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The important genetic parameter, heritability indicates the
relative importance of the genetic and environmental sources
of variation in the character and is termed as degree of genetic
determination of the character. Singh and Wahi (2003)
obtained the optimum family size and structure for estimating
the standard error of heritability in half-sib model. Singh et
al. (2006) studied the robustness of bootstrap estimates of
variance of heritability to master samples by drawing
independent master samples in half-sib model. Keeping in
view the importance of bootstrap technique the performance
of different bootstrap strategies on estimate of the precision
of heritability in half-sib model is investigated in depth.

Simulation of sample data
The linear model for the measurement of Yij, on the

progeny of the jth dam (j=I1, 2,...,d) mated to the ith sire
(i=1,2,...,8) can be written as:

Yj=utsitee;;,
where p is the general mean, s; the effect of ith sire and e;
the error deviation. Let us assume that all the effects are
random and independent with expectations:

E(s;) = E(e)=0,
and variances

E(S.2 )=02,
1 S

2, 2
E(eij )fce.

We follow Ronningen's (1974) approach to simulate half-
sib data by:

Y..=p+o_ S.+c _e..,
ij s Ui Ve i)

where S;and e';; are random standard normal variables. From
the simulated data the heritability can be estimated as:
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Generation of Bootstrap samples: Following bootstrap
method by Aastveit (1990) bootstrapping was done by 3
different approaches, viz. at sire level as well as at progeny
level (strategy I), at sir level alone (strategy II) and at progeny
level alone (strategy III). The algorithm of bootstrapping is
explained here.

The data set generated was considered as the master
sample. The sires were then numbered sequentially. Using
random number generator integers with the maximum of the
total number of sires were generated. According to the
random numbers, sires were selected and within the selected
sire, progenies were again chosen randomly as done for sire
selection (strategy I). In case of strategy II, sires were
randomly selected as done above with all the progenies falling
in the selected sire. Strategy III consists of selecting all the
sires, but within the selected sires progenies were chosen at
random in the similar fashion. This constitutes our first
bootstrap sample or bootstrap replicate. Thus, using the next
random number, the second bootstrap replicate was selected
and this process was continued until the required number of
bootstrap replications was obtained.

Analysis of samples

From the original sample generated according to half-sib
model, the estimates of heritability were obtained by the usual
formula. Then for the sample data using the traditional
methods, variances (standard errors) of the estimates were
calculated. In the case of sib analysis, if ‘t” happens to be the
intra-class correlation coefficient estimate, the variance of
‘t’ given by Fisher (1950) is

2
22 2{IH@-1)t} 2
%t = hn-n Y
where ‘n’ is the number of offsprings per sib class, and ‘N’ is
the number of such classes. The variance of heritability

estimator half-sibs in given by:
622=1667
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