Molecular typing of canine parvovirus with PCR assay based on genetic markers of the antigenic variants

DEEPTI SINGH1, AMIT KUMAR VERMA2, AMIT KUMAR3 and MUKESH KUMAR SRIVASTAVA4

Uttar Pradesh Pandit Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishbidhyalaya ewam Go-Anusandhan Sansthan, Mathura, Uttar Pradesh 281001 India

Received: 21 February 2013; Accepted: 19 September 2014

ABSTRACT

The canine parvovirus (CPV) is prevalent in India but only scanty literature is available on molecular differentiation of its strain using polymerase chain reaction. In the present study, 100 faecal samples from dogs suspected for canine parvo virus infection (gastroenteritis) were collected and processed for isolation of viral genomic DNA. Molecular test like PCR assay using 3 specific pairs of primers (pCPV-RT, pCPV-2ab and pCPV-2b) was conducted for differential diagnosis of the virus type. Out of 100 faecal samples, 63 were positive for presence of CPV, of which 54 were CPV-2b and 9 were CPV-2a, indicating the predominance of CPV-2b virus type.

Key words: Canine parvovirus, Dog, India, Polymerase chain reaction

RESULTS AND DISCUSSION

In this study, out of 100 faecal samples tested, an amplicon of 160bp size was obtained using primer set (pCPV-2RT) in 63 samples indicating the presence of CPV. In the positive control, there was also amplification of template DNA whereas, in the negative control, no amplification of template DNA was visualized on an agarose gel.
gel. The high prevalence of CPV in diarrhoeic dogs is in concurrence to the findings of other workers (Nandi et al. 2009, Panda et al. 2009, Pinto et al. 2012) in India. The main source of the infection appears to be the faeces of infected dogs because more than 10^9 virus particles per gram of faeces can be shed during the acute phase of the enteric disease. Therefore, faeces are accepted as a suitable material to detect the virus in the enteric form of the disease (Carmichael and Binn 1981).

After confirmation of CPV by primers pCPV-2RT, another PCR was carried out with all the 100 faecal samples to amplify VP1/VP2 structural gene of CPV genome using 2 primer sets, i.e. pCPV-2ab and pCPV-2b (Table 1). Out of 100 faecal samples, amplicons of 681bp were amplified from all the 63 CPV positive samples by pCPV-2ab primer set (Fig. 1), whereas amplicons of 427bp were amplified in 54 samples with pCPV-2b primer set (Fig. 2). The pCPV-2ab primer set amplified portion of VP1/VP2 gene of both CPV-2a and CPV-2b variants (3025 to 3706 nucleotide position of CPV genomic DNA) to yield a product of 681bp whereas, pCPV-2b primer set amplified specific portion of VP1/VP2 gene of only CPV-2b (4043 to 4470 nucleotide position of CPV genomic DNA) to yield a product of 427bp and thereby differentiate between CPV-2a and CPV-2b. So, the results showed that out of 63 positive samples, 54 (85.71%) were CPV-2b variants, while 9 (16.67%) were CPV-2a strain indicating CPV-2b as the predominant virus type. These findings are in agreement with the earlier reports from India in which CPV-2b has been reported the major antigenic variant of CPV-2 along with CPV-2a at a smaller proportion. (Nandi et al. 2009, Panda et al. 2009, Parthiban et al. 2012). Similarly, various researchers reported that CPV-2b is the predominant virus type responsible for most of outbreaks in US (Truyen 2006), Brazil (Pereira et al. 2000), China (Zhang et al. 2010), Taiwan (Wang et al. 2005), Japan (Soma et al. 2013), South Africa (Stein et al. 1998) and Iran (Firoozjaii et al. 2011), Ireland (McElligott et al. 2011), while CPV-2a is the predominant virus type in Italy (Martella et al. 2006), India (Chinchkar et al. 2006) and Korea (Kang et al. 2008). However, in UK

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Primer type</th>
<th>Sequences 5’ to 3’</th>
<th>Position of genome</th>
<th>Product size (bp)</th>
<th>Annealing temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pCPV-RT</td>
<td>Forward: 5’-CAT TGG GCT TAC CAC CAT TT-3’ (20mer)</td>
<td>3136–3155</td>
<td>160bp</td>
<td>52ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5’-CCA ACC TCA GCT GGT CTC AT-3’ (20mer)</td>
<td>3276–3295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pCPV-2ab</td>
<td>Forward: 5’-GAA GAG TGG TTG TAA ATA ATT-3’ (21mer)</td>
<td>3025–3045</td>
<td>681bp</td>
<td>55ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5’-CCT ATA TCA CCA AAG TTA GTA G-3’ (22mer)</td>
<td>3685–3706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pCPV-2b</td>
<td>Forward: 5’-CTT TAA CCT TCC TGT AAC AG-3’ (20mer)</td>
<td>4043–4062</td>
<td>427bp</td>
<td>55ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5’-CAT AGT TAA ATT GGT TAT CTA C-3’ (22mer)</td>
<td>4449–4470</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Agar gel electrophoreses showing the amplified product of 681 bp of CPV-2a and CPV-2b positive samples using CPV-2ab (F and R) primers. Lane M: 100 bp DNA ladder; Lane 1: Negative control; Lane 3: positive control; Lane 2 & 4: CPV negative faecal sample; Lane 5,6,7: 681 bp PCR product of CPV positive faecal sample.

Fig. 2. Agar gel electrophoreses showing the amplicon of 427 bp CPV-2b positive samples using CPV-2b (F and R) primers. Lane M: 100 bp DNA ladder; Lane 1: Negative control; Lane 3: positive control; Lane 4, 6, 9, 11, 14: CPV Suspected faecal sample; Lane 5,7,10,12,13,15: CPV negative faecal sample.
Greenwood countries are based on original CPV-2 (Firoozjaii types in various countries are unknown, and there is a need to address this question.

Most vaccines used in India and other developing countries are based on original CPV-2 (Firoozjai et al. 2011). Since, 1980, the canine parvovirus evolves into CPV-2a, CPV-2b and CPV-2c. Truyen (2006) reported the presence of cross-protection among these new strains but the protection with current homologous types is more efficient and potent way to prevent the disease and limit its spread in an area. Beside this, attention is also required towards maternal antibody titre. Under field conditions, vaccination against CPV starts at the age of 6 weeks, without considering the maternal antibody titre, which interferes with the development of immunity. This problem can be ruled out with either testing of antibody titre using haemagglutination or ELISA tests or administration of modified live canine parvovirus type 2b vaccine in pups in early age (Martella et al. 2005). So, a special attention from veterinarians and animal health professional to animal vaccination appears to be priority to prevent and control the disease (Singh et al. 2014).

It can be concluded that CPV-2b is the major canine parvovirus antigen type prevalent in this area along with smaller portion of CPV-2a circulating in the field.

ACKNOWLEDGEMENTS

We thank Dean, College of Biotechnology and Vice Chancellor, Uttar Pradesh Pandit Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishvidhyalaya Ewam Go-Anusandhan Sansthan (DUVASU), Mathura; for providing necessary facilities to carry out this work. Authors are also thankful to Mrs Mamta for providing time to time help in the laboratory. We are also thankful to the owners of dogs who gave their permission for their dogs to take part in the study.

REFERENCES

