Bovine herpes virus (BoHV-1), a member of the family Herpesviridae, causes diverse ailments, viz. infectious bovine rhinotracheitis (IBR), infectious pustular vulvovaginitis (IPV), infectious balanoposthitis, keratoconjunctivitis and neurological disorders (Patil et al. 2012). Though mucous membranes of either upper respiratory or genital tract are the most common routes of entry of BoHV-1, transmission by conjunctival and aerosol routes were also reported (Leuzinger et al. 2005). During primary infection, the virus gets reactivated under stress conditions making the animal a potential shedder of virus (Chintu et al. 2012). Hage et al. (1996) in their study on population dynamics of BoHV-1 defined the reproduction ratio of BoHV-1 to be at a minimum of 7. This study described the virus transmission and seroprevalence of BoHV-1 in breeding cattle, under different housing, feeding and watering practices.

Key words: Epidemiology, Bovine herpes virus-1, Housing practices
Farm B had HF cross and Jersey crossbreeding bulls. The bulls were housed in individual bull pens, with separate feeding facility for each animal. The drinking facility was in between 2 bull pens and this facility was common for bulls placed in 2 adjacent pens. Semen and blood samples were collected from 49 breeding bulls stationed at Farm B.

Farm C had only HF cross female cattle. The farm had individual pens type of housing, with separate feeding and drinking facility for each animal. Vaginal swabs and blood samples were collected from 38 cows at Farm C.

Farm D had only Murrah breeding buffalo bulls. The farm possessed modern individual pen type of housing, with separate feeding and drinking facility for each animal. The entry of personnel was restricted and was limited to only the regular animal handlers. All the entry and exit inside the animal premise was digitally monitored with high hygienic practices. Semen and blood samples were collected from 40 breeding bulls at Farm D.

Virginal swabs and semen samples were collected in viral transport media and were transported to the laboratory under cold chain and stored at −80°C until further use.

The sample collection at all the farms was made exclusively during early mornings, which recorded sudden change of weather conditions such as sudden rains and adverse cold weather.

Enzyme linked immunosorbent assay: ELISA was used to study serum samples collected from all the animals. The avidin-biotin ELISA kits were used for this purpose; and 1:30,000 dilution of biotin anti IgG conjugate and 1: 15,000 dilution of avidin-HRPO conjugate were used in ELISA.

TaqMan real time PCR

Extraction of DNA: The method for extraction of DNA from semen was essentially according OIE protocols. The DNA from cell culture supernatants and swabs samples collected from animals was isolated as per Lopasev *et al.* (1991).

Primers and probe sequences: A new set of primers and TaqMan 5′-nuclease probe was designed, targeting a 71 bp conserved region on the glycoprotein B gene (gB) of the virus. The primers and probe were checked for their specificity using the database similarity search programme nucleotide–nucleotide BLAST (www.ncbi.nlm.nih.gov/blast) and the sequences were 100% homologous to those of BoHV-1 strains deposited in the GenBank. The designed TaqMan probe was a sequence-specific oligonucleotide labelled with 2 different fluorophores, the reporter/donor, 5′-carboxyfluorescein (FAM) at the 5′ end, and the acceptor/quencher 6-carboxy-tetramethylrhodamine (TAMRA) at the 3′ end. This real-time PCR assay was designed to detect viral DNA of all BoHV-1 strains, including subtype 1 and 2, from bovine semen as well as from clinical samples. The sequences of the designed the primers and probes were; Primer gB-F: 5′-TGCTCGACTACAGCGAGATACAG-3′; Primer gB-R: 5′-CACGCGGTCAATGTCGTAGA3′ and the TaqMan probe: 5′-FAM CCGCAACCAGCTGCAGCTAMRA-3′.

The real-time PCR was carried out using the platinum quantitative PCR super mix-UDG master mix. A number of experiments were performed to optimize the PCR protocol, including concentration of reagents and PCR cycling parameters. The optimized PCR assay was established using 25 μL. Non templates control (NTC, reagents only) and negative controls were included in each test. The optimised 25 μL of reaction mixture containing 12.5 μL of 2X PCR Super mix, 1 μL each of forward primer and reverse primer containing 10 pmoles/μL, 1 μL of TaqMan probe containing 5 pmoles/μL and 4.5 μL nuclease free water. 5 μL of the DNA extracted from cell culture supernatants/ clinical swab/ semen sample was added to the PCR reagent mixture to make final volume of 25 μL. PD_ADMAS BoHV-1 isolate was used as positive control during the process of real time PCR standardization.

The real-time PCR plates loaded with reaction mixture were placed in the real-time PCR detection system with the standard cycling parameters of one cycle 95°C for10 min followed by 40 repeated cycles of 95°C for 15 sec and 60°C for 45 sec.

The results were analyzed using SDS 2.1 version of software provided with 7900 ABI Real time PCR system. The standardization of real time PCR was carried out at National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.

RESULTS AND DISCUSSION

One of the important characteristics of BoHV-1 is establishment of life long latency in sensory neurons of the peripheral nervous system after replication in mucosal epithelium. Bovine herpes virus-1 is thought to penetrate the terminus of the sensitive nerves distributed in the infected epithelium and transported along the microtubules of the axons to reach the neuron body in the nervous ganglion. During latency, a latency related transcript (LRT) region is expressed in BoHV-1 leading to the inhibition of the lytic cycle and the induction of an anti-apoptotic state of the infected cells (Ranganatha *et al.* 2013).

Mucous membrane of either upper respiratory or genital tract is the most common route of entry of BoHV-1. Transmission by conjunctival route was also reported. Direct nose to nose contact is the preferential way of transmission of BoHV-1 (Benoit *et al.* 2007). However, air-borne transmissions by the aerosol route were demonstrated on short distances (Leuzinger *et al.* 2005). Genital infection requires direct contact at mating. Genital transmission also occurs through virus contaminated semen. Hence, the associations between animals in a herd/farm appear to be a key factor in spread of the virus. Keeping this key epidemiological factor in view, we collected samples from...
177 breeding animals from 4 organized breeding farms (Table 1), having different managerial practices like feeding, watering and housing to evaluate the relative disease dynamics under varied managerial practices in similar environmental conditions.

The sample collection was made exclusively in the early mornings which recorded sudden change of weather conditions like sudden rains and adverse cold weather conditions. It was demonstrated that the corticosteroids released naturally (due to stress) or administered intentionally cause reactivation of latent BoHV-1 virus in carrier animals (Hage et al. 1996). In animals, sudden change of weather is a major stress factor, which may reactivate the latent virus into shedding. The selection of season for sample collection during our study was in accordance with Patil et al. (2012) who found that intense winter as the most suitable season for collection of clinical samples from BoHV-1 carrier animals for virus detection.

During our sample collections, though most of the breeding animals appeared healthy, a countable number of them had lesions of balanoposthitis, pustular vulvovaginitis, and symptoms of respiratory distress with conjunctivitis. These symptoms/lesions were in agreement with descriptions of BoHV-1 outbreaks/infections in cattle (Pandey et al. 2000, Benoti et al. 2007, James and Edwards 2011).

In farm A 56%, B 38.77%, C 21.05% and in D 17.5% animals were found seropositive for BoHV-1 by ELISA. Overall 35.02% of the animals tested were seropositive for BoHV-1 antibodies (Table 1).

The overall seroprevalence recorded in breeding animals in this study (farm A, B, C and D) was 35.02%. This finding was in agreement with Jain et al. (2009) and Nandi et al. (2010) who recorded 29.21% and 35% BoHV-1 seroprevalences, respectively, in breeding animals in India. The finding of high seropositivity in this study gives a larger evidence of alarmingly widespread nature of BoHV-1 in subtropical developing countries like India, which do not practice vaccinations against BoHV-1. Further, the findings were comparable globally with the seroprevalence of 33.97% in Iran (Kargar et al. 2001); 37.8% in Canada (Durham and Hassard 1990); 35.9% in Belgium (Castrucci et al. 1997), 40% in Netherland (Castrucci et al. 1997) and 38% in Poland (Ackermann and Engels 2006).

The highest seroprevalence of 56% was recorded in Farm A, which maintained breeding animals in large, open shed and were in let loose / let out, with common grazing and drinking facilities. This is attributable to the close social relationship amongst breeding animals at grazing pasture, drinking tanks and indiscriminate animal huddling during chilly weathers in open yards which facilitates direct contact between animals for easy dissemination of the virus. The seroprevalence in farm B was 38.77%, which had individual animal pens with separate feeding facility but with common watering facility. The seroprevalence was much lower in farm C at 21.05%, which followed better management practices with individual pens containing separate feeding and watering facility for each animal, thus avoiding direct contacts between animals (or their secretions in feed and water) possibly inhibiting viral entry, spread and further disseminations. The least seroprevalence of 17.75% was recorded in farm D, which had the best (on relative basis) management, hygienic and bio-security practices with spacious modern individual animal pens, separate feeding and drinking facilities for each of the animals in pen with restricted movement of personnel.

Virus isolation technique has several drawbacks in clinical diagnosis of BoHV-1 in cattle, especially the poor sensitivity (Ranganatha et al. 2013). In view of this, many researchers have advocated the most recent version of PCR the TaqMan probe based real time PCR as a better test in detection of BoHV-1 in clinical samples, including semen samples (Wang et al. 2008, Diallo et al. 2011, Paul and Timothy 2011) hence the present study incorporated real time PCR to detect BoHV-1 in clinical samples collected in these 4 organised farms, where most of the animals appeared healthy. The set of primers and probes designed during this study detected BoHV-1 as low as 0.001TCID₅₀/0.1ml and the assay had sensitivity of ε’ 99% with 87.19% specificity in detection of BoHV-1. The high sensitivity in terms of detecting ultra low levels of virus of up to 0.001 TCID₅₀/0.1ml and better specificity of the real time PCR assay further demonstrates that real time PCR assay as the best test in detection of BoHV-1 in latent or carrier animals.

Subjecting the DNA extracted from clinical samples for real time PCR assay resulted in detection of BoHV-1 in 11 out of 50, 3 out of 49, and 3 out of 38 samples from Farm A, B and C respectively. None of the samples collected from Farm D were positive for BoHV-1 by real time PCR assay (Table 1). Though real time PCR does not require running the gel for PCR confirmation, as a means of authenticity a few of the real time PCR products were analyzed by agarose gel electrophoresis. The real time PCR products under gel electrophoresis yielded a specific ampiclon of 71 bp (Fig. 1).

<table>
<thead>
<tr>
<th>Farm</th>
<th>Sex of the animal</th>
<th>Total number of animals tested</th>
<th>Number of animals positive by ELISA</th>
<th>Number of animals positive by real time PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm A</td>
<td>Male (2) and Female (48)</td>
<td>50</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>Farm B</td>
<td>Male</td>
<td>49</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Farm C</td>
<td>Female</td>
<td>38</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Farm D</td>
<td>Male</td>
<td>40</td>
<td>7</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>177</td>
<td>62</td>
<td>17</td>
</tr>
</tbody>
</table>
As evidenced in serodiagnosis, samples collected from
farm A, which had close physical contacts between animals
like, licking, nose to nose contacts either during common
housing in large open animal sheds (since they were let loose
type) or at common grazing/drinking yards (since they were
let out type) probably served for better virus transmission
amongst susceptible populations (Benoit et al. 2007), resulted
in detection of virus in 11 animals. The farm D which had
the best hygienic practices (on relative basis) did not yield
any virus by real time PCR.

Out of 177 animal under study, 62 were seropositive to
BoHV-1 antibodies, however only 17 were positive for virus
by real time PCR, which is the most sensitive test prescribed
by OIE (2010). This goes on to state that all seropositive
animals do not excrete the virus at all the times. Due to herpes
viral latency, an animal once infected develops antibodies
and the animal remains infected carrier for life time.
Whenever the carrier animal is subjected to stress conditions
(disease/ change of weather/change of feed/place, etc.) the
latent virus gets reactivated and gets excreted in the respective
secretions. So an animal positive for antibody means it
harbours the virus and can excrete the virus whenever they
are subjected to stress conditions. Hence this study
recommends the removal of seropositive animals from the
herd in a breeding station.

This study further highlighted the subclinical nature of
BoHV-1, since most of the breeding animals that yielded the
virus by real time PCR did not show any symptoms
characteristic of BoHV-1 infections in cattle. This finding
was in confirmation with the works of Hage et al. (1996)
who induced stress to a seropositive animal with
dexamethasone. The animal did not produce any symptom of
the disease/infection, but the swabs collected after
dexamethasone treatment yielded the virus in cell cultures,
emphasising the subclinical status of BoHV-1 in animals.
Hage et al. (1996) estimated the reproduction ratio for BoHV-
1 to be at least 7 in cattle herd. Nuotio et al. (2007) reported
that 1 seropositive breeding bull transmitted the BoHV-1
infection to 9 neighbouring breeding bulls in a span of one
year in Finland. This explains the relative contagiousness of
the virus in bovine population. Going by the definition of
reproduction ratio and pathoepidemiology of bovine herpes
virus-1, all cattle including exotic and indigenous breeds are
equally susceptible for BoHV-1 infections (OIE 2010).

In view of the different modes adopted by BoHV-1 in
transmission through susceptible populations, the present
study finds that housing practices do have greater significance
in spread and dynamics of BoHV-1 in cattle. Hence the
present study through its findings and observations
recommends better hygienic, bio-secured housing conditions
that avoid closer animal to animal contacts, for production
of pathogen free semen and other germplasms, with special
reference to highly contagious BoHV-1.

ACKNOWLEDGEMENTS

Authors are thankful to all the officers and staff of breeding
bull stations and bull mother farms of Government of
Karnataka and Government of India for their kind co-
operation during sample collections.

REFERENCES

Veterinary Microbiology 11: 293–302.
Bovine herpes virus 1 infection and infectious bovine
Castrucci G, Martin W B, Frigeri F, Ferrari M, Salvatori D and
Tagliati S. 1997. A serological survey of bovine herpesvirus-1
infection in selected dairy herds in northern and central Italy,
1997. Comparative Microbiology Immunology and Infectious
Glycoprotein C gene based molecular subtyping of bovine
herpes virus isolate from Uttarpradesh Indian Journal of
Virology 23: 402–06.
Diallo I S, Corney B G and Rodwell B J. 2011. Detection and
derdifferentiation of BoHV-1 and 5 using multiplex polymerase
Durham P J K and Hassard L E. 1990. Prevalence of antibodies to
infectious bovine rhinotracheitis, parainfluenza-3, bovine
respiratory syncytial and bovine viral diarrhoea viruses in cattle
in Saskatchewan and Alberta. Canadian Veterinary Journal 31:
Hage J J, Schukken Y H, Barkema H W, Benedictus G, Rijsewijk F
herpesvirus 1 infection in a dairy herd. Veterinary Microbiology
Jain L, Kanani A N, Purohit J H, Joshi C G, Rank D N, Vinay K
and Jain V K. 2009. Detection of bovine herpesvirus 1 (BoHV-
1) Infection in semen of Indian breeding bulls by polymerase
chain reaction and its characterization by DNA sequencing.
Tokyo, Toronto,
Kargar M S, Akhavizadegan M A, Charkhkar S and Meshkot M.

