browne J A,
Conlon K M, Rue-Albrecht K, Killick K E, Hokamp K, Lohan
A J, Loftus B J, Gormley E, Gordon S V and MacHugh D E.
2013. Whole-transcriptome, high-throughput RNA sequence
analysis of the bovine macrophage response to Mycobacterium
bovis infection in vitro. BMC Genomics 14(1): 230.

Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé K C,
Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf
H J, Vogelzang A, Meyer-Schwesinger C, Mittriicker HW,
McEwen G and Kaufmann S H E. 2014. CXCLS5-secreting
pulmonary epithelial cells drive destructive neutrophilic
inflammation in tuberculosis. Journal of Clinical Investigation
124(3): 1268-1282.

Paludan S R, Pradeu T, Masters S L and Mogensen T H. 2021.
Constitutive immune mechanisms: mediators of host defence
and immune regulation. Nature Reviews Immunology 21(3):
137-150.

Parasa V R, Muvva J R, Rose J F, Braian C, Brighenti S and
Lerm M. 2017. Inhibition of tissue matrix metalloproteinases
interferes  with  Mycobacterium  tuberculosis-Induced
granuloma formation and reduces bacterial load in a human
lung tissue model. Frontiers in Microbiology 8.

Pertea M, Kim D, Pertea G M, Leek J T and Salzberg S L. 2016.
Transcript-level expression analysis of RNA-seq experiments
with HISAT, StringTie and Ballgown. Nature Protocols 11(9):
1650-1667.

Ramanujam H and Palaniyandi K. 2023. Bovine tuberculosis in
India: The need for one health approach and the way forward.
One Health 16: 100495.

Silvério D, Gongalves R, Appelberg R and Saraiva M. 2021.
Advances on the role and applications of interleukin-1 in
tuberculosis. Microbiology and Molecular Biology Reviews
12(6).

Tschopp R, Conlan A J K, Gemechu G, Almaw G, Hattendorf J,
Zinsstag J and Wood J L N. 2021. Effect of bovine tuberculosis
on selected productivity parameters and trading in dairy cattle
kept under intensive husbandry in central Ethiopia. Frontiers
in Veterinary Science 8.

Vijayakumar P, Bakyaraj S, Singaravadivelan A, Vasanthakumar T
and Suresh R. 2019. Meta-analysis of mammary RNA seq
datasets reveals the molecular understanding of bovine
lactation biology. Genome 62(7): 489-501.

World Organisation for Animal Health. World Organisation for
Animal Health. Bovine tuberculosis. Retrieved 24 September
2024, from  https://www.woah.org/fileadmin/Home/eng/
Media_Center/docs/pdf/Disease_cards/BOVINE-TB-EN.pdf



