The bovine paratuberculosis (PTB), a contagious fatal disease also known as Johne’s disease, is caused by an acid fast bacteria Mycobacterium avium subspecies paratuberculosis (MAP). Paratuberculosis is now-a-days viewed as one of the most important and widespread bacterial diseases of ruminants. Cattle less than 6 months of age are most susceptible, and it was estimated that approximately one-third of calves may develop infection with a single exposure. In India, paratuberculosis is in endemic form (Tripathi et al. 2007) and it has zoonotic potential. High prevalence of paratuberculosis was reported in domestic livestock using indigenous, sensitive and MAP specific test in north India. Sero-prevalence of bovines PTB was 29.0% (28.6% in buffalo and 29.8% in cattle) in north India. In Uttar Pradesh and Punjab, seroprevalence of bovine PTB was 32.9% (31.9% in buffalo and 37.6% in cattle) and 25% (23.3% in buffalo and 26.9% in cattle), respectively. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.102 (Gonda et al. 2006). These studies provided evidence for the existence of important genetic variation in susceptibility to paratuberculosis. Some reports are available about association study of bovine paratuberculosis with candidate gene polymorphism (Ruiz et al. 2007, Settle et al. 2009, Pinedo et al. 2009, Pant et al. 2010, Koets et al. 2010). But till date in India no report is available on candidate gene polymorphism with paratuberculosis infection in cattle. Keeping in view above facts the present study was proposed by selecting 20 SNPs for finding their association with MAP infection in cattle.

ABSTRACT

The study was conducted to identify SNPs of quantitative trait loci (QTL) associated with susceptibility to Mycobacterium avium ssp. paratuberculosis (MAP) infection in cattle. Total 20 SNPs from the cattle QTL database were selected on the basis of the potential role in Mycobacterium susceptibility and a case: control association study was conducted in cattle. Out of 20 SNPs total 17 SNPs were polymorphic and 3 were monomorphic in population. The SNP (rs41945014) was significantly associated with MAP and revealed that ODDS of GG and GT genotypes verses TT genotype were 1.22 (0.33–4.49; 95% CI) and 3.37 (1.23–9.23; 95% CI), respectively. The proportion of GG and GT genotypes were significantly higher in bovine paratuberculosis positive animals suggested that selection against these 2 genotypes may confer resistance against bovine paratuberculosis. The all other 16 polymorphic SNPs of the present investigation were not differing significantly in case-control animals.

Key word: Cattle, MAP, Paratuberculosis, Quantitative trait loci, SNP

MATERIALS AND METHODS

A case-control resource panel for bovine paratuberculosis was developed at the animal genetics division under the divisional project —Genetic Predisposition to host resistance against Bovine Paratuberculosis in cattle— to develop this resource panel more than 300 cattle’s were screened for presence of bovine paratuberculosis. The Johnin PPD test and unabsorbed indirect ELISA were used for diagnosis of cattle infected with paratuberculosis. Bovine paratuberculosis infection was screened by using Johnin PPD test. The test involved injecting 0.1 ml of Johnin PPD intradermal into cervical region of the animal and the subsequently detection of swelling (delayed hypersensitivity) at the site of injection after 72 h. The...
reaction is commonly considered to be negative if swelling is observed; not more than 2 mm; if the increase in skin-fold thickness is more than 2 mm and less than 4 mm the reaction is considered to be inconclusive. The reaction is considered to be positive if there is an increase of 4 mm or more in skin-fold thickness.

Bovine paratuberculosis infection was used to screen by unabsorbed indirect ELISA. The ELISA with an S/P ratio of >0.4 were considered positive and <0.25 were considered as negative. While animals showing S/P ratio between 0.25 and 0.4 were low positive and were considered inconclusive.

On the basis of the above mentioned tests total 44 paratuberculosis affected and 49 healthy control animals were used in the present investigation.

Blood collection and DNA isolation: About 5 ml of venous blood was collected under sterile condition, from the jugular vein of the animal into a sterile 15 ml polypropylene centrifuge tube containing EDTA (1.8mg EDTA / milliliter of blood). The samples were kept in deep freeze at –20 ºC till the isolation of DNA. DNA from the whole blood was isolated using genomic DNA extraction kit and kept at –20 ºC.

Source panel of SNPs, PCR-RFLP and gel electrophoresis: From animal QTL database (http://www.animalgenome.org/cgi-bin/QTLD), the QTLs associated with bovine paratuberculosis susceptibility/tolerance were searched and 20 promising QTLs (rs109640417, rs43070062, rs42396640, rs110002076, rs42396640, rs109059425, rs41945014, rs41962859, rs29012843, rs29012842, rs41924236, rs41579048, rs41663541, rs110898024, rs110705351, rs109621404, rs109288717, rs110490432, rs41703350, rs110383586), assessable through PCR-RFLP were identified. The primers targeting these QTL were designed. PCR-RFLP technique was used to identify the SNPs in the QTLs. The RE digested PCR product was electrophoresed in 3% to 5%w/v agarose gel (low EEO) for 2 h at 60 volt. About 23 μl of digested product mix with 2 μl of 6× loading dye were loaded into each well along with 100 bp DNA ladder in a separate lane. After completion of gel electrophoresis the digested product were visualized by UV transilluminator and documented to detect the genotype of each sample.

Statistical analysis: The univariate logistic regression analysis was used by considering the infection status as categorical response variable (yes/no) and SNPs as possible explanatory variables. Data were analyzed using PROC LOGISTIC procedure of SAS 9.3 and ODDS ratios (ORs) with 95% CIs were calculated. The relative risk of incidence among the genotypes was analyzed using a univariate logistic regression model. The EXACT analysis was used for continuity correction for SNPs association where cells were having less than 5 observations. Initially in univariate logistic regression analysis, the non-genetic factors like age (2 level), sex (2 level) and breed (2 level) were fitted and found that none of these effects were significantly associated with incidences of bovine paratuberculosis. Hence, further these non genetic factors were dropped out from logistic models for studying effect of SNPs on bovine paratuberculosis. The PROC ALLELE procedure was used for testing of HWE, estimation of heterozygosity, polymorphism information content (PIC) and linkage disequilibrium (LD) of SNPs markers used in present investigation.

RESULTS AND DISCUSSION

The case: Control population was genotyped for 20 SNPs by PCR-RFLP. For, 3 SNPs namely rs3070062, rs42396640 and rs41663541 showed monomorphic pattern and suggested for the lack of polymorphism in our resource population. In remaining 17 SNPs, rs109640417, rs42279934, rs41924236, rs109621404 and rs110490432 showed only 2 genotypes and other 12 SNPs revealed 3 possible genotypes. The heterozygocity, polymorphism information content and allelic diversity was estimated at 17 polymorphic SNPs loci. Heterozygocity varied widely from a very low 4.30 % for rs42279934 to a high estimate of 83.87 % for rs41924236. The PIC ranged from a very low estimate of 4.12 at rs42279934 to 37.50 % at rs109288717 locus revealing a low to moderate polymorphism at these SNPs. Allelic diversity estimates also revealed similar trend and ranged from 4.2 % at rs42279934 to 50.00 % at rs109288717. The 5 SNPs of present investigation departed significantly from Hardy Weinberg Equilibrium (HWE) and all other SNPs were in HWE. The linkage disequilibrium (LD) was estimated and the rs109640417 was found linked significantly (Pc<0.05) with rs41962859, rs29012842, rs41579048, rs109621404 and rs110490432; the rs110002076 was linked with rs29012842 and rs110898024; the rs109059425 was linked with rs41945014 and rs110490432; the rs29012842 was linked with rs110490432; rs41579048 was linked with rs109621404. All the other paired combinations (17C2) were not linked significantly with each other. The only significant
SNP (rs41945014) of present study was not found linked with any other SNPs, and was found to be in HWE and thus possibility of haplotype study was ruled out.

The genotypic frequencies at all 17 SNP locus are given in Table 1. The frequencies of different genotypes ranged from 0.023 to 0.977 in case and from 0.00 to 0.939 in control population. The univariate regression analysis revealed that the genotypic frequency at rs419445014 associated significantly (P=0.033) with paratuberculosis and all other 16 SNPs showed nonsignificant (P<0.05) differences for the genotypic frequencies in case and control population. At this rs419445014, three genotype TT (294bp), GG (196bp, 98bp) and GT (294bp, 196bp, 98bp) were detected (Fig. 1). The genotypic frequencies of TT, GG and GT were 0.182, 0.136 and 0.682 in MAP infected cattle, whereas these frequencies were 0.367, 0.224 and 0.408, respectively in control population. The differences for the genotypic frequencies between case and control population were found to be statistically significant (P=0.033). The ODDS of GG and GT genotypes vs TT genotypes were 1.22 (95%CI: 0.33–4.49) and 3.37 (95% CI: 1.23–9.23), respectively, suggesting that GG and TG genotypes are more

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genotype</th>
<th>Genotype frequency</th>
<th>p-value</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs109640417</td>
<td>CC</td>
<td>36(0.8182)</td>
<td>0.610</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>8(0.1818)</td>
<td>0.619</td>
<td>1.33(0.44–4.03)</td>
</tr>
<tr>
<td>rs42279934</td>
<td>GG</td>
<td>43(0.9773)</td>
<td>0.619</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>GC</td>
<td>1(0.0227)</td>
<td>0.35(0.03–3.56)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs110002076</td>
<td>GG</td>
<td>25(0.5682)</td>
<td>0.525</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>4(0.0909)</td>
<td>0.58(0.14–2.35)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>15(0.3409)</td>
<td>0.62(0.26–1.50)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs109059425</td>
<td>GG</td>
<td>35(0.7955)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>3(0.0682)</td>
<td>1.14(0.21–6.03)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>6(0.1364)</td>
<td>1.14(0.33–3.86)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs41945014</td>
<td>TT</td>
<td>8(0.1818)</td>
<td>1.22(0.33–4.49)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>6(0.1364)</td>
<td>3.37(1.23–9.23)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>GT</td>
<td>30(0.6818)</td>
<td>0.403</td>
<td>1.00</td>
</tr>
<tr>
<td>rs41962859</td>
<td>TT</td>
<td>5(0.1136)</td>
<td>0.403</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>13(0.2955)</td>
<td>0.61(0.15–2.56)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>GT</td>
<td>26(0.5909)</td>
<td>1.13(0.29–4.40)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs29012843</td>
<td>TT</td>
<td>18(0.4091)</td>
<td>0.299</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>6(0.1364)</td>
<td>3.66(0.65–20.42)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>20(0.4545)</td>
<td>0.97(0.41–2.30)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs29012842</td>
<td>CC</td>
<td>7(0.1591)</td>
<td>0.195</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>17(0.3864)</td>
<td>1.43(0.47–4.37)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>20(0.4545)</td>
<td>2.65(0.84–8.33)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs41924236</td>
<td>AG</td>
<td>36(0.8182)</td>
<td>0.610</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>8(0.1818)</td>
<td>1.33(0.44–4.03)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs41579048</td>
<td>TT</td>
<td>3(0.0682)</td>
<td>0.691</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>29(0.6591)</td>
<td>1.81(0.41–7.91)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>12(0.2727)</td>
<td>2.18(0.43–10.90)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs11089024</td>
<td>GG</td>
<td>25(0.5682)</td>
<td>0.695</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>2(0.0455)</td>
<td>2.08(0.17–24.40)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>17(0.3864)</td>
<td>0.80(0.34–1.85)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs110705351</td>
<td>GG</td>
<td>23(0.5227)</td>
<td>0.597</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>1(0.0227)</td>
<td>>999.99(0.001–>999.99)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>20(0.4545)</td>
<td>1.26(0.55–2.88)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs109621404</td>
<td>AG</td>
<td>12(0.2727)</td>
<td>0.199</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>32(0.7273)</td>
<td>0.52(0.19–1.42)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs109288717</td>
<td>TT</td>
<td>11(0.2500)</td>
<td>0.785</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>9(0.2045)</td>
<td>0.69(0.21–2.28)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>24(0.5455)</td>
<td>0.96(0.35–2.62)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs110490432</td>
<td>GG</td>
<td>36(0.8182)</td>
<td>0.981</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>8(0.1818)</td>
<td>0.98(0.34–2.83)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs41703350</td>
<td>TT</td>
<td>34(0.7727)</td>
<td>0.602</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>10(0.2273)</td>
<td>1.30(0.47–3.58)</td>
<td>1.00</td>
</tr>
<tr>
<td>rs110383586</td>
<td>TT</td>
<td>22(0.5000)</td>
<td>0.791</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>4(0.0909)</td>
<td>0.76(0.18–3.23)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>18(0.4091)</td>
<td>0.74(0.31–1.76)</td>
<td>1.00</td>
</tr>
</tbody>
</table>
susceptible to MAP infection in comparison to TT genotype.

All the 17 SNPs taken from the QTLs had significant
effect on susceptibility to MAP infection (Settle et al. 2009,
Kirkpatrick 2010) based on the genotyping using the Illumina
BovineSNP50 Beadchip. But we found the significant
(rs419445014) association of only 1 SNP with MAP
infection in our resource population. It is further required
to validate these SNPs on comparatively larger population
with more precise/accurate diagnostic procedures. Ruiz et al.
(2007) reported that SNP N23 of Nramp1 (located in
the BTA2 and comprises 15 exons) was genetically
associated with resistance to the paratuberculosis infection
(P=0.0478). Koets et al. (2010) reported that the TLR2-
1903 T/C SNP was significantly associated with resistance
to MAP where cows with CT and CC genotypes were at
1.7 (95% CI: 1.2, 2.8) times the odds of being MAP-infected
compared to cows with the TT genotype. Pant et al. (2010)
reported 22 SNPs on 7 different chromosomes significantly
associated with the disease trait using this genome-wide
association analysis (P=0.0478). Koets et al. (2010) reported that the TLR2-
1903 T/C SNP was significantly associated with resistance
to MAP where cows with CT and CC genotypes were at
1.7 (95% CI: 1.2, 2.8) times the odds of being MAP-infected
compared to cows with the TT genotype. Pant et al. (2010)
reported 22 SNPs on 7 different chromosomes significantly
associated with the disease trait using this genome-wide
association analysis (P=0.0478). Koets et al. (2010) reported that the TLR2-
1903 T/C SNP was significantly associated with resistance
to MAP where cows with CT and CC genotypes were at
1.7 (95% CI: 1.2, 2.8) times the odds of being MAP-infected
compared to cows with the TT genotype. Pant et al. (2010)
reported 22 SNPs on 7 different chromosomes significantly
associated with the disease trait using this genome-wide
association analysis (P=0.0478). Koets et al. (2010) reported that the TLR2-
1903 T/C SNP was significantly associated with resistance
to MAP where cows with CT and CC genotypes were at
1.7 (95% CI: 1.2, 2.8) times the odds of being MAP-infected
compared to cows with the TT genotype. Pant et al. (2010)
reported 22 SNPs on 7 different chromosomes significantly
associated with the disease trait using this genome-wide
association analysis (P=0.0478).

Also, further investigation on larger population would
warrant about strength of association of investigated SNPs.

Taken altogether, these results indicated that the SNPs
at rs419445014 locus would be valuable for genotyping
the animals for selection against Paratuberculosis infection in cattle. The rs419445014 was present at BTA20 and no other candidate gene was representing through this SNPs. Also further investigation on larger population would warrant about strength of association of investigated SNPs.

REFERENCES

Gonda M G, Chang Y M, Shook G E, Collins M T and Kirkpatrick
paratuberculosis infection in US Holsteins. Journal of Dairy
Science 89: 1804–12.

genome association analysis of susceptibility to paratuberculosis

Koets A, Santema W, Mertens H, Oostenrijk D, Keesstra M,
Oeverdijk M, Labouriau R, Franken P, Frijters A, Nielen M
and Rutten V. 2010. Susceptibility to Paratuberculosis infection
in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies Paratuberculosis. Preventive Veterinary Medicine 93: 305–15.

Pant S D, Schenkel F S, Verschoor C P, You Q and Kelton D F.
2010. A principal component regression based genome wide
analysis approach reveals the presence of a novel QTL on
BTA7 for MAP resistance in Holstein cattle. Genomics 95:
176–82.

Pant S D, Verschoor C P, Skelding A M, Schenkel F S, You Q,
IFNGR2, IL12RB1, IL12RB2, and IL23R polymorphisms and

Pinedo P J, Buergelt C D, Donovan G A, Melendez P, Morel L,
Wu R, Langaa T Y and Rae D O. 2009. Association between
CARD15/NOD2 gene polymorphisms and paratuberculosis infection in cattle. Veterinary Microbiology 134: 346–52.

Pinedo P J, Buergelt C D, Donovan G A, Melendez P, Morel L,
Wud R, Langaa T Y and Rae D O. 2009. Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors
for Paratuberculosis infection in cattle. Preventive Veterinary

Genetic association between bovine NRAMP1 and CARD15
genes and infection by Mycobacterium avium subsp.
Paratuberculosis. Proceedings of 91 CP.

Settles M, Zanella R, McKay S D, Schnabel R D, Taylor J F,
Whitlock R, Schukken Y, Van Kessel J S, Smith J M and
Neibergs H. 2009. A whole genome association analysis
identifies loci associated with Mycobacterium avium subsp.
paratuberculosis infection status in US Holstein cattle. Animal

Tripathi B N, Sonawane G G, Munjal S K, Bind R B, Gradinaru
Seroprevalence of paratuberculosis in selected population of
ruminants in India. Proceedings of 9th International
Colloquium on Paratuberculosis. Tsukuba, Japan. pp. 246–
49.

Verschoor C P, Pant S D, You Q, Schenkel F S, Kelton, D F and
Karrow N A. 2010. Polymorphisms in the gene encoding
bovine interleukin-10 receptor alpha are associated with
Mycobacterium avium ssp. paratuberculosis infection status.