Effect of vitamins E and C supplementation on the immunity status of coloured hens during summer

B P JENA1, N PANDA2, P K MISHRA3, R C PATRA4, H K PANDA5, B PANIGRAHI6 and P C BEHERA7

Odisha University of Agriculture and Technology, Bhubaneswar, Orissa 751 003 India

Received: 4 May 2013; Accepted: 12 August 2013

ABSTRACT

The present investigation was carried out to evaluate effects of vitamins E and C supplementation on immunity status of breeder birds and transfer of passive immunity to day-old chicks during heat stress. Broiler breeder birds (270) were divided into 9 groups with 3 replicates having 10 birds in each and were supplemented with 2 levels of antioxidant vitamins E (250 mg or 500 mg/kg) and C (200 mg or 400 mg/kg) alone and in combinations for 8 weeks during the peak summer. Antibody titre against Newcastle disease vaccine (NDV), cutaneous basophilic hypersensitivity (CBH) test against phytohaemaglutinin- P at fourth and eighth week and passive immunity in chicks were undertaken. At fourth week control group which was not supplemented any vitamins showed the lowest CBH response and at eighth week all the combined vitamins supplemented groups showed significantly higher response than control and individual vitamin supplemented groups. At fourth week antibody titre against NDV did not differ significantly from first day in all the groups and on eighth week there was significant decline in antibody titre in control and individual vitamin supplemental groups compared to first and fourth week but decrease in titre in combined vitamin supplemented groups was not significant. The passive immunity as determined by titre (log2) against NDV in day-old chicks hatched from the eggs of breeder hens did not differ among the treatments. It can be concluded that the combination of the antioxidant vitamins at lower level i.e. C 200 + E 250mg/kg have higher immunity in the coloured broiler breeder hens compared to individual vitamin supplementation during hot and humid stress.

Key words: Antioxidant vitamins, Hen, Immunity, Summer
Experimental animals and design

Broiler breeder hens (IBI-91 strain; 270) of 40 weeks of age were procured from the University Farm. The birds were randomly distributed into 9 treatment groups with 3 replicates having 10 birds in each. The birds were kept in individual cages with floor space of 1,125 cm²/hen. Two levels of vitamin C (L-ascorbic acid) i.e. 200 mg, 400 mg and vitamin E (DL-α-tocopheryl acetate), 250 mg, 500 mg were supplemented either alone or in combinations with breeder basal diet to eight groups besides a control group. The composition of basal diet is given in Table 1. The supplementation was continued for 8 weeks. Water was provided ad lib. Daily feed given was weighed and supplied @ 150g/bird/day. In-house temperature and relative humidity was recorded daily during the experimental period and average values were calculated by standard method.

Feed analysis: Samples of experimental feeds were analysed for moisture content, crude protein, ether extract, crude fibre, total ash, and acid insoluble ash (Table 2) as per AOAC (1995).

Temperature and humidity: The daily maximum and minimum temperature along with relative humidity inside the farm was recorded during the experimental period and average was calculated for each week. The maximum temperature during the experimental period ranged from 35.69 to 40.36°C and the average maximum temperature during that period was 38.05°C. The minimum temperature during the experimental period ranged from 25.09 to 28.46°C and the average being 26.12°C. The average maximum and minimum relative humidity was 87.73 and 54.19% respectively during the 8 weeks experimental period.

Immunological tests: Blood samples were collected from wing vein in sterile test tubes from 12 birds (4 birds from each replicate) of each treatment on 0, fourth and eighth week of experiment for serological tests and were kept for 2 h in slanting position. Samples were centrifuged at 3,000 rpm for 10 min. Serum was collected by Pasteur pipette attached to a rubber teat. Sera samples were stored at –20°C till they were utilized for analysis.

All the sera samples were processed to detect the HI titer as per Allan et al. (1978). For cutaneous basophilic hypersensitivity test 3 birds from each replicate i.e. 9 birds per treatment were taken at fourth and eighth week of feeding of vitamins. The mitogen, phytohaemaglutinin- P (SD-fine) was dissolved in normal saline. The right wattle of each bird was injected with 0.1ml of normal saline solution to assess the CBH response (Corrider and DeLoach 1990). The left wattle of each bird was injected with 0.1ml NSS to serve as a control. Measurement of skin thickness was made using digital slide calipers just prior to and 24h after the injection with PHA-P. For determination of passive immunity in day old chicks blood samples were collected directly from heart from 9-day-old chicks of each group (3 from each replicate) hatched from the eggs of breeder hens after fourth and eighth week of experiment and sera samples were prepared.
Results and discussion

CBH response: Among treatment groups control showed the lowest CBH response to PHA-P at fourth week, but at eighth week all the combined vitamin supplemented groups showed significantly (P<0.05) higher response than control and individual vitamin supplemented groups (Table 3). CBH response at eighth week showed significantly (P<0.05) higher values than at fourth week for each vitamin supplemented groups except in control.

Lymphocyte proliferation in response to mitogens is correlated with the ability of the host to mount a cellular immune response. It is suggested that differential reactivity to mitogens reflects either maturational or functional differences in the responsive lymphocytes. Cell mediated immune responses, as measured by CBH response to phytohaemagglutinin-P differed significantly among the groups at eighth week but not at fourth week. Antioxidant vitamin supplementation showed higher cell mediated immune response which is agreed with the findings of Lohakare et al. (2005) and Panda et al. (2008) who found higher CMR response by addition of vitamin C @ 200 ppm. Contrary to this, Leshchinsky and Klausing (2001) found vitamin E levels did not affect CBH response under normal environmental conditions.

HI antibody titre against NDV: The mean antibody titre (log₂) against NDV in the hens on first day of the experiment ranged from 4.15 (T₆) to 4.22 (T₂), Table 3. On fourth week the antibody titre did not differ significantly from first day in all the groups and then on eighth week there was significant (P<0.05) decline in antibody titre in control and individual vitamin supplemental groups compared to first day and fourth week but the decrease in titre in combined vitamin supplemented groups was not significant.

Humoral immunity is a type of immunity which is conferred through the release of antibodies which are used to target cells for destruction. This type of immunity is a complement to cellular immunity. In the present study dietary levels of vitamins C and E did not affect antibody titre (IgG) against NDV during heat stress. Similar result was also observed by Lohakare et al. (2005), Shaik et al. (2005) and Andi et al. (2006) whereas higher HI titre against NDV was observed in broiler chicks by supplementation of both vitamin E @ 200 mg and Selenium @ 0.2 mg by Singh et al. (2006). Contrary to these findings Panda et al. (2008) reported that depression of humoral immunity can be alleviated by vitamins C and E supplementation alone but not in combination. High titre was observed at fourth week in all the groups as birds were vaccinated with R₂B strain against ND at 20 days prior to start of the experiment. At eighth week the titre showed declining trend but was protective. Combined supplementation of antioxidant vitamins helped to prevent the fall of antibody titre at eighth week.

Transfer of passive immunity to chicks: Antibody titre (log₂) against NDV in day old chicks hatched from the eggs of breeder hens after fourth week varied between 1.85 (control) to 2.19 (T₄) and after eighth week it was between 1.79 (control) and 2.20 (T₆) among the groups but there was no significant (p>0.05) variation in antibody titre among the groups at both the weeks (Table 3). Though the titre started declining at eighth week in comparison to fourth week, it was not significant for each treatment group.

Antibody titre to NDV in day old chicks of all groups did not show difference either after fourth week or eighth week contrary to the findings of Andi et al. (2006) who found chicks from hens supplemented with 60 IU of vitamin E had

Table 3. CBH response, HI antibody titre and transfer of passive immunity to chicks in different groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Vitamin/ dose (mg/kg)</th>
<th>CBH response to PHA-P (mm)</th>
<th>HI antibody titre against NDV (log₂)</th>
<th>Transfer of passive immunity to day old chicks (log₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>fourth week</td>
<td>eighth week</td>
<td>first day</td>
</tr>
<tr>
<td>T₁</td>
<td>Control</td>
<td>2.06 ± 0.03</td>
<td>2.19b ± 0.02</td>
<td>4.16a ± 0.17</td>
</tr>
<tr>
<td>T₂</td>
<td>C200</td>
<td>2.14b ± 0.02</td>
<td>2.43b ± 0.04</td>
<td>4.22a ± 0.12</td>
</tr>
<tr>
<td>T₃</td>
<td>C400</td>
<td>2.20b ± 0.09</td>
<td>2.58b ± 0.13</td>
<td>4.21a ± 0.18</td>
</tr>
<tr>
<td>T₄</td>
<td>E500</td>
<td>2.19b ± 0.13</td>
<td>2.53b ± 0.07</td>
<td>4.19a ± 0.13</td>
</tr>
<tr>
<td>T₅</td>
<td>E250</td>
<td>2.22b ± 0.08</td>
<td>2.76b ± 0.18</td>
<td>4.18a ± 0.02</td>
</tr>
<tr>
<td>T₆</td>
<td>C200+E250</td>
<td>2.61b ± 0.22</td>
<td>3.33a ± 0.12</td>
<td>4.15 ± 0.08</td>
</tr>
<tr>
<td>T₇</td>
<td>C200+E500</td>
<td>2.49b ± 0.08</td>
<td>3.23a ± 0.14</td>
<td>4.20 ± 0.12</td>
</tr>
<tr>
<td>T₈</td>
<td>E250+E500</td>
<td>2.48b ± 0.21</td>
<td>3.19a ± 0.03</td>
<td>4.21 ± 0.11</td>
</tr>
<tr>
<td>T₀</td>
<td>C400+E500</td>
<td>2.53b ± 0.21</td>
<td>3.25b ± 0.26</td>
<td>4.17 ± 0.22</td>
</tr>
</tbody>
</table>

a, b,…Means with no common superscript within a column vary significantly (P<0.05). NS, not significant; A, B Means with no common superscript within a row vary significantly. (P<0.05)
significantly higher antibody titre at first day of the age than chicks from the control and 20 IU/kg group and attributed this phenomenon to selective antibody absorption by ovarian tissue. In this experiment the breeder birds were vaccinated against ND (R,B vaccine) before 20 days of start of experiment which is a live virus vaccine. It is known that there is about 50% transfer of titre from the breeder hen to the chick (Leeson and Summers, 2000). Therefore the transfer of passive immunity to progeny was not influenced by supplementation of vitamins E and vitamin C.

Egg production performance: The egg production performance of breeder hens per week was divided into 2 phases i.e. from 0–4 weeks to 5–8 weeks. The average egg production performance of these coloured broiler breeders is less than the commercial broiler breeders. All the 2 doses of vitamin supplementation and combinations showed significantly (P<0.01) higher egg production than the control in both the phases but no difference was observed among the supplemented groups.

Significant improvement in egg production in all the vitamin supplemented groups over control, as was reported from this experiment, is well supported by the findings of Sahin et al. (2002), Bollengier-Lee et al. (1998) and Panda et al. (2008). The increased egg production in all groups during second phase might be due to lower ambient temperature than that of first phase. During the entire period highest egg production was found in T6 (C200+ E250) group.

During second phase might be due to lower ambient temperature than that of first phase. During the entire period highest egg production was found in T6 (C200+ E250) group. It may be concluded that combination of vitamins E and C supplementation to maintain high egg production during natural summer.

It may be concluded that combination of vitamins E and C at both the levels showed beneficial effect on both cellular and humoral immunity status of coloured broiler breeder hens during natural hot and humid stress. As the higher level of the combination of both the vitamins E and C did not impart any significant improvement over the lower level so, vitamin C 200 + vitamin E 250 mg/kg of feed may be recommended in this tropical humid climate for better immunity during natural summer.

ACKNOWLEDGEMENT

The authors acknowledge the help and facilities provided by the Dean, College of Veterinary Science and Animal Husbandry, OUAT Orissa to undertake the experiment.

REFERENCES


Panda A K, Ramaraao S V, Raju MVLN and Chatterjee R N. 2008. Effect of dietary supplementation with vitamins E and C on...


