Effect of replacement of limestone powder with stone grit in diet on production performance and mineral retention in meat type Japanese quails

K PREMKUMAR ^{1⊠}, D KANNAN¹, P VASANTHAKUMAR¹, K RAJENDRAN¹ and S RAMAKRISHNAN¹

Tamil Nadu Veterinary and Animal Sciences University, Namakkal, India, 638 002

Received: 8 November 2024; Accepted: 26 May 2025

ABSTRACT

The effect of replacement of limestone powder (LSP) with stone grit (SG) was studied in Japanese quails for 4 weeks on production performance, cost effectiveness and mineral retention. In this study, 360 days-old chicks were randomly distributed to 5 dietary treatments with 6 replicates having 12 birds each in a completely randomized design. LSP was replaced with 2 mm and 4 mm sized SG at 50% and 100% level in the treatment groups, such that 100% LSP in T₁ (control), 100% SG of 4 mm particle size in T₂, 100% SG of 2 mm in T₃, 50% LSP plus 50% 4 mm stone grit in T₄ and 50% LSP plus 50% 2 mm SG in T₅. Production parameters such as body weight, feed intake, feed efficiency, livability were recorded for four weeks. Metabolic trial was conducted to estimate the calcium, phosphorous and dry matter retention. Birds fed with 100% of either 2 mm or 4 mm stone grit (T₂ and T₂) resulted in significantly higher body weight and body weight gain as compared with only 50% replacement groups (T₄ and T₅), but did not significantly differ with the control (T₁). Cumulative feed intake of birds fed with 4 mm SG (T₂) was significantly higher than 2 mm fed birds (T,). But, feed efficiency, livability, feed cost per kg live weight, cost of production per kg live weight, calcium, phosphorous and dry matter retention per cent were not significantly different among the treatment groups. The study concluded that stone grit can efficiently supply calcium for proper growth of muscles and bones at par with the limestone powder in terms of body weight gain and feed efficiency. So, the limestone powder can be completely replaced by stone grit of 2 mm particle size in the diet of Japanese quails to get optimum production performance.

Keywords: Calcium, Japanese quails, Particle size, Production performance, Stone grit

Japanese quail farming has become popular in Tamil Nadu as they provide quick return on investment, low fat meat and high vitamin eggs with the population of 14.18 lakhs in Tamil Nadu as per 20th Livestock Census in 2019, whereas in India, it was 48.86 lakhs which shows the interest build up over the Japanese quail farming. The meat of diversified birds gets great momentum at this time to satisfy need of protein source by developing hybrid varieties in the market. To exploit the genetic potential, well balanced nutrients especially the mineral calcium ensures optimal growth, health and productivity.

The bioavailability and *in vitro* solubility of calcium differs with the particle size. Fine size of calcium source with higher solubility would impact the bioavailability of both calcium and phosphorus by the formation of calcium-phytate complexes which could lessen the action of phytase (Tamim *et al.* 2004) and also protein digestion by disrupting the acidic environment for effective pepsin activity. Therefore, the particle size of the calcium source is essential to optimize the bioavailability and retention of these minerals, along with better protein digestibility.

Present address: ¹Tamil Nadu Veterinary and Animal Sciences University, Namakkal-638 002, India. [™]Corresponding author E-mail: vediprem@gmail.com

Feeding grit stones would facilitate gizzard development, improve feed grinding, and lower the gizzard pH. Limestone powder (LSP) is commonly used in the ration as fine calcium source containing about 37% calcium in the form of calcium carbonate. Stone grit (SG) available in various particle sizes at lower cost in the market can be an alternative source of calcium as the concentrate and form of calcium is same as that of calcite. However, studies on feeding of coarse particle source of calcium in meat-type Japanese quails are lacking and created a knowledge gap in their effectiveness to improve their growth and mineral retention.

The objective of this research was to study the effect of replacing the fine limestone powder with coarse stone grit of different particle sizes (2 mm and 4 mm) at 50% and 100% levels in meat type Japanese quail ration on production performance, cost effectiveness and mineral retention.

MATERIALS AND METHODS

The biological experiment was conducted at Poultry farm complex, Veterinary College and Research Institute, Namakkal, Tamil Nadu, India. In this experiment, 360 numbers of day-old unsexed "TANUVAS Namakkal Quail-1" chicks were reared in a completely randomized

design containing five treatment groups with six replicates of 12 birds in each. This study was approved by the Institutional Animal Ethics Committee (IEAC) of Veterinary College and Research Institute, Namakkal (No.16/VCRI/NKL/2024).

The dietary calcium of 1% was provided to dietary treatments as follows. T $_1$ -100% LSP (control), T $_2$ -100% SG with 2 mm size for first 2 weeks, then 4 mm size for next 2 weeks, T $_3$ -100% SG with 2 mm size for 4 weeks, T $_4$ -50% LSP plus 50 % SG with 2 mm size for first 2 weeks then 4 mm size for next 2 weeks, T $_5$ -50% LSP plus 50 % SG with 2 mm for 4 weeks.

The birds were reared under standard uniform management conditions in cage system up to four weeks period. The iso-caloric and iso-nitrogenous basal experimental diet was formulated for both starter (0 to 2 weeks) and finisher phase (2 to 4 weeks). The fine calcium source in the diet, calcite was replaced with stone grit of particle sizes, 2 mm and 4 mm at two different levels, 50% and 100%. All birds were fed *ad-libitum* on a maize-soya based diet containing 1% calcium and 0.40% non-phytate phosphorus, as per Japanese quail breeder specifications (Thomas *et al.* 2022).

Feed intake and mortality were recorded daily. Body weight and residual feed were recorded at weekly intervals. Production performances like body weight and body weight gain, feed conversion ratio, livability were calculated for each replicate. Livability percentage was calculated every week on cumulative basis by the following method:

$$\label{eq:live} \mbox{Livability \%} = \frac{\mbox{No. of birds alive at the end of each week}}{\mbox{No. of birds initially housed}} \times 100$$

The cost effectiveness was assessed by the parameters such as feed cost per kg live weight, cost of production per kg live weight, cost of production per bird and benefitcost ratio. Feed cost per kg live weight was calculated by multiplying actual feed cost per kg and feed efficiency at end of fourth week. Cost of production per bird was calculated by adding day old chick cost, feed cost, brooding cost and other inputs. Cost of production per kg live weight was calculated by adding feed cost and chick cost per kg live weight. Chick cost per kg live weight was calculated by dividing the total chick cost by total weight of birds (kg) at the end of fourth week in each replicate. Benefit: cost ratio was calculated by dividing the total income by total expenses in each replicate. The cost of stone grit and limestone powder per kg were Rs 4.30 and Rs 5.18 respectively. The chick cost was Rs 7 per chick. The brooding and maintenance cost per bird was assumed as Rs 2 per bird. The sale price of live bird was Rs 35 per bird or Rs 200/kg live weight.

At the end of 4 weeks, a metabolic trial was conducted with 270 birds which were divided into five treatments with 6 replicates having 9 birds (5 males and 4 females) in each. The quantified treatment specific experimental feed was given to all treatments at the same time. Dry polythene sheet was spread under the cages with clear cut demarcations for

collection of faeces at 24 hours interval for 3 days. Daily feed and cumulative feed intake were measured. The intake of calcium and phosphorus was calculated by multiplying the feed intake with its Ca and P content, divided by 100 (Pastore *et al.* 2012). The fresh weight of excreta was taken in each replicate. An aliquot of 100 g was prepared from each sample and dried in hot air oven at 55°C for 72 hours. After exposed to air to attain equilibrium, aliquots were weighed and ground. Subsequently, the dry matter, and Ca and P were determined as per the method of AOAC (2019).

The data collected on various parameters were statistically analyzed by one-way ANOVA method in SPSS 20th version and the means of different experimental groups were tested for statistical significance by Duncan's multiple range test (Duncan 1955).

RESULTS AND DISCUSSION

Body weight and body weight gain: The Japanese quails fed with 100% replacement of either 2 mm or 4 mm size SG (T₂ and T₃) resulted in significantly ($p \le 0.01$) higher body weight and body weight gain at 2, 3, and 4 weeks of age as compared to Japanese quails that received 50% replacement (T4 and T5), but it was not significant with control (T₁) indicating that complete replacing of fine LSP with coarse SG of both 2 mm and 4 mm size did not affect the growth performance in terms of body weight body as long as the optimum calcium level in the diet was maintained (Table 1). Similar non significant results were observed in layers (Olgun et al. 2015), in broilers (Rezvani et al. 2019, Poudel et al. 2022) after feeding with different combinations of finer and coarser limestone and in European quails (Mendonca et al. 2022) by feeding five different calcium sources.

The Japanese quails fed with stone grit replacement at 50% (T_4 and T_5) had significantly ($p \le 0.01$) lower body weight and body weight gain as compared with 100% replacement groups or control suggesting that partial replacement (50%) was less effective due to failure of adaptation and poor appetite. However, Karim and Abdulla (2024) found that replacement of limestone with coarser eggshell at 0, 50 and 100% levels did not significantly affect body weight or weight gain in broilers which is contrast to the present results.

The present study revealed that the particle size of stone grit did not influence the body weight in both replacement levels. In contrast, significantly higher body weight was observed in European quails (Leao *et al.* 2020) and in layers (Khanal *et al.* 2020) upon feeding coarser limestone. But, Manangi and Coon (2007) demonstrated that broiler chicks fed medium CaCO₃ particle sizes (137-388 μm) had significantly increased weight gains when compared to smaller (28 μm) or larger (1306 μm) particles. The beneficial effects of coarser calcium source were explained by better protein digestion (Selle *et al.* 2009), better calcium and phosphorous availability (Tamim *et al.* 2004), better fat absorption (Hamdi *et al.* 2018) and better grinding and enzymatic action in the gizzard (Rutkowski and Wiaz 2001).

Table.1 Mean (±S.E.) of body weight (g), body weight gain (g) and feed conversion ratio of meat type Japanese quails fed diet with different sizes and inclusion levels of stone grit

Age (in weeks)	T_{1}	T_2	T_3	T_4	T_5	<i>p</i> -Value
		Bod	ly weight (g)			
Day 1	9.21 ± 0.03	9.16 ± 0.03	9.18 ± 0.06	9.21 ± 0.05	9.18 ± 0.05	0.935
I	$24.44^{\circ}\pm1.24$	$25.03^{\circ} \pm 0.45$	$23.99^{BC} \pm 1.02$	$20.72^{A}\pm0.59$	$21.77^{AB} \pm 0.67$	0.005
II	$56.26^{B}\pm2.03$	$59.70^{\mathrm{B}} \pm 0.72$	$57.10^{B}\pm1.58$	$48.38^{A}\pm1.62$	$49.13^{A}\pm.60$	≤ 0.01
III	$103.08^{B}\pm2.43$	$103.78^{\mathrm{B}} \pm 2.23$	$105.29^{B}\pm2.77$	94.23 ^A ±1.22	95.51 ^A ±2.65	0.005
IV	$170.54^{\mathrm{B}} \pm 2.48$	$174.74^{B}\pm1.34$	$171.38^{B}\pm3.38$	161.95 ^A ±2.44	$162.95^{A}\pm1.98$	0.003
		Body v	weight gain (g)			
I	15.23°±1.24	15.86°±0.43	$14.81^{BC} \pm 0.98$	11.52 ^A ±0.62	$12.59^{Ab} \pm 0.64$	0.004
II	$47.05^{B}\pm2.02$	$50.53^{\mathrm{B}} \pm 0.70$	$47.92^{B}\pm1.54$	39.18 ^A ±1.64	39.95 ^A ±1.59	≤ 0.01
III	$93.87^{\mathrm{B}} \pm 2.43$	$94.62^{B}\pm2.23$	96.11 ^B ±2.74	85.02 ^A ±1.23	86.34 ^A ±2.62	0.005
IV	161.33 ^B ±2.48	165.58 ^B ±1.33	162.19 ^B ±3.34	152.74 ^A ±2.44	153.78 ^A ±1.98	0.003
		Cumulative	feed consumption((g)		
I	$43.18^{bc} \pm 1.35$	45.58°±1.57	$41.15^{abc}\pm2.21$	$38.18^a \pm 1.53$	$39.60^{ab} \pm 0.69$	0.02
II	137.76 ^{bc} ±3.77	144.03°±1.87	$134.58^{abc} \pm 4.46$	126.52°±2.76	$130.68^{ab} \pm 3.49$	0.013
III	$282.29^{ab} \pm 5.99$	287.68b±3.21	267.51°±6.36	267.03°±5.69	267.52°±4.97	0.024
IV	$460.93^{ab} \pm 7.13$	472.06 ^b ±2.92	$449.37^{a}\pm8.33$	446.12°±6.38	444.37°±5.78	0.024
		Feed c	onversion ratio			
I	$2.92^{bc} \pm 0.52$	$2.88^{c}\pm0.30$	$2.80^{abc} \pm 0.21$	$3.37^{a}\pm0.63$	$3.18^{ab} \pm 0.37$	0.156
II	$2.95^{AB} \pm 0.13$	$2.85^{A}\pm0.06$	2.81 ^A ±0.05	$3.25^{BC} \pm 0.11$	$3.29^{\circ}\pm0.14$	0.005
III	3.01 ^b ±0.07	$3.05^{b}\pm0.08$	$2.79^a \pm 0.04$	$3.14^{b}\pm0.05$	3.11b±0.09	0.014
IV	2.86 ± 0.05	2.85 ± 0.02	2.77 ± 0.02	2.92 ± 0.05	2.89 ± 0.04	0.094

Each value is the mean of 6 observations. Values in each row having common superscript do not differ significantly; Superscripts of lower-case letters denote the significance at $p \le 0.05$ and uppercase letters for $p \le 0.01$

But these beneficial effects were not enough to result in significantly higher body weight or body weight gain in this study of Japanese quails suggesting that the established calcium and phosphorous homeostasis mechanisms had balanced the release of calcium ions as well as gizzard pH differences. This study concluded that 100% replacement of LSP with 2 mm and 4 mm SG was better in growth performance but, not surpassed the control.

Feed intake: There was no significant difference $(p \ge 0.05)$ in feed intake between T, and T, in the first and second week of age, whereas significantly $(p \le 0.05)$ increased feed intake (7.54% and 5.05%) was found in T, during third and fourth weeks of age as compared with T₃. This clearly indicated that the particle size of the stone grit significantly influenced the feed intake since the Japanese quails in T, were given 4 mm stone grit in third and fourth weeks. The increased feed intake might be due to substantial impact of particle size on the birds' appetite for calcium requirements. Similar results were found by deAraujo et al. (2011), Saki et al. (2019) and Poudel et al. (2022) who reported that increased feed intake in layers due to larger particle size as compared to finer particle size, whereas higher feed intake with fine particle was observed by Geraldo et al. (2006) which was contradictory to the present findings. However, no significant difference in feed intake was observed in Japanese quails (Berto et al. 2007), European quails (Leao et al. 2020, Mendonca et al. 2022)

and in layers (Pizzolante *et al.* 2009, Pacheco *et al.* 2020) with respect to particle size of calcium source. In this study also, there was no significant difference between control (T_1) and 100% replacement groups (T_2) and (T_3) which inferred that Japanese quails can adapt themselves by changing the calcium homeostasis mechanisms to balance the changes in the particle size of coarser stone grit as that of finer calcite without significant change in feed intake.

The cumulative feed intake of 50% replacement groups T_4 and T_5 had significantly lower feed intake (P \leq 0.05) as compared with control (T₁) and 100% replacement group (T₂). This might be due to the difference in the bird's appetite for calcium when both fine and coarse calcium sources were fed. This result coincided with the findings of Maranan et al. (2021) that 75% replacement of limestone with eggshell significantly reduced the feed intake in broilers. However, no significant difference in feed intake was recorded by replacing the finer with coarser limestone up to 70% (Pelícia et al. 2007), finer limestone with marine calcium source up to 60% in layers (Pelícia et al. 2009) and limestone with eggshell up to 100% in broilers (Karim and Abdulla 2024). This study suggested that the SG can be used as an alternative to the LSP as 100% replacement rather than 50 % replacement for optimum feed intake of Japanese quails.

Feed conversion ratio: The replacement of LSP with 2 mm and 4 mm size SG at 100% and 50% levels had no

significant effect on feed conversion ratio at 4 weeks of age $(p \ge 0.05)$. Similar non-significant observations on feed conversion ratio were noticed by Sousa et al. (2019) in layers, Mendonca et al. (2022) in non-sexed European quails and Karim and Abdulla (2024) in broilers. However, at 3 weeks of age, 100% (2 mm) SG replacement group (T₂) had significantly better feed conversion ratio ($p \le 0.01$) compared to other replacement groups and control. The improved feed efficiency on feeding coarse calcium source might be due to better digestibility of protein (Walk et al. 2012) by maintaining ideal pH in the proventriculus for pepsin activity and more bioavailability of phosphorous during the younger age, as the younger birds lack endogenous phytase enzyme to breakdown calcium phytate complexes (Tamim et al. 2004). Similar results of significantly better feed efficiency by feeding coarse calcium sources were demonstrated by Barshan et al. (2019) and Hu et al. (2020) in broilers, Wang et al. (2014) in ducks and Leao et al. (2020) in European quails indicating that calcium source and particle size influenced the feed efficiency across the species. However, the numerically better feed efficiency found in 100% stone grit replacement group (T₃) was not significant ($p \ge 0.05$) when compared with both 50% and control group at 4 weeks of Japanese quails.

Livability: The livability % was not significantly influenced by the replacement level or particle size (P>0.05) in this study (Table 2). The result was consistent with previous findings of Pelícia et al. (2007) in Hy-Line layers fed with diets replacing of calcitic limestone (0.18mm) with marine calcium source (0.4 mm) at 0, 15, 30, 45, and 60% level. Pizzolante et al. (2009) in layers feeding with different particle sizes of limestone during second production cycle and Fallah et al. (2018) in broilers by feeding limestone and oyster shell as calcium source. On the contrary, Manangi and Coon (2007) found the highest mortality percentage in broilers fed with the largest particle-sized limestone (1306 µm), whereas Kermanshahi and Golian (2011) reported that the mortality of laying hens in limestone treatment was greatest (13.89%) and lowest in oyster shell + filter mud treatment. The mortality

observed in this study was due to some other factors like dehydration, heat stress, cannibalism etc. So, the particle size of calcium source and replacement levels had no adverse effects leading to mortality.

Cost effectiveness: The feed cost per kg live weight did not differ significantly ($p \ge 0.05$) by feeding SG at different replacement levels and particle sizes, But, the cost of production per kg live weight and benefit: cost ratio were significantly better ($p \le 0.05$) in 100% SG replacement (T_3) group when compared to 50 % replacement groups. The reason might be due to better feed efficiency and livability in T_3 . The production cost per bird was significantly reduced (3.8, 4.1%) in 50% replacement groups T_4 and T_5 than 100% replacement group T_2 and not lower than control group. The reason might be due to reduced cumulative feed consumption in T_4 and T_5 . Another finding was that the replacement of SG at either 50% or 100% did not reduce the cost of production, because the cost of LSP and SG per kg was more or less same (Rs. 5.18 Vs 4.30).

The study of Moura et al. (2020) in Japanese quail layers was in parallel with the present findings in that partial substitution (25% and 50%), replacing limestone with eggshell powder improved ($p \le 0.05$) the economic feed efficiency index In contrast, Islam and Nishibori (2021) concluded that 8% eggshell group performed the best among the different dietary groups in terms of production cost and net profit in layers. Muthukumar et al. (2017) found that the cost of production per bird in small, medium and large Japanese quail farms were Rs 28.16, 27.88 and 25.21 respectively, whereas the average production cost per bird in control, 100% and 50% replacement groups were Rs 27.00, 26.98 and 26.39. The higher cost of production per bird as compared with the present study might be due to the addition of interest amount on the fixed cost and depreciation cost. The replacement of LSP with SG at 100% and 50% level in the diet of Japanese quails did not significantly ($p \ge 0.05$) improve the economical parameters when compared to control group because the feed efficiency and feed cost per kg live weight were insignificant in all treatment groups at the marketing age of 4 weeks.

Table 2. Mean (±S.E.) livability (%) and cost effectiveness parameters of meat type Japanese quails fed diet with different sizes and inclusion levels of stone grit

Age (in weeks)	T_1	T_2	T_3	T_4	T_5	<i>p</i> -Value		
Livability %								
I	100	100	100	100	100	-		
II	100	98.61 ± 1.39	100	98.61 ± 1.39	100	0.567		
III	97.22 ± 1.76	98.61 ± 1.39	100	97.22 ± 1.76	100	0.339		
IV	97.22 ± 1.76	98.61±1.39	100	97.22 ± 1.76	98.21	0.673		
Cost Effectiveness								
Feed cost per kg live weight (Rs.)	111.65 ± 1.91	111.30 ± 0.78	108.18 ± 0.79	114.12 ± 1.82	112.87 ± 1.67	0.091		
Production cost per kg live weight (Rs.)	$154.02^{abc}\!\!\pm\!2.98$	$151.98^{ab}\!\!\pm\!1.02$	$149.10^{a} \pm 1.36$	158.71°±2.43	$156.51^{bc}\!\!\pm\!2.02$	0.029		
Production Cost per bird (Rs.)	$27.00^{ab}\!\!\pm\!\!0.28$	$27.43^{b}\pm0.11$	$26.54^a \pm 0.33$	$26.42^a \pm 0.25$	$26.35^a \pm 0.23$	0.025		
Benefit : cost ratio	$1.26^{abc} \pm 0.02$	$1.27^{bc} \pm 0.01$	1.29°±0.01	1.23°±0.02	$1.24^{ab} \pm 0.01$	0.026		

Each value is the mean of 6 observations; Value in each row having common superscript do not differ significantly

Mineral retention: The particle size and replacement levels of stone grit had no significant ($p \ge 0.05$) difference on calcium, phosphorous and dry matter retention percentage in Japanese quails which was similar to the findings of Manangi and Coon (2007) and Khalil and Anwar (2009) who noticed that the particle size of limestone or oyster shell had no significant effect on calcium and phosphorous retention in broilers. On the contrary, significant improvement ($P \le 0.05$) in phosphorous retention in layers was found by Lichovnikova (2007) with ratio of 32:68 fine limestone: eggshell. Significantly higher calcium retention (P<0.01) was observed in broilers by Rezvani et al. (2019) on feeding eggshell and by Hakami et al. (2022) on feeding the marine calcium source Celtical at 0.2% and 0.4% and in layers by Roland and Bryant (2000) by feeding oyster shell.

However, significantly ($p \le 0.01$) higher dry matter, calcium and phosphorous intake and retention (g/day) were found in 100% replacement group T_2 when compared to 50% replacement group T_4 . This higher intake might be due to greater body weight at 4 weeks of age. The calcium retention % was numerically higher in 100% replacement groups T_2 and T_3 when compared to other treatment groups regardless of the particle size of stone grit indicating that particle size within this range (2 mm to 4 mm) did not strongly influence calcium retention. This result differed from the previous findings that feeding finer particles of limestone had more retention of calcium and phosphorous in broilers with fine particle sizes (Majeed *et al.* 2020, Hu *et al.* 2022).

The phosphorous retention (g/day) was significantly higher ($p \le 0.05$) in T_2 when compared with control indicating that the coarser particles of calcium source enhanced calcium and phosphorous availability as evidenced by Kim *et al.* (2018) and Manangi and Coon (2007) due to

lesser formation of calcium phosphate (Selle *et al.* 2009) and calcium-phytate complex (Tamim *et al.* 2004) and this concept was supported by the findings of Manangi *et al.* (2018) who noticed that feeding larger particle-size reduced the phosphorus content of broiler excreta without affecting calcium content.

The excretion of calcium, phosphorous and dry matter were not significant ($p \ge 0.05$) in all treatments indicating that replacement with stone grit irrespective of particle size promoted the absorption of dry matter and minerals as equivalent to that of control group (Table 3). This finding was in contrast with Moura *et al.* (2020) who reported that replacing limestone with eggshell powder in Japanese quail diet increased calcium excretion linearly with higher calcium wastage at 100% replacement. Rezvani *et al.* (2019) found that dry matter digestibility was significantly higher in broilers replaced with eggshell as calcium source compared to birds with oyster shells ($p \le 0.05$). This was contradictory with the present study since the dry matter retention was not significant within the stone grit replaced groups and the control group.

There seems to be a mixed consensus on particle size effects, with some studies showing that finer particles improved calcium and phosphorus digestibility and some authors proved coarser particles improved the calcium and phosphorous retention. The differences might be due to the variation in the *in-vivo* solubility, pH of the gizzard, calcium and phosphorous levels in the feed, age, species and calcium requirements of the body. This study inferred that particle size did not significantly ($p \ge 0.05$) impact calcium, phosphorus retention or excretion as long as the calcium and non-phytate phosphorous in the feed was maintained at 1% and 0.4%, respectively.

The study concluded that Japanese quails fed, a diet in which limestone powder was fully (100%) replaced with

Table 3. Mean (±S.E.) of dry matter and mineral retention studies of meat type Japanese quails fed diet with different sizes and inclusion levels of stone grit

Mineral retention	T_1	T_2	T_3	T_4	T_5	<i>p</i> -Value
		Са	lcium			
Calcium intake (g/day)	$3.032^{AB} \pm 0.044$	$3.335^{\circ}\pm0.068$	$3.255^{BC} \pm 0.061$	2.877 ^A ±0.126	$3.240^{\rm BC}\!\!\pm\!0.038$	0.001
Calcium excreted g/day)	1.86 ± 0.125	$1.892 \pm .021$	1.813 ± 0.059	1.975 ± 0.098	1.977 ± 0.115	0.673
Calcium retention (g/day)	$1.165^{ab}\!\!\pm\!\!0.118$	$1.443^{b} \pm 0.069$	$1.442^{b} \pm 0.036$	$0.902^{a} \pm 0.194$	$1.263^{ab} \pm 0.117$	0.02
Calcium retention (%)	38.46 ± 3.98	43.16 ± 1.32	44.33±1.12	30.46 ± 5.09	38.97 ± 3.46	0.059
		Phos	phorus			
Phosphorus intake (g/day)	$1.408^{A}\pm0.020$	$1.623^{\mathrm{B}} \pm 0.035$	$1.602^{\mathrm{B}} \pm 0.021$	$1.398^{A}\pm0.061$	$1.577^{\mathrm{B}} \pm 0.019$	≤ 0.01
Phosphorus excreted (g/day)	0.888 ± 0.052	0.908 ± 0.040	1.012 ± 0.054	0.942 ± 0.037	0.975 ± 0.051	0.377
Phosphorus retention (g/day)	$0.520^a \pm 0.043$	$0.715^{b} \pm 0.020$	$0.590^{ab} {\pm} 0.041$	$0.457^{a} \pm 0.078$	$0.602^{ab}\!\!\pm\!0.057$	0.021
Phosphorus retention (%)	37.01 ± 3.22	44.16 ± 1.64	36.95±2.80	32.00 ± 4.00	38.09 ± 3.37	0.133
		Dry	matter			
Dry matter intake (g/day)	$192.55^{B}\pm2.78$	$196.88^{\mathrm{B}} \pm 4.05$	$191.94^{\mathrm{B}} \pm 3.56$	169.83 ^A ±7.43	$191.33^{B}\pm2.25$	0.002
Dry matter excreted (g/day)	64.48±3.31	64.15±1.26	64.39±1.99	64.91±2.49	66.47±3.97	0.977
Dry matter retention (g/day)	$128.07^{\mathrm{B}} \pm 2.72$	132.73 ^B ±3.34	127.55 ^B ±2.76	104.92 ^A ±9.00	$124.86^{B}\pm5.18$	0.008
Dry matter retention (%)	66.55±1.49	67.39 ± 0.52	66.45±0.80	61.31±2.46	65.20±2.21	0.119

Each value is the mean of 6 observations, Values in each row having common superscript do not differ significant. Superscripts of lower case letters denote the significance at $p \le 0.05$ and uppercase letters for $p \le 0.01$

stone grit, performed better than those receiving only a 50% replacement. As the feed efficiency, livability, cost of production, and benefit: cost ratio of birds fed with 2 mm stone grit were numerically superior to those fed with 4 mm grid, it is recommended that limestone powder can be safely replaced with 2 mm stone grit at a 100% inclusion level in the diet of meat type Japanese quaile to achieve optimum production performance.

REFERENCES

- 20th Livestock Census All India Report. 2019. Ministry of Fisheries, Animal Husbandry and Dairying, Department of Animal Husbandry and Dairying, Animal Husbandry Statistics Division, Krishi Bhavan, New Delhi.
- AOAC. 2019. Official Methods of Analysis, Association of Official Analytical Chemists, 19th Edn., Washington, D. C, USA.
- Barshan S, Khalaji S, Hedayati M and Yari M. 2019. Influence of bone meal gelatinization and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. *British Poultry Science* **60**(3): 297-308.
- Berto D A, Garcia E A, Mori C A, Faitarone A B G, Pelícia K and Molino A B. 2007. Performance of Japanese Quails Fed Feeds Containing Different Corn and Limestone Particle Sizes. *Brazilian Journal of Poultry Science* **9**(3): 167-71.
- deAraujo J A D, Silva J H V D, Costa, F G P, Sousa J M B.D, Givisiez, P E N and Sakomura, N. K. 2011. Effect of the levels of calcium and particle size of limestone on laying hens. *Revista Brasileira de Zootecnia*, **40**: 997-1005.
- Duncan D B. 1955. Multiple range and Multiple F-tests. *Biometrical*, 11: 1-42.
- Fallah H, Karimi A, Sadeghi G H and Behroozi-Khazaei N. 2018. The effects of calcium source and concentration on performance, bone mineralisation and serum traits in male broiler chickens from 1 to 21 days of age. *Animal Production Science* **59**(6): 1090-7.
- Geraldo A, Bertechini A.G, Kato R K, De Brito J A G and Fassani E J. 2006. Effect of calcium levels and particle size of limestone on egg production and quality in pullets. *Revista Brasileira de Zootecnia*, **35**: 1720-7.
- Hakami Z, Al Sulaiman A R, Abdulrahman Y, Alharthi S, Casserly R, Meike Z, Bouwhuis A and Abudabos, A M. 2022. Growth performance, carcass and meat quality, bone strength, and immune response of broilers fed low-calcium diets supplemented with marine mineral complex and phytase. *Poultry Science*, **101**: 101849.
- Hamdi M, Perez J F, Letourneau-Montminy M P,
 Franco-Rossello R, Aligue R. and Sola-Oriol D. 2018.
 The effects of microbial phytases and dietary calcium and phosphorus levels on the productive performance and bone mineralization of broilers. *Animal feed science and technology*, 243: 41-51.
- Hu Y, Bikker X, Duijster P, Hendriks M, Van Baal J W H and Van Krimpen M M. 2020. Coarse limestone does not alleviate the negative effect of a low Ca/P ratio diet on characteristics. of tibia strength and growth performance in broilers. *Poultry science*, **99**(10): 4978-89.
- Islam M A and Nishibori M. 2021. Use of extruded eggshell as a calcium source substituting limestone or oyster shell in the diet of laying hens. *Veterinary Medicine and Science* 7: 1948-58.

- Karim K K and Abdulla N R. 2024. Effect of using different levels of egg shell as calcium sources in broiler diet on growth performance, blood parameters and bone characteristics, *Kufa Journal for Agricultural Sciences* **16**(2): 41-54.
- Kermanshahi and Golian A G. 2011. Effects of various sources of calcium upon egg shell quality and laying hen performance, pp.147-158, Spelderholt Jubilee Symposia Doorwerth, Centre for Poultry Research and Information Services, Beekbergen, The Netherlands.
- Khalil K and Anwar S. 2009. Limestone of bukitkamang as a calcium source for laying hens. *Journal of Indonesian Tropical Animal Agriculture* **34**:174-80.
- Khanal T, Bedecarrats G Y, Widowski T M and Kiarie E G. 2020. Rearing cage type and dietary limestone particle size: effects on egg production, eggshell, and bone quality in Lohmann selected Leghorn-Lite hens. *Poultry science*, **99**(11): 5763-70.
- Kim S W, Li W, Angel R and Proszkowiec-Weglarz M. 2018. Effects of limestone particle size and dietary Ca concentration on apparent P and Ca digestibility in the presence or absence of phytase. *Poultry Science* 97: 4306-14.
- Leao A P A, Lana S R V, Lana G Q, De Barros Junior R F, Mendonca D D S and Oliveira T J D. 2020. Digestibility and bioavailability of organic calcium sources for European quails. *Semina: Ciencias Agrarias*, **41**(6): 3275-84.
- Lichovnikova M. 2007. The effect of dietary calcium source, concentration and particle size on calcium retention, eggshell quality and overall calcium requirement in laying hens. Brazilian Journal of Poultry Science 48: 71-5.
- Majeed S, Qudsieh R, Edens F W and Brake J. 2020. Limestone particle size, calcium and phosphorus levels, and phytase effects on live performance and nutrients digestibility of broilers. *Poultry Science*, **99**(3): 1502-14
- Manangi M K and Coon C N. 2007. The effect of calcium carbonate particle size and solubility on the utilization of phosphorus from phytase for broilers. *International Journal of Poultry Science* 6: 85-90.
- Manangi M K, Maharjan, P and Coon C N. 2018. Calcium particle size effects on plasma, excreta, and urinary Ca and P changes in broiler breeder hens. *Poultry Science* **97**: 2798-2806.
- Maranan K R A, Bueno C M, Adiova C B and Recuenco M C. 2021. Effect of increasing levels of eggshell powder on the production performance, carcass characteristics, and bone properties of broiler chicken. *Philippine Journal of Veterinary* and Animal Sciences 47(2): 1-15.
- Mendonca D D S, Lana S R V, Lana G R Q, Leao A P A, Barros Junior R F D, Lima L A D A, Ayres I C D B, Santos D S and Silva W A D. 2022. Different calcium sources on the productive performance and bone quality of meat quail. Ciencia Rural, Santa Maria 52: 6.
- Moura G R S, Reis R D S, Mendonca M D O, Salgado H R, Abreu K D S, Madella G D S and Lima M B D. 2020. Substitution of limestone for eggshell powder in the diet of Japanese laying quails, *Revista Brasilerira Saude Producao Anima* 21: 1-13.
- Muthukumar S, Ramesh J, Srinivasan G, Thilakar P and Hudson G H. 2017. Economic Appraisal of Japanese Quail Production in Tamil Nadu state, India. *Indian Journal of Economics and Development* **13**(2): 381-6.
- Olgun O, Yildiz A O and Cufadar Y. 2015. The effects of eggshell and oyster shell supplemental as calcium sources on performance, eggshell quality and mineral excretion in laying hens. *Indian Journal of Animal Research* **49**(2): 205-9.
- Pacheco D B, Bastos-Leite S C, Oliveira J V A, Farias M R S,

- Sena T L, Abreu C G, Freitas E R and Cordeiro C N. 2020. Different Calcium Levels and Two Limestone Granulometries in the Diet of Laying Hens: Performance and Bone Characteristics. *Brazilian Journal of Poultry Science* **24**(2): 1-8.
- Pastore S M, Gomes P C, Rostagno H S, Albino L F T, Calderano A A, Vellasco C R, Viana G D S and Almeida R L D. 2012. Calcium levels and calcium: available phosphorus ratios in diets for white egg layers from 42 to 58 weeks of age. Revista Brasileira de Zootecnia, 41(12): 2424-32.
- Pelícia K, Garcia E A, Scherer M R S, Mori C, Dalanezi J A, Faitarone A B G and Berto D A. 2007. Alternative calcium source effects on commercial egg production and quality. *Brazilian Journal of Poultry Science* 9: 105-9.
- Pelícia K, Garcia E, Mori C, Faitarone A B G, Silva A P, Molino A B and Berto D A. 2009. Calcium levels and limestone particle size in the diet of commercial layers at the end of the first production cycle. *Brazilian Journal of Poultry Science* 11: 87-94.
- Pizzolante C C, Saldanha E P S B, Lagana C, Kakimoto S K and Togashi C K. 2009. Effects of calcium levels and limestone particle size on the egg quality of semi-heavy layers in their second production cycle. *Brazilian Journal of Poultry Science* 11(2): 79-86.
- Poudel I, McDaniel C D, Schilling M W, Pflugrath D and Adhikari P A. 2022. Role of conventional and split feeding of various limestone particle size ratios on the performance and egg quality of Hy-Line W-36 hens in the late production phase. *Animal Feed Science and Technology* **283**: 115-53.
- Rezvani M R, Moradi A and Izadi M. 2019. Ileal digestibility and bone retention of calcium in diets containing eggshell, oyster shell or inorganic calcium carbonate in broiler chickens. *Poultry Science* 7(1): 7-13.
- Roland D A and Bryant M. 2000. Nutrition and feeding for

- optimum eggshell quality, pp. 1-9, Proceedings of the XXI Worlds Poultry Congress, 20-24th September 2000, Montreal, Canada.
- Rutkowski A and Wiaz M. 2001. Effect of feeding whole or ground wheat grain on the weight of the gizzard and pH of digesta in broiler chickens. *Journal of Animal and Feed Sciences* 10(Suppl.2): 285-9.
- Saki A, Rahmani A and Yousef A. 2019. Calcium particle size and feeding time influence egg shell quality in laying hens. Acta Scientiarum, Animal Sciences 41: e42926.
- Selle P H, Cowieson A J and Ravindran V. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. *Livestock science* 124(1-3): 126-41.
- Sousa L S, Carvalho D T, Nogueira F A, Saldanha M M, Vaz D P, Bertechini A G, Baião N C, and Lara L J C. 2019. Fiber source and xylanase on performance, egg quality, and gastrointestinal tract of laying hens. Revista Brasileira de Zootecnia 48: e20170286.
- Tamim N M, Angel R. and Christman M. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. *Poultry science* 83(8): 1358-67.
- Thomas K S, Amutha R., Purushothaman M R, Jagatheesan P R and Valavan S E. 2022. Production performance of TANUVAS Namakkal Gold Japanese quail fed diet with different levels of energy and lysine. *Indian Journal of Veterinary and Animal Sciences Research* **51**(2): 51-9.
- Walk C L, Addo-Chidie E K, Bedford M R, and Adeola O. 2012. Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens. *Poultry Science* 91: 2255-63.
- Wang S., Chen W, Zhang H X, Ruan D and Lin Y C. 2014. Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. *Poultry Science* 93: 2560-6.