Effect of dietary aflatoxin B₁ on haemato-biochemical profile in laying hen*

G K SAWALE1 and R C GHOSH2

Indira Gandhi Krishi Vishva Vidyalaya, Anjora, Durg, Chhattisgarh 491 001 India

Received: 29 April 2007; Accepted: 28 August 2007

Key words: Aflatoxin B1, Dietary aflatoxin, Haemato-bio-chemical profile, Hen

Adult White Leghorn layer birds (40) obtained from a commercial farm were divided randomly into 2 groups of 20 each and reared separately in deep litter system with standard feed and water. Powdered aflatoxin B₁ produced in the laboratory was added in ration to achieve 0.5 ppm level of toxin (AF group) and control group received normal toxin free diet for 60 days. Jugular blood samples were collected from 5 birds of each group on 0, 15th, 30th, 45th and 60th day of experiment for haematological studies by conventional methods.

The separated sera were used for estimation of total serum protein, serum albumin, cholesterol, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, uric acid and creatinine by using semi-automated analyzer with diagnostic kits and standard methodology. Data obtained were analyzed by one-way analysis of variance (ANOVA) (Snedecor and Cochran 1994). The t-test (2 samples assuming equal variance) was calculated along with the critical difference (CD) under each parameter.

Aflatoxin B₁ treated birds showed significant (P<0.01) decrease in TEC (2.56 \pm 0.01), Hb (8.57 \pm 0.09) and PCV (29.40 \pm 0.35) than that in control birds TEC (2.70 \pm 0.03), Hb (8.96 \pm 0.11) and PCV (30.68 \pm 0.38), which confirmed the reports of Basheer Ahamad *et al.* (2006) and Singh *et al.* (1992). There were no significant differences in TLC and DLC between treated and control birds.

The decrease in PCV, Hb and TEC suggested anaemia in the toxicated birds, resulted from toxic depression of a haemopoietic system by aflatoxin as also reported by Oguz et al. (2000). Tung et al. (1975) suggested that anaemia could result from reduced and defective haematopoiesis, increased destruction of red blood cells or cumulative effect of these factors. Aflatoxin B₁ treated birds had a significant (P<0.01)

*Part of M.V.Sc Thesis of first author submitted to IGKVV, Raipur.

Present address: ¹Veterinary Officer, Poultry Diagnostic and Research Centre of Venkateshwara Hatcheries Pvt. Ltd, Loni Kalbhor, Taluka Haveli, Pune 412 201.

²Professor and Head, Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry.

decrease in TSP (4.47 ± 0.16) , albumin (2.14 ± 0.10) and cholesterol (104.20 ± 2.93) as compared with values of control group (TSP, 5.91 ± 0.14 ; albumin, 2.53 ± 0.05 and cholesterol, 133.90 ± 1.77) which confirmed the reports of Smith *et al.* (1992) and Basheer Ahamad *et al.* (2006). A significant and gradual downfall in the level of TSP, albumin at 0.5 ppm (Bhanuprakash *et al.* (2006) and cholesterol at 0.7 ppm of dietary aflatoxin was observed by Johri and Beura (2000).

In the present study, decrease in the level of TSP and albumin could possibly be due to impairment of the protein synthesis and loss of protein and albumin due to progressive and persistent damage of hepatic parenchyma as also reported by Srivastava (1984) and Mezey 1978).

A highly significant (P<0.01) increased activity of serum AST (190.89 \pm 2.28), ALT (8.50 \pm 0.50), ALP (487.74 \pm 1.83) was observed in toxin fed group (AF group) as compared to serum AST (164.23 \pm 2.34), ALT (5.38 \pm 0.25) and ALP (479.9 \pm 1.58) of control group birds. Similarly, Arshad *et al.* (1993) reported significant and dose dependant increase in AST and ALT activity in aflatoxicosis. Elevation of one or more enzymes (AST, ALT and ALP) was also reported in aflatoxicosis (Raina *et al.* 1991). The elevation of AST, ALT and ALP activity could be attributed to circulatory and degenerative changes in liver and kidney followed by subsequent release in the blood circulation (Raina *et al.*1991).

Serum creatinine (2.67±0.18) and uric acid (7.41±0.36) level significantly (P<0.01) increased in the birds of AF group as compared to serum creatinine (1.60±0.05) and uric acid (5.55±0.30) level of control birds, which confirmed the reports of Sakhare (2001). Increased level of creatinine and uric acid might be due to accelerated rate of protein catabolism.

SUMMARY

Effect of dietary aflatoxin B_1 on haemato-biochemical profile was studied in laying hen. Aflatoxin B_1 treated birds showed significant decrease in TEC, Hb and PCV. There was no significant difference in TLC and DLC between treated

and control birds. TSP, albumin and cholestoral showed decline in treated birds. Serum AST, ALT, ALP activity increased in treated birds. Creatinine and uric acid level also increased.

ACKNOWLEDGEMENT

Authors thank the Dean, College of Veterinary Science and Animal Husbandry, Anjora, Durg, for providing necessary facility, and first author is grateful to HR Manager, Dabur Ayurvet Ltd., for financial support.

REFERENCES

- Arshad S, Khan M Z, Siddiqui M and Javed M T. 1993. Studies on enzyme level and residual effect of aflatoxins in experimentally induced mycotoxicosis in broiler chicks. *Indian Veterinary Journal* 83: 159-61.
- Basheer Ahamad D, Vairamuthu S, Balasubramaniam G A, Murli Manohar B and Balachandran C. 2006. Individual and combined effects of citrinin and aflatoxin B₁ in broiler chickens: A clinicpathological study. *Indian Journal of Veterinary Pathology* 30: 32-35.
- Bhanuprakash, Sathynarayana M L, Vijayasarthi S K and Upendra H A. 2006. Serum biochemistry, organ weights and performance of broiler chickens fed aflatoxin, ochratoxin and toxin binder. *Indian Veterinary Journal* 70: 898–02.
- Johri T S and Beura C K. 2000. Efficacy of Avsorb+ feed supplement in alleviating adverse effects of aflatoxins in broilers. CARI, Contract Research Report. Poultry Times of India 4: 2-4.
- Kalra C S, Gill B S and Singh H. 1996. Serum biochemical studies on interaction of aflatoxicosis and coccidiosis in poultry. *Indian Veterinary Journal* 73: 504–08.
- Mezey E. 1978. Liver disease and nutrition. Gastroenterology 78:

- 770-83.
- Oguz H, Kececi T, Birdane Y O, Onder F and Kurtoglu V. 2000. Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during experimental aflatoxicosis. Research in Veterinary Science 69: 197-01.
- Raina J S, Roy K S and Singh B. 1991. Biochemical and histochemical studies in experimental mycotoxicosis in chicks. Indian Journal of Animal Sciences 62: 1276-81.
- Reddy D N, Rao P V, Reddy V R and Yadgiri B. 1984. Effect of selected levels of dietary aflatoxin on performance of broiler chicken. *Indian Journal of Animal Sciences* 54: 68-73.
- Sakhare P S. 2001. 'Evaluation of herbal product during aflatoxicosis and ochratoxicosis in broilers.' M.V.Sc. Thesis submitted to Maharashtra Animal and fishery Science University, Nagpur.
- Shrivastava. 1984. 'Pharmacokinetics and therapeutic evalution of oximes buffalo calves.' Ph. D Thesis, Punjab Agriculture University, Ludhiana.
- Shukla S K and Pachauri S P. 1985. Effect of aflatoxicosis on growth and development in cockrels. *Indian Veterinary Journal* 62: 341-42.
- Singh A, Satija K C and Mahipal S K. 1992. Haematological and biochemical studies on broiler chicks fed aflatoxin B₁ and after its withdrawal. *Indian Journal of Poultry Science* 27(3): 153– 56.
- Smith E E, Kubena L F, Braithwaite C E, Harvey R B, Phillips T D and Reine A H. 1992.
- Toxicological evaluation of aflatoxin and cyclopiazonic acid in broiler chickens. *Poultry Science* 71: 1136–44.
- Snedecor G W and Cochran W G. 1994. Statistical Methods. 8th edn. Iowa State University Press, Ames, Iowa.
- Tung S T, Cook F W, Wyatt R D and Hamilton P B. 1975. The anemia caused by aflatoxin. *Poultry Science* 54: 1962-69.