Incubation of frozen-thawed ram spermatozoa*

A K MATHUR¹

Project Directorate on Cattle, P.O. Box-17, Grass Farm Road, Meerut Cantt, Uttar Pradesh 250 050 India

Received: 6 September 2006; Accepted: 5 August 2007

Key words: Acrosome, Cryopreservation, Incubation, Ram, Spermatozoa

Ram spermatozoa are also susceptible to the stress of freezing and thawing. The viability after cryopreservation depends upon several interrelated factors (Fiser and Fairfull 1989, Pontbriand et al. 1989). However, their adverse effects are manifested on thawing (Holt et al. 1992). In vitro survival of frozen thawed spermatozoa at 37°C has been used as a critarion for evaluating the efficiency of cryopreservation. This study was undertaken to observe the viability of frozen thawed ram spermatozoa at 37°C.

Semen ejaculates (10) were obtained from 10 adult Rambouillet rams maintained under standard management conditions at Central Sheep and Wool Research Institute farm at Avikanagar (Rajasthan). After initial evaluation of semen quality these 10 samples of all rams were pooled and were extended in egg yolk tris glucose (EYTG) extender @ 1000×10⁶ spermatozoa/ml. The extended semen was filled into 0.25 ml straws and were frozen in a programmable ceil freezer @-25°C/min up to-125°C and then stored in liquid nitrogen for a fortnight. Thawing was done at 50°C for 10

sec. The thawed samples were subjected to incubation at 37° C for 6 h. Percentages of progressively motile and live spermatozoa were recorded at hourly intervals. Assessment of acrosomal integrity was done using Giemsa stain technique (Watson and Martin 1972). Absolute index of post-thaw sperm survival at 37° C was constructed using formula of Milovanof (1962); $\Sigma(T\times R)$, where Ia, absolute index of survival; T, time interval between motility evaluation, and R, average of every 2 consecutive motility evaluation. Data were analysed for analysis of variance (Snedecor and Cochran 1967). Evaluation of significant mean difference was done by the least significant difference method from the error term based P<0.05 or P<0.01 (Steel and Torrie 1960).

The mean per cent post-thaw motility before incubation (0h) declined significantly to 17% after 6h of incubation (Table 1). A progressive decline in the per cent motility and acrosome integrity at hourly intervals of incubation up to 4h at 37°C of frozen thawed ram semen was also reported by Joshi et al. (2002), where a significant (P<0.05) effect on

Table 1. Effect of post-thaw incubation interval on progressive motility, live spermatozoa, abnormal spermatozoa and acrosomal integrity of ram semen (mean±SE, n=10)

Post-thaw incubation interval (h)	Semen characteristics			
	Progressive motility (%)	Live spermatozoa (%)	Abnormal spermatozoa (%)	Intact acrosomes (%)
0	60.0°±0.75	65.2 a ±1.04	4.7±1.08	57.5 ° ±1.27
1	51.0 b±1.50	57.9 ^{ab} ±1.46	5.4±1.05	55.3 a ±2.10
2	44.0 °±1.94	$51.0^{bc} \pm 1.96$	6.1±0.31	54.2 ^{ab} ±1.11
3	38.5 d±1.98	44.3 ^{cd} ±1.88	6.8±1,22	53.1 b±1.95
4	32.5 °±2.14	38.2 ^{de} ±2.45	6.5±1.68	52.6 b±2.24
5	24.5 f±1.57	32.8 ef±2.28	7.8±1.56	50.7 bc±1.05
6	17.0 g±1.10	24.6 f±1.88	8.4±2.17	48.5 °±1.07

Means within a column with different superscripts differ significantly (P<0.01) (Lsd, for; progressive motility, 3.77; live spermatozoa, 11.50; intact acrosomes, 3.50).

Present address: ¹Principal Scientist (Animal Physiology).

motility was observed after 1 h of incubation. It was reported that higher survival of ram spermatozoa after 6 h of incubation was obtained after freezing in hypertonic diluents

^{*}Part of Ph.D Thesis submitted to CSA University of Agriculture and Technology, Kanpur.

containing sugar of high molecular weight (Salamon and Lightfoot 1969). Similarly ram semen frozen in BF₂F (Belts ville, Fs) and TEST extender having post-thaw motility of 49.0 and 45.0%, when subjected to incubation at 37°C, resulted into per cent motility of 46.0, 40.0 and 41.9, 34.4 after 3 and 6 h, respectively (Pontbriand et al. 1989). In the present investigation the absolute index of sperm survival was 229.5±5.21. In the only other study Ali et al. (1994) reported absolute index of liability in post-thaw incubated ram semen from 177.9 to 250.7 in semen samples frozen in tris citric acid fructose diluent containing varying levels of egg yolk and glycerol (5-10% and 5-7.5%, respectively). These results indicate that composition of extender and its osmolarity may have profound effect on post-thaw survival and absolute index of sperm survival, which may have a positive correlation with fertility.

Mean percentage of live spermatozoa declined from 65.2 at 0 h to 24.6% at 6 h of incubation, but the differences between any 2 successive hours were not significant. Interestingly, the percentage of abnormal spermatozoa was not affected by hours of incubation. Jones and Martin (1965) reported the drop in the percentage of live spermatozoa after incubation at 37°C in various extenders. These results again indicate that composition of extenders may have an important effect on post-thaw survival of ram spermatozoa. In this study, the acrosomal integrity declined significantly (P<0.01) with an increase in the post-thaw incubation interval from 0 to 6h. This is in agreement with earlier reports indicating substantial deterioration in acrosomal integrity of frozenthawed bull and ram spermatozoa after prolonged incubation (Saacke and White 1972, Fiser et al. 1991). Our earlier study also revealed that incubation of frozen-thawed ram semen at 37°C for 4h resulted into a substantial decline in the proportion of spermatozoa with intact acrosome from 64.2 to 53.5% (Mathur and Joshi 1994).

It is established that thawing of frozen-ram semen results in a marked alteration in membrane structure (Quinn et al. 1969, Nath 1972) with major damage characterized by loosening of acrosomal cap (Pontbriand et al. 1989). It has been shown that after thawing membrane integrity is drastically reduced whereas effect on motility is not that evident and large population of membrane damaged spermatozoa which were motile were present in thawed semen (Valcarcel et al. 1994). Such spermatozoa are expected to lose their motility readily within few hours of incubation at 37°C. Hence, it was suggested that membrane damage, rather than incubation condition is the primary cause of low survival rate of frozen thawed spermatozoa at 37°C. Although membrane damage is especially manifested after thawing however, its severity and nature is governed by conditions of cooling and freezing (Holt and North 1994).

In view of these considerations it is reasonable to suggest that frozen ram semen should be used for AI immediately after thawing to avoid deterioration in semen quality with consequent loss of fertility. Since, membrane integrity plays a crucial role in fertility, cryopreservation protocols need to be developed towards improving membrane integrity at freeze-thawing and incubation, because duration of motility after thawing gives an indication of viability of frozen-thawed semen.

SUMMARY

Semen ejaculates were obtained from Rambouillet rams and after initial evaluation of semen quality these samples were cryopreserved. The thawed samples were subjected to incubation at 37° C for 6 h. Spermatozoal motility, per cent live spermatozoa and acrosomal damage were recorded at hourly interval. A decline in the per cent post-thaw motility with increase in the incubation time was observed and the differences among all the hours were highly significant. There was a progressive fall in the percentage of live spermatozoa at every hour of incubation, however decline in the percentage of live spermatozoa between successive hours was not significant. The mean values for abnormal spermatozoa were not significantly affected by incubation hours, but the percentage of intact acrosome declined with an increase in the post-thaw incubation interval and this decline was significant between 1h and 3, 4, 5 and 6 h of incubation. The overall deterioration in the semen quality was comparatively less marked up to 1 h of post-thaw incubation while beyond this time deterioration was very sharp.

ACKNOWLEDGEMENT

Author is grateful to Director, CSWRI, Avikanagar for providing necessary facilities to conduct the work.

REFERENCES

- Ali A, Ahmed K M, Gondal M A and Gondal K Z. 1994. Effects of different levels of egg yolk and glycerol on cryopreservation of ram semen and conception rate in ewes. *Pakistan Veterinary Journal* 14: 163-67.
- Fiser P S and Fairfull R W. 1989. The effect of glycerol related osmotic changes on post-thaw motility and acrosomal integrity of ram spermatozoa. *Cryobiology* 26: 64–69.
- Fiser P S, Hansen C, Underhill L and Marcus G J. 1991. New Thermal stress test to assess the viability of cryopreserved Boar sperm. *Cryobiology* 28: 454–59.
- Holt W V and North R D. 1994. Loss of plasma membrane integrity occurs during thawing of ram spermatozoa. Cryobiology 28:
- Holt W V, Head M F and North R D. 1992. Freeze-induced membrane damage in ram spermatozoa is manifested after thawing: observation with experimental cryomicroscopy. Biology of reproduction 46: 1086-94.
- Jones R C and Martin I C A. 1965. Deep freezing of ram spermatozoa: The effects of milk, yolk citrate and synthetic diluents containing sugar. *Journal of Reproduction and Fertility* 10: 413-23.
- Joshi A, Bag S, Naqvi S M K, Sharma R C and Mittal J P. 2002. Effect of post-thaw Thermo resistance test on motility and

- acrosomal status of garole ram spermatozoa. *Proceedings Xth International Congress Asian-Australasian Association of Animal Production Societies* (AAAP) New Delhi. 23-27. September. pp 303.
- Mathur A K and Joshi A. 1994. Effect of cryopreservation on acrosomal integrity and viability on ram spermatozoa during incubation. Proceedings 7th International Symposium on spermatology Cairns. Australia. 97-98.
- Milovanof V K. 1962. Biology of Reproduction. Ist edn. Pub. For Agric. Lit. J. Pamgh. Moscow, 451 pp. (fide Rao et al, 1986. Animal Reproduction Science 12: 123-29.)
- Nath J. 1972. Correlative biochemical and ultrastructural studies on the mechanism on freezing damage to ram semen. Cryobiology 9: 240-46.
- Pontbriand D, Howard J G, Schiewe M C, Stuart L D and Wildt D E. 1989. Effect of cryoprotective diluent and method of freeze-thawing on survival and acrosomal integrity of ram spermatozoa. *Cryobiology* **26**: 341–54.
- Quinn P J, White I G and Cleland K W. 1969. Chemical and ultrastructural changes in ram sperm after washing cold shock

- and freezing. Journal of Reproduction and fertility 18: 209-20. Saacke R G and White J M 1972. Semen quality test and their relationship to fertility. Proceeding 4th Technical Conference on Artificial Insemination and Reproduction. P. 22.
- Salamon S and Lightfoot R J. 1969. Freezing ram semen by the pellet method I. The effect of diluent composition on survival of spermatozoa. Australian Journal of Biological Science 22: 1527-46.
- Snedecor G W and Cochran W G. 1967. Statistical Methods. Oxford and IBH, New Delhi.
- Steel R G D and Torrie J H. 1960. Analysis of variance I: The one way classification. *Principles and Procedures of Statistics*. Pp 106-07. McGrow-Hill Book Co. Inc. London.
- Valcarcel A, Heras de Las, MA Perez, L Moses D F and Baldassarre H. 1994. Flourescent staining on a method of asserting membrane damage and post-thaw survival of ram spermatozoa. Theriogenology 41: 483-89.
- Watson P F and Martin I C A. 1972. A comparison of changes in acrosomes of deep-frozen ram and bull spermatozoa. *Journal* of Reproduction and Fertility 28: 99-101.