Effect of post-insemination progesterone supplementation on conception rate in repeat breeding cattle

JAGIR SINGH¹, R KASRIJA², G S DHALIWAL³, V K GANDOTRA⁴ and M HONPARKHE⁵

Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India

Received: 12 March 2007; Accepted: 10 September 2007

Key words: Cattle, Conception rate, Post-insemination, Progesterone supplementation, Repeat breeding cattle

Establishment and maintenance of pregnancy in cattle is largely dependent on the ability of corpus luteum to secrete progesterone (Mann and Lamming 1995, Goff 2002). Delayed formation of the corpus luteum (CL) either alone or in combination with lowered secretion of progesterone during luteal phase has been attributed as one of the major causes of repeat breeding syndrome (Thatcher et al. 1994, Honparkhe et al. 2006). Normal early embryonic development and pregnancy were found associated with increasing progesterone activity initiated on days 4.5–10 post insemination (Albihin et al. 1991, Larson et al. 1997, Kasrija et al. 2006). Hence, the deficiency in progesterone concentration leads to early embryonic losses. Clinical trials in catle have been conducted to study the effect of progesterone supplementation on pregnancy rates ended with conflicting results (Robinson et al. 1989, Van Cleeff et al. 1989). Therefore, the study was planned to observe the effect of post-insemination progesterone supplementation on pregnancy rates in repeat breeding crossbred cattle.

Repeat breeding dairy cattle (30) in their second to fourth parity, each weighing between 300-550 kg, kept under semiloose type housing system were selected. All selected animals had normal genital organs, normal estrous cycle, and apparently clear cervico-vaginal discharge but had failed to become pregnant after 4-8 consecutive inseminations with fertile semen. The cows were divided in to 2 groups consisting of 20 in group 1 (untreated cows) and 10 in group 2 (supplemented with 500 mg of 17- α hydroxy progesterone caproate intramuscularly on 5th and 11th days postinsemination).

Estrus detection of all the cows was done twice daily by vasectomized teaser bull. The cervico-vaginal mucus was also examined microscopically for fern pattern. All the

Present address: ¹Senior Gynaecologist, ⁴Professor-cum-Head, ⁵Assistant Gynaecologist, Department of Animal Reproduction, Gynaecology and Obstetrics; ³Professor, Department of Veterinary Clinical Services Complex, College of Veterinary Sciences; ²District Extension Specialist, Department of Veterinary and Animal Husbandry Extension.

animals were inseminated at standing estrus (day 0) with good quality frozen thawed semen. All the animals were subjected to per-rectal examination on days 60–90 post-insemination for confirmation of pregnancy. Another criteria i.e. skim milk $P_4 > 1.5$ ng/ml on day 22 post-insemination was also considered for pregnancy confirmation.

Milk samples (7) were collected (with sodium azide @ 100 mg/ 10 ml of milk, as a preservative) from each animal on days 0, 4, 6, 8, 12, 16, 20 or 22 post- insemination and centrifuged at 2000 G for 15 min for P₄ estimation. The centrifuged samples were kept in refrigerator for 30-45 min and stored in deep freezer (-20°C) after removal of fat layer. P₄ was estimated by radioimmunoassay precoated tube method with the help of kits. The sensitivity of RIA was 0.028 ng/ml. The mean intra- and inter-assay coefficient of variation were 11.2 and 8.9, respectively. The data were analyzed statistically according to student's t-test using difference between 2 means application (Gupta 1997).

Out of 20 repeat breeder untreated cow (group 1), only 4 animals became pregnant. The conception rate was 20%. The remaining 16 cows returned to estrus after 20-22 days postinsemination. Lower conception rate in untreated repeat breeding cows could be due to fertilization failure or early embryonic death (Kimura et al. 1987, Humbolt 2002). In repeat breeding treated cows (group 2, n=10) only 3 cows became pregnant while 7 remained non-pregnant following P_A supplementation. The conception rate (30%) in this group was 10% more than that of group 1. This indicated that supplementation of post-insemination P4 had nonsignificantly increased the conception rate. Assessment of the effect of exogenous P₄ supplementation is extremely difficult (Peters 1996). Some workers reported significant improvement (Robinson et al. 1989, Umakanthan 1995) while others showed reduction/nonsignificant improvement (Diskin and Sreenan 1986, Van Cleeff et al. 1989) in conception rates.

Analysis of P₄ concentration in pregnant repeat breeder treated and untreated cows revealed that treated cows had significantly higher P₄ as compared to treated cows (day 16;

3.03 vs 2.48 ng/ml and day 22; 3.7 vs 2.82 ng/ml). Higher progesterone concentrations in supplemented cows could be due to cumulative effect of progesterone supplementation. The non-pregnant untreated cows had lower progesterone on days 8 (1.05 vs 1.5 ng/ml) and 12 (1.40 vs 2.01 ng/ml) than non-pregnant treated ones, which might be due to progesterone supplementation on days 5 and 11 postinsemination. Sreenan and Diskin (1983) reported no effect of progesterone administration @ 100 mg daily between days 10 and 20 post-insemination on plasma progesterone level over this period. Similarly, Walton et al. (1990) observed nonsignificant effect of progesterone supplementation @ 200 mg on days 5, 7, 9 and 11 post-insemination on plasma levels. In present study, exogenous progesterone was unable to raise the endogenous progesterone profiles significantly. It is assumed that progesterone suppresses the pulse frequency of pituitary luteinizing (LH) hormone (Ireland and Roche 1982) and thereby depresses the circulating concentrations of LH (Roche and Ireland 1981), the major luteotropin of cattle. The exogenous progesterone might have suppressed LH and thereby suppressed the endogenous progesterone production by corpus luteum. Similar results were obtained by Robinson et al. (1989) in cows supplemented with PRID from day 10-17 post-insemination. However, the exogenous progesterone supplementation should result in increased skim milk progesterone concentration because progesterone crosses the mammary gland (Darling et al. 1972). It might be possible that the decrease in endogenous progesterone concentration was overcome by increase in skim milk progesterone concentration resulting nonsignificant effect of exogenous progesterone administration on skim milk progesterone levels.

SUMMARY

The study was planned to observe the effect of post-insemination progesterone supplementation on pregnancy rates in repeat breeding crossbred cattle. The supplementation of P_4 had increased the conception rate by 10% in treated animals. However, it failed to cause significant rise of milk P_4 concentration in these animals as compared to control ones. The extensive studies are required regarding P_4 supplementation in relation to days post AI to assess its significance.

REFERENCES

- Albihin A, Gustafsson H, Hurst M and Rodriguez-Martinez H. 1991. Embryonic ability to prolong the intercestrous interval in virgin and repeat breeding heifers. Animal Reproduction Science 26: 193-10.
- Darling J A B, Kelly R W, Laing A H and Harkness R A. 1972. The isolation and identification of progesterone obtained from cows milk during pregnancy. *Journal of Endocrinology* 54: 347.
- Diskin M G and Sreenan J M. 1986. Progesterone and embryo survival of the cow. Embryonic Mortality in Farm Animals. pp

- 142-58. (Eds) Sreenan J M and Diskin M G. Martinus Nijhoff, Dordrecht.
- Goff A K. 2002. Embryonic signals and survival. Reproduction in Domestic Animals 37: 137-39.
- Gupta S P. 1997. Statistical Methods. 28th edn. Sultan Chand and Sons. Darya Gani, New Delhi, India.
- Honparkhe M, Singh Jagir, Dadarwal D, Kumar A and Gandotra V. K. 2006. Luteal inadequacy as a possible cause of repeat breeding syndrome in dairy cattle. *Indian Journal of Animal Sciences* 76: 296-98.
- Humbolt P. 2002. Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. *Theriogenology* 56: 141-33.
- Ireland J J and Roche J F. 1982. Effect of progesterone on basal luteinising hormone and episodic luteinizing hormone and follicle stimulating hormone secretion in heifers. *Journal of Reproduction and Fertility* 64: 295.
- Kasnija R, Singh J, Dhaliwal G S, Honparkhe M and Matharoo J S. 2006. Skim milk progesterone profiles in relation to repeat breeding syndrome and conception in crossbred dairy cattle. *Indian Journal of Animal Sciences* 76: 596-98.
- Kimura Nakao T, Moriyoshi and Kawata K. 1987. Luteal phase deficiency as a possible cause of repeat breeding in dairy cows. British Veterinary Journal 143: 560-66.
- Larson, S F, Butler W R and Currie W B. 1997. Reduced fertility associated with low progesterone post breeding and increased milk urea nitrogen in lactating cows. *Journal of Dairy Science* 80: 1288-95.
- Mann G E and Lamming G E. 1995. Progesterone inhibition of the development of the luteolytic signals in cows. *Journal of Reproduction and Fertility* 104: 1-5.
- Peters A.R. 1996. Embryonic mortality in the cow. *Animal Breeding Abstract* 64: 587-98.
- Robinson NA, Leshe K E and Walton J S. 1989. Effect of treatment with progesterone on pregnancy rate and plasma concentrations of progesterone in Holstein-Friesian cows. *Journal of Dairy Science* 72: 202-07.
- Roche J F and Ireland J J. 1981. The differential effect of progesterone on concentrations of luteinizing hormone and follicle stimulating hormone in heifers. Endocrinology 108: 568.
- Sreenan J M and Diskin M G. 1983. Early embryonic mortality in cow: Its relationship with progesterone concentration. *Veterinary Record* 112: 517–21.
- Thatcher W W, Staple C R, Danet-Desnovers G, Oldick B and Schimitt E B. 1994. Embryo health and mortality in sheep and cattle. *Journal of Animal Science* 72: 16.
- Umakanthan T. 1995. A field trial on progesterone treatment in repeat breeding cows. *Indian Veterinary Journal* 72: 1308.
- Van Cleeff J, Drost M and Thatcher W W. 1989. Effects of postinsemination progesterone supplementation on fertility and subsequent estrus responses of dairy heifers. *Theriogenology* 36: 795-02.
- Walton J S, Halbert G W, Robinson N A and Leslie K E. 1990. Effect of progesterone and human chorionic gonadotrophin administration 5 days post-insemination on plasma and milk concentrations of progesterone and pregnancy rates of normal and repeat breeder dairy cows. Canadian Journal of Veterinary Research 54: 305-08.