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ABSTRACT

Development of vast varieties of high-yielding commercial poultry germplasm can be attributed to rapid
selection and controlled breeding. However, their maximum genetic production potential has not been achieved
so far. The present study was conducted to analyze polymorphisms in egg production associated microsatellite
markers in the sampled population of the selected strain of Rhode Island Red (RIR) chicken and to determine the
association between various genotypes of polymorphic markers and layer production traits. One hundred and eleven
pullets belonging to five hatches of RIR, maintained at the institute’s farm were used and data on body weight at
20 weeks of age (BW20) and layer economic traits. Age at sexual maturity (ASM), egg weight at 28 and 40 weeks
of age (EW28, EW40) and egg production up to 40 weeks of age (EP40) were analyzed by least squares analysis
of variance taking sire as random and hatch as fixed effects. Average ASM and EP40 were 135.19+1.15 days and
124.55+1.94 eggs, respectively. The BW20 revealed low, but positive genetic as well as phenotypic correlations with
EP40 thereby suggested its usefulness as a selection criterion for genetic improvement of egg production. All egg
production-associated microsatellite loci revealed polymorphism and exhibited a prevalence of heterozygosity. The
studied population demonstrated Hardy-Weinberg disequilibrium. Genotypes at two microsatellite loci ADL0023
and ADL0273 demonstrated significant effects on layer economic traits suggesting the probable usefulness of these
microsatellite markers polymorphism in marker-assisted selection for genetic improvement of egg production in

RIR chicken.
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Poultry is one of the fastest growing sectors in India
which plays a significant role in ensuring food-security.
Total poultry population of the country is 851.81 million,
which has an increase of 16.81% over previous census of
2012 (20" Livestock census 2019). Annual egg production
is 142.77 billion bringing India at 2" position in egg
production (BAHS 2024) with an increase of 3.18% over
the previous year. As such per capita availability of eggs
is much less than the ICMR recommendation (101 against
180) and faster genetic improvement is very much needed.
Rhode Island Red (RIR) chicken breed is a dual-purpose
breed and more popular in rural areas being well adapted
to local environmental conditions, more disease resistant
and preferred by the small flock owners. It has gained more
appreciation among consumers due to its brown shelled
eggs and better egg producing ability.

Most of the economic traits in layer chicken are related
to egg production which is limited to one sex only. The egg
production traits are quantitative in nature and regions of the
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genome that control such traits are termed as quantitative
trait loci (QTL). The first genome scans to identify loci
affecting egg quality traits have been based on medium-
density microsatellite maps (Vikki 2012). Microsatellite
(MS) markers are extensively used for determining genetic
structure, diversity and relationships (Tautz 1989, Bakare
et al. 2021). MS markers, by virtue of their co-dominancy
and multiple-allelism proved to be efficient in genetic
diversity studies, pedigree evaluation and genetic mapping
(Ahlawat et al. 2004, Debnath et al. 2019). Chromosome
1 and 2 bears QTLs related to egg number and egg weight
and chromosome 5 carries LOC395381 (ovomucin gene)
related to reproductive function in chicken (Abasht et al.
2006a, Abasht et al. 2006b). Genetic variability at some
MS loci have been reported to be associated with egg
production traits such as age at sexual maturity, egg weight
at 28 and 40 weeks, egg production up to 40 weeks (EP40)
of age etc. in RIRs (Das et al. 2015, Rahim et al. 2023).
Hence, the present study was carried out to genotype
the egg-production associated microsatellite markers in
sampled population of the selected strain of RIRS chicken
and to determine the association between polymorphic
markers and layer production traits.
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MATERIALS AND METHODS

Sample collection and genomic DNA isolation: Blood
sample collected from experimental RIRS (n=111) chicken
belonging to five hatches. Genomic DNA isolated by Phenol:
Chloroform extraction method with slight modification
(Sambrook and Russell 2001). Concentration and purity of
genomic DNA were assessed by spectrophotometer using
NanoDrop® ND-1000 Spectrophotometer (NanoDrop
Technologies Inc., U.S.A.). Quality of extracted genomic
DNA was assessed on 0.7% horizontal submarine agarose
gel electrophoresis.

PCR amplification: A panel of 10 informative
microsatellite markers having known association with egg
production traits in various chicken breeds was identified
from the published literatures (Chatterjee ef al. 2008a, Arya
2012, Radwan et al. 2014). Forward and reverse primers
were synthesized from M/S Xcelris Genomics Labs Ltd.,
Ahmedabad (India). Nucleotide sequences of primers and
corresponding optimized annealing temperature are given
in Table 1.

Molecular sizing and genotyping: Molecular sizes
of amplified products were adjudged for their probable
sizes through 2% horizontal agarose gel electrophoresis.
Microsatellite alleles were identified by running amplified
products on 3.4% horizontal MetaPhor™ agarose gel
electrophoresis (Debnath et al. 2017). Molecular sizes (bp)
of alleles were determined with help of Quantity One®
software 4.6.8 (Bio-Rad Laboratories Inc., U.S.A.) through
Gel Doc system. Genotypes of all birds were determined
on basis of presence/ absence of microsatellite alleles.

Statistical analysis: Genotypic data were analysed
using POPGENE® software 3.1 (Yeh et al. 1999). Average
heterozygosity and Polymorphic Information Content (PIC)
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were calculated at each microsatellite locus (Nei 1978,
Botstein ef al. 1980). Performance data were analysed for
determining association of various microsatellite genotypes
with layer traits by least squares analysis of variance (LS
ANOVA) incorporating microsatellite genotype as fixed
effect in the model. The microsatellite-wise analysis
was done for all the ten microsatellites using following

statistical model:
Yijkl: s +Si + Hj + Mk +eijk]
Where,
Y value of growth and layer economic traits measured
on ijkl*individual,
u : Overall mean,
S,: Random effect of i" sire,
H, : fixed effect of j* hatch (j=1 - 5),
M, : effect of k™ genotype of a particular microsatellite
marker (k=1 - no. of alleles),

e,,,: random error (0, 6*).
ij
RESULTS AND DISCUSSION

Allelic profiles at microsatellite loci: The results
obtained for number of alleles, their sizes and frequencies
at egg production associated microsatellites loci have
been presented in Table 2. Average number of alleles per
locus was 3.7. The size of most frequent allele was 204
bp at locus MCWO0145 and least frequent one as 173 bp
at MCWO0069. Two to three alleles at various polymorphic
loci with an average of 2.41 alleles per locus were reported
across the breeds (Deshmukh et al. 2015). Polymorphic
loci having 2-6 alleles with an average of 3.5 alleles and 2-5
alleles with average of 4 alleles per locus were observed in
selected strain of RIR chicken (Debnath 2016, Rahim et
al. 2017). Thus, present findings were in close agreement

Table 1. Details of the primer sequences of microsatellite loci and their annealing temperature

Microsatellite Chromosome location

Primer sequence (5°-3”)

Annealing temperature (°C)

F: CTTCTATCCTGGGCTTCTGA

ADLOZ3 > R: CCTGGCTGTGTATGTGTTGC 61
SO .
: e ;
o Lomameno :
MEwon4s 2 R ACAGTOGCTCAGTGOGAAGTGACC 3
T e :
oo :
:
B it o :
MCWO 258 7 F: TTCTTAGTCCTTGCCAGAGGC .

R: CTGCAGGAGGATGTGTCCTAG
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Table 2. Number of alleles, molecular sizes and frequencies at egg production associated microsatellites loci in RIR chicken

Microsatellite Chlr(());zgi(r)lme No. of alleles Allele code Allele size (bp) Allele frequency
5 A 190 0.1748
ADL0023 3 B 178 0.3398
C 172 0.4854
E29 A 212 0.0485
B 200 0.2524
ADLO0158 4 C 194 0.6408
D 182 0.0583
2 A 220 0.0340
B 215 0.2524
C 210 0.0583
ADLO0176 z7 D 205 0.2621
E 200 0.0971
F 195 0.2670
G 190 0.0291
V4 A 150 0.0291
ADLO0273 3 B 147 0.5243
C 144 0.4466
2 A 150 0.0388
B 147 0.2621
MCW0044 4 C 141 0.4466
D 138 0.2525
26 A 173 0.0146
B 169 0.1359
MCWO0069 5 C 165 0.1893
D 161 0.1214
E 157 0.5388
3 A 300 0.4854
MCWo103 2 B 292 0.5146
E48 A 116 0.2670
B 112 0.2718
MCWoLIo 4 C 104 0.2087
D 100 0.2525
1 A 220 0.0485
MCEWO145 2 B 204 0.9515
Z A 170 0.5340
MCW0258 3 B 158 0.4078
C 146 0.0582
Mean + SE 3.70+0.47

to the earlier findings in chicken and demonstrated their
applicability.

Population  structure:  Nei’s  heterozygosity of
microsatellite (MS) loci was 0.55+0.06 ranging from 0.09
(MCWO0145) to 0.78 (ADL0176). Similar estimates for
different microsatellites were reported in various poultry
breeds (Vijh and Tantai 2004, Debnath 2016). The studied
population was investigated for it being in Hardy-Weinberg
equilibrium by Chi-square and G square likelihood
ratio tests. The results of Chi-square test and likelihood
ratio tests revealed that the studied population was in
Hardy-Weinberg disequilibrium at all ten MS loci which
might be due to influence of external forces. Observed

and expected heterozygosity were 0.1922+0.0687 and
0.5607+0.06, respectively with population in Hardy-
Weinberg disequilibrium. It might be due to association of
microsatellite loci with economic traits as the population
was undergoing continuous selection for part-period egg
production trait and was also small in size. Similar to
present findings, observed and expected heterozygosities
were reported in Ankaleshwar at ADL0023 as 0.333 and
0.804, at ADL0O176 as 0.816 and 0.740 and at ADL0158 as
0.605 and 0.594, respectively (Pandey et al. 2005). There
was a report of high observed and expected heterozygosities
for ADL0023 (0.91 and 0.79), ADL0O158 (0.92 and 0.72),
ADLO0176 (0.90 and 0.80), MCW0044 (0.27 and 0.49) and
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MCWO0110 (0.73 and 0.73) loci in Kadaknath and Aseel
breeds of chicken (Chatterjee et al. 2010b). Earlier reports
(El-sayed et al. 2011, Suh et al. 2014, Debnath e al. 2015b,
Ramadan et al. 2024) also demonstrated similar estimates
of observed and expected heterozygosities. The estimates
were comparable to earlier reports in RIR chicken. Five
out of 10 MS loci had polymorphic information content
(PIC) value more than 50%. The estimated average PIC
value was 0.498+0.06, which was ranging from 0.0880
(MCWO0145) to 0.7489 (ADL0176), respectively and were
in accordance with the earlier findings in RIR population
(Vijh and Tantai 2004, Pandey et al. 2005), although a few
contrary reports are also available for the studied MS loci
(Chatterjee et al. 2008a, Chatterjee ef al. 2010b, Deshmukh
et al. 2015). The differences in PIC values might be due
to variation in genetic architecture of population analyzed
or due to loss/fixation of some of alleles during long-term
selection.

Production performance: Least squares analysis of
variance of body weight at 20 weeks of age (BW20) and
various layer economic traits viz., age at sexual maturity
(ASM), egg weight at 28 (EW28) and 40 (EW40) weeks
of age and egg production up to 40 (EP40) weeks of age
has been presented in Table 3. Sire had significant (»p<0.05)
effect on layer traits EW40 and EP40. Hatch had significant
effect (p<0.05) on ASM and EW28. Least squares mean for
BW20, ASM, EW28, EW40 and EP40 have been presented
in Table 4. Overall, least-squares mean of ASM, EW28,
EW40 and EP40 were 134.98+1.30 days, 42.54+0.32 g,
48.15+£0.56 g and 121.47+2.44 eggs, respectively. Least-
squares means of body weight revealed that birds of 1st
hatch showed highest BW20 (1378.27+£53.33g) followed
by 3% (1372.71+48.13 g), 4™ (1347.96+£32.32 g), 5
(1336.05+35.63 g) and 2™ (1280.58+54.93 g) hatch. Pullets
of 5" hatch showed highest EW28 (44.84+0.66 g), while
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those of 2*¢ hatch showed highest EW40 (49.96+1.26g), and
I** hatch showed highest EP40 (127.9245.55). Although,
same management were practices followed in all the
hatches, still the effect of hatch was significant (p<0.05). It
might be due to micro-environmental variability as well as
quick environmental fluctuations among the hatches which
were beyond the human control. Similar findings were
reported for significant hatch effect on early egg weights
(Smith and Bohren 1975), on egg production (King and
Henderson 1954) and on ASM in the coloured Punjab
Broiler-1I (PB2) dam line (Madapurada 2001, Nwague et
al. 2007, Das 2013, Debnath ez al. 2015a).

Genetic parameters of layer economic traits: Genetic
parameters amongst BW20 and various layer economic
traits have been presented in Table 5. Heritability estimate
for BW20 was 0.38+0.48. Quite comparable heritability
estimates with present investigation were reported by some
of the researchers (Qadri ef al. 2013, Rahim ef al. 2017).
However, some authors have reported high heritability for
BW20 chicken (Jilani et al. 2005, Debnath 2016), which
might be due to differences in the genetic stocks evaluated.
Heritability estimates were high for ASM (0.49+0.48),
EW40 (0.97+0.50) and EP40 (0.86+0.50), but low for
EW28 (0.19+0.46). Similar heritability for ASM has
been reported by earlier researchers also (Rahim 2015,
Debnath 2016, Jayalaxmi et al. 2010). Lower heritability
estimates indicated that it was difficult to improve this
trait through genetic selection. However, contrary to the
present findings, some researchers have reported lower
heritability estimate for EW28, EW40 and EP40 (Anees
et al. 2010, Rajkumar et al. 2011). Genetic and phenotypic
correlations between layer traits and EP40 were negative
except between BW20 and EP40, where it was low but
positive. Genetic correlations (rG) of BW20 with EW28
and EW40 were positive, but negative with EP40. The rG

Table 3. Least squares analysis of variance of layer traits in Rhode Island Red chicken

Mean sum of squares

Source of variation df

ASM BW20 EW28 EW40 EP40
Sire 27 121.05 22286.35 7.13 19.82% 375.81*
Hatch 4 380.73* 11556.03 23.13%* 20.98 143.70
Error/ Remainder 59 115.30 21695.30 6.22 (55) 10.17 (55) 203.91 (55)
df: Degrees of freedom, *p<0.05, **p<0.01, Figures within parentheses denote degrees of freedom
Table 4. Least squares mean + S.E. of layer traits in Rhode Island Red chicken
Factors Least squares mean + standard errors
N ASM (days) BW20 (g) EW28 (g) EW40 (g) EP40
42.54+0.32 48.15+0.56 121.47+2.44
Overall 91 134.98+1.30 1343.12+17.65 &7 &) &7
1 12 140.75+3.89° 1378.27+53.33 41.39+0.92° 47.56+1.23 127.9245.55
2 9 132.54+4.01 1280.58+54.93 42.71+0.94° 49.96+1.26 123.16+5.66
Hatch 3 12 139.86+3.51% 1372.71+48.13 41.47+0.82° 47.25+1.12 119.46+5.01
4 28 134.77+2.36% 1347.96+32.32 42.294+0.567° 46.74+0.81 119.64+3.60
44.84+0.66° 49.24+0.93 117.174+4.10
d
5 30 126.99+2.60 1336.05+35.63 (26) (26) (26)

N: Number of observations, Means with same superscript in a column do not differ significantly (p<0.05), Figures within parentheses

denote number of observations.
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Table 5. Heritability, genetic and phenotypic correlations amongst various layer traits

Trait ASM BW20 EW28 EW40 EP40
ASM 0'4(9;0)'48 -0.74+1.18 (91) -0.49+1.27 (87) 0.34+0.59 (87) -0.58+0.77 (87)
BW20 -0.26 0.38+0.48 0.59+1.26 0.120.60 -0.06:0.62
1) 1) (87) (87) (87)
- 0.005 0.16 0.19+0.46 0.20+0.77 -0.32+1.06
(87) (87) (87) (87) (87)
0.14 0.46 0.97+0.50 -0.62+0.47
EWA40 -0.06 (87) @ & &) o
0.07 -0.16 -0.05 0.86+0.50
EP40 -0.28 (87) & N o s

Figures within parentheses denote number of observations

Table 6. Estimated mean sum of squares of layer economic traits under different microsatellite loci in Rhode Island Red chicken

Source of Mean sum of squares

variation df ASM BW20 EW28 EW40 EP40
ADL0023 3 58.47 80830.27%* 5.72 4.90 188.24
ADLO158 3 239.98 5697.87 5.20 10.57 144.30
ADLO0176 8 117.34 20385.26 8.21 5.44 77.99
ADL0273 2 67.69 58488.71% 25.18%* 14.31 2.36
MCW0044 3 133.52 17993.42 3.03 1.93 23.12
MCW0069 6 48.24 6015.21 6.03 13.92 286.92
MCW0103 1 34.45 20299.47 4.19 0.15 9407.69
MCWO0110 8 96.61 24455.32 8.941 10.07 72.59
MCWO0145 1 3.28 52603.44 0.06 13.69 11.20
MCW0258 4 37.68 20809.26 11.17 11.53 41.17

df: Degrees of freedom, $p<0.07, *p<0.05, “p<0.01

of ASM with BW20, EW28 and EP40 were negative, but
positive with EW40. The rG of EW28 was positive with
EW40, but negative with EP40. The rG of EW40 was
negative with EP40. The phenotypic correlations (rP) of
ASM with all other traits were negative except EW28. The
rP of BW20 was positive with EW28, EW40 and EP40.
The 1P of EW28 was positive and high with EW40, but
negative with EP40. Likewise, EW40 had negative rP with
EP40. Similar negative genetic correlations of ASM with
layer traits have also been reported earlier (Jayalaxmi et
al. 2010, Qadri et al. 2013, Rahim 2015). A few earlier
reports also demonstrated that BW20 had positive genetic
correlations with EW28 and EW40 (Das et al. 2015), and
negative with ASM and EP40 in selected strain of RIR
chicken (Rahim 2015, Debnath 2016).

Association of microsatellite genotypes with layer
economic traits: All the experimental birds were genotyped
for 10 microsatellites were found polymorphic. Least
squares analysis of variance of layer economic traits
to determine the effects of MS genotypes taking it as
independent factor in the model and MS genotype-wise
LS means of various traits are given in Table 6 and Table
7, respectively. Genotypes at two MS loci (ADL0023
and ADL0273) revealed significant (»p<0.01 and p<0.07,
respectively) effects on BW20. AA genotype at ADL0023

had revealed highest body weight (1496.34+45.52
g) at BW20 which was statistically higher than those
pullets having genotypes BB (1295.524+36.01g), CC
(1325.76+32.89 g) or AB (1334.04+78.34 g). Significant
effect of genotypes at ADL0023 on BW20 had been reported
by earlier researchers (Chatterjee et al. 2008b, Rahim et
al. 2017, Debnath et al. 2019). ADL0273 genotypes had
significant effect on BW20 (p<0.07) and EW28 (p<0.05).
Pullets with AA genotype at this locus showed highest
BW20 as 1530.30+77.34 g which was statistically higher
than those pullets having BB (1365.01+28.79 g) and CC
(1305.50+36.95 g). AA genotyped pullets revealed highest
EW?28 (45.01£1.50 g) which was statistically different than
CC (41.16%0.69 g) genotyped birds, but did not differ from
BB (43.26+0.58 g) genotyped birds. Similar to the present
findings, earlier researchers had reported significant effect
ADLO0273 genotypes on ASM, BW20 and EW28 (Arya
2012, Radwan et al. 2014, Das et al. 2015, Debnath et
al. 2015b, Thamer and Noori 2022). The rest of the MS-
genotypes at other loci did not differ significantly for any of
the layer economic traits. The non-significant effect of MS-
genotypes at these loci was supported by previous reports
(Chatterjee et al. 2008a, Das et al. 2015). Contrary to the
present findings some of the reports suggested significant
effect of genotypes at ADL0O158, ADL0176, MCW0069,
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Table 7. Least squares mean + S.E of layer traits for different genotypes at microsatellite loci in Rhode Island Red chicken
Least squares mean + standard error
Microsatellite Genotype ASM (days) BW20 (g) EW28 (g) EW40 (g) EP40
(n=110) (n=110) (n=108) (n=103) (n=110)
AA 132.832£3.63  1496.34*+45.52 42.18 £0.89 48.08 +1.20 118.07 £5.42
BB 136.63 +2.88 1295.52°+36.01 42.54+0.68 47.39+0.94 124.39 +4.27
ADL0023 CC 134.62 +£2.63 1325.76° +32.89 42.77+0.63 48.74 +£0.93 126.14 +4.23
AB 141.50 £ 6.25 1334.04° + 78.34 40.04 = 1.47 48.81 +£2.11 134.72 +£9.45
BB 139.76 + 3.97 1313.12 +55.98 42.09 +.95 47.85+1.25 121.65+5.71
ADLO158 CC 135.66 +2.30 1351.37 +30.93 42.56 +.52 47.90 + .81 124.06 + 3.69
DD 134.36 +4.99 1398.58 + 70.83 44.16 £ 1.21 48.89 + 1.64 124.51 £ 7.51
AB 125.74 + 4.69 1326.84 + 66.44 41.27+1.13 50.37 £ 1.46 132.48 + 6.68
BB 137.20+3.23 1276.81 + 44.50 43.26 £0.76 47.63 +1.04 120.52 + 4.86
DD 135.47 + 3.69 1435.39 + 50.86 44.01 £0.87 48.86 +1.19 127.38 +5.54
FF 132.79 +5.22 1285.72 +71.94 40.17 £ 1.21 4738 + 1.64 123.65 +7.549
AB 120.25 +9.27 1396.75 £ 127.90 40.67 +2.16 52.57+2.85 112.61 £13.06
ADLO176 AD 136.68 + 8.68 1490.25 £ 119.72 43.67 +£2.02 48.50 +2.73 126.17 £12.53
CD 134.81+7.30 1363.10 £ 100.67 43.75+1.70 49.81 £2.26 127.69 +10.39
CE 138.76 + 5.95 1375.91 £ 82.01 41.79 +1.39 47.37+1.85 133.77 £ 8.52
EF 125.40 +8.30 1154.59 £ 114.42 41.31+1.94 46.83 +2.58 12225+ 11.84
EG 142.39 +6.23 1302.03 £ 85.90 40.65 + 1.45 4825+1.92 122.92 + 8.85
AA 137.60 + 5.85 1530.30* + 77.34 45.01* £ 1.50 52.41+£2.31 124.32 £ 10.63
ADLO0273 BB 136.59 £2.17 1365.01°+28.79 43.26* +0.58 48.33+0.97 124.26 + 4.36
CC 132.87+2.79 1305.50° + 36.95 41.16°+0.69 47.76 £1.08 125.01 =4.88
AA 139.43 £ 7.51 1373.84 £ 103.81 43,78 +1.81 47.28 £2.29 119.00 £10.42
BB 136.93 +3.27 1293.06 +44.97 41.91+0.79 47.99 +£1.06 124.58 +4.85
MCEW0044 CC 132.84 +£2.63 1371.75 £ 36.10 42.58 £0.63 48.48 £0.87 125.23 £4.012
DD 139.11 £3.76 1364.84 +51.83 43.03£0.90 47.78 £1.18 123.58 £5.41
CC 13437 +5.17 1285.23 +71.38 4381 +1.19 4828 £1.57 134.50 +7.08
DD 133.63 +£4.96 1332.67 + 68.52 41.85+1.16 50.83 £ 1.60 127.40 +7.23
EE 13490 +2.79 1366.64 + 38.53 42.80 + 0.66 48.42 +£0.90 118.57 £4.06
MCWO0069 AE 142.48 + 7.04 1414.44 £ 97.26 39.40+1.92 42.22+2.36 133.09 +10.65
BD 13430+ 5.50 1359.18 + 76.06 42.12+1.28 48.88 +1.62 135.38 +£7.29
BE 132.58 +£3.19 1347.84 +44.17 41.90+0.74 47.54 +£1.02 121.75+4.59
CE 137.83 £3.53 1325.33 +48.84 42.87+0.81 48.28 £ 1.06 126.98 +4.77
MCWO0103 AA 13439+ 1.84 1366.63 + 24.88 42.20+0.43 48.18 £0.61 125.99 £2.78
BB 13591 +1.78 1329.67 +24.06 4273 +£0.41 48.18 £0.58 123.32 +£2.69
AA 136.66 + 3.66 1301.64 +48.78 42.89+0.84 4874+ 1.14 123.16 £ 5.41
BB 136.65 + 3.75 1265.68 £ 50.04 41.37+0.89 46.89 +1.23 12593 +£5.83
CcC 136.93 + 6.88 1336.34 £92.10 42.01 +£1.57 46.61 £2.02 120.81 £9.62
DD 139.42 £ 4.90 1409.39 £ 65.53 44.05+1.13 50.80 £ 1.47 122.14+£6.97
MCWO0110 AC 13538 +£3.21 1382.04 £42.71 41.95+0.78 48.57 +1.05 124.46 +4.99
AD 134.43 +5.89 1402.08 + 78.85 40.80+ 1.34 50.72 £1.74 134.03 +8.28
BC 121.14 +7.32 1532.04 £98.12 45.80 +2.07 49.18 £2.67 127.92 +£12.69
BD 131.87+3.23 1362.80 +43.04 43.68+0.76 47.47 £1.026 122.01 £4.84
CD 135.61 £6.41 1407.59 £ 85.91 43.51+1.46 48.85+1.89 131.12 +8.97
BB 135.12+1.83 1356.02 +£24.24 42.49 +0.42 48.03 +£0.72 124.69 + 3.28
MCEWO145 AB 135.88 £ 3.69 1260.51 +49.40 42.39+0.87 49.70 +1.22 123.18 £ 5.60
AA 136.50 + 3.46 1303.88 +46.46 41.70 £0.79 47.55+1.07 124.37 +4.88
BB 132.67 + 3.64 1358.95 £ 48.84 42.37+0.84 48.29+1.13 125.58 +£5.18
MCWO0258 CC 130.58 £ 11.37  1596.32 + 152.53 48.87 +£2.57 53.71 £3.35 118.54 £15.62
AB 136.53 +4.27 1361.60 + 57.31 43.15+0.97 49.06 = 1.35 125.94 +£6.22
BC 135.61 +7.01 1358.21 +£94.03 41.76 +1.59 46.04 +2.06 118.57 £9.61

N: Number of observations, Means with same superscript in a column do not differ significantly (p<0.05 and p<0.07), Figures within
parentheses denote number of observations.
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MCWO0103, MCWO0110, MCWO0145 and MCWO0258 on
egg production and egg weight (Roushdy et al. 2008,
Rahim et al. 2017).

To conclude, age at sexual maturity in the studied
population followed similar trend over the generations.
Body weight at 20-weeks of age revealed low but positive
phenotypic correlations with egg production up to 40
weeks. Owing to high association of AA genotype at
ADL0023 MS loci with body weight at 20 weeks and
AA genotype at ADL0273 with body weight at 20 weeks
and egg weight at 28 weeks, these genotypes may be
considered promising markers for genetic improvement
of layer traits in poultry.
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