Prevalence of oesophagostomosis in goats in humid North-East Himalayan region Sikkim, India

PAPRI PAL1, L R CHATLOD2, B KUMAR3 and R K AVASTHE4

ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Gangtok, Sikkim 737 102 India

Received: 22 September 2014; Accepted: 8 October 2014

Key words: Goats, Oesophagostomum spp., Prevalence, Sikkim

In many areas of India, raising of livestock is an important economic activity from which food and cash income are derived. Economic losses due to oesophagostomosis are attributed to morbidity, mortality and cost of medication (Biu et al. 2012, Lamrioui et al. 2013). There is paucity of information on the disease oesophagostomosis in goats except a preliminary report on prevalence of gastrointestinal nematodiasis in goats in Sikkim (Rahman et al. 2012, Pal et al. 2013). Hence, this investigation was conducted to determine the prevalence of oesophagostomosis in 4 agroclimatic zones of Sikkim with a view to proffer feasible preventive and control measures.

Faecal samples of 9,480 goats of both sexes and different ages in 4 districts of Sikkim were collected randomly from 13 villages of 4 agroclimatic zones of the state between April 2007 and March 2012, and subjected to qualitative and quantitative examinations of Oesophagostomum spp (Soulsby 1982) and the parasites were identified by examining the eggs and culturing for larvae (Soulsby 1982).

The present study revealed that out of 9,480 animals tested from 4 agroclimatic zones of Sikkim, 2,950 (31.12 %) were positive for Oesophagostomum spp. (Table 1). The occurrence of Oesophagostomum spp. was higher (35.42 %) among animals reared at a lower altitude subtropical high humid zone (<1,600 m amsl) followed by temperate humid zone (< 3,000 m amsl, 28.63 %) than those reared at higher altitude alpine dry humid zone (7.14 %, 4286 m amsl). An overall low rate of infection with Oesophagostomum spp. in goats recorded in the alpine dry area might be due to non-conducive agroclimatic conditions prevailing in these selected areas of study which does not favour the propagation of the parasitic ova thus leading to unavailability of infective larvae on the grazing ground (Rahman et al. 2012, Pal et al. 2013). The monthly mean EPG of Oesophagostomum spp. in goats during the study is shown in Fig. 1. The occurrence of Oesophagostomum spp. was high throughout the period of study with a high peak during July to September. With the onset of winter (Table 2) from December onwards, the mean

Table 1. Agroclimatic zone-wise prevalence of oesophagostomosis in different district of Sikkim

<table>
<thead>
<tr>
<th>District</th>
<th>Subtropical and high humid zone</th>
<th>Temperate humid zone</th>
<th>Sub-alpine low humid zone</th>
<th>Alpine dry zone</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of animals examined (%)</td>
<td>No. of infected animals (%)</td>
<td>No. of animals examined (%)</td>
<td>No. of infected animals (%)</td>
<td>No. of animals examined (%)</td>
</tr>
<tr>
<td>East</td>
<td>2245 (36.39)</td>
<td>817 (36.39)</td>
<td>2806 (30.04)</td>
<td>133 (15.79)</td>
<td>86 (9.31)</td>
</tr>
<tr>
<td>West</td>
<td>629 (43.40)</td>
<td>273 (43.40)</td>
<td>381 (87.82)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>North</td>
<td>398 (27.89)</td>
<td>111 (27.89)</td>
<td>450 (105.23)</td>
<td>98 (8.16)</td>
<td>68 (3.41)</td>
</tr>
<tr>
<td>South</td>
<td>1206 (31.92)</td>
<td>385 (29.05)</td>
<td>988 (29.05)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>4478 (35.42)</td>
<td>1586 (28.63)</td>
<td>4625 (23.82)</td>
<td>223 (13.01)</td>
<td>154 (11.74)</td>
</tr>
</tbody>
</table>

Present address: 1Research Associate (drpapripaldu@gmail.com), Division of Animal Health, 3Scientist (drbrijeshvet02@gmail.com), Animal Production, 4Joint Director (jdsikkim.icar@gmail.com). 2Scientist (VPH) (chatlodlaxman@rediffmail.com), National Research Centre on Meat, Chengicherla, P.O.Box No. 19, Boduppal, Hyderabad. 2013). The monthly mean EPG of Oesophagostomum spp.
total egg count fell to a low level, steadily falling to a minimum of 35.246 EPG in January after that it rose slowly with the increase in temperature and rainfall. Greater proportion of study animals were with moderate (16.81%) to low (11.98%) EPG while fewer were with severe (1.21%) infection rates (Table 2).

Mean EPG level served an index of the intensity of worm burden in animals and helps in devising management strategies besides assessing the efficacy of control programmes and keeping track of development of anthelminthic resistance (Yadav et al. 2008). The higher prevalence and degree of EPG in summer and autumn seasons as compared to other seasons may be due to the differences in grazing patterns of the animals in the areas under study. The rise in Oesophagostomum EPG could be attributed to more favourable temperature and humidity for the development and survival of the preparasitic stages leading to increased availability of infective larvae on the pasture during the subsequent months. This result was in accordance with Jithendran and Bhat (1999) in dairy animals in the North West Humid Himalayan region of India, Rahman et al. (2012) and Pal et al. (2013) from Sikkim, Singh et al. (2005) in sheep in Ludhiana, Yadav et al. (2008) from high altitudes of Uttarakhand, Sharma et al. (2007) in gaddi sheep in Palam valley of North Western Himalayan region of India. The present study indicated a higher prevalence in summer (38.97%) followed by autumn (37.41%) and spring (26.21%). The infection rate was significantly (P<0.05) lower in winter (17.11%). Our results revealed a fairly clear seasonal variation with high levels of infection during summer/rainy season, which was consistent with the observations of Nwosu et al. (2012) and Salifou et al. (2013). The study also indicated that under normal conditions the animals harboured a worm burden without any clinical signs but the worm burden reached a threshold pathogenic level during the monsoon and post-monsoon seasons (Rahman et al. 2012).

In this study, age had a significant association with the prevalence of Oesophagostomum spp. The highest prevalence (33.51%) was recorded in older animals (>24 months) with moderate (10.53%) to severe (19.56%) EPG, followed by 27.68% in young animals (12–24 months) and the lowest (16.46%) in growing animals of 6–12 months old (Table 2). This result was in agreement with Yadav et al. (2008), Rahman et al. (2012) and Salifou et al. (2013) from different places of India and Northern Benin. Besides, higher prevalence in older groups may be due to more exposure to the source of infection. These animals may acquire immunity to the parasites through frequent challenge and expel the ingested parasite before they establish infection. These animals may acquire immunity to the parasites through frequent challenge and expel the ingested parasite before they establish infection. This study revealed a relatively higher prevalence in females (37.15%) than males (24.40%). The higher percentage of infection in the females may be due to the alteration in the physiological condition of the animals during pregnancy and lactation (production activity) and also the lack of feed supplement for production which may lead to the lowering of body resistance of the female.

The data generated in this study indicated that under prevailing agroclimatic conditions of Sikkim, India, the prevalence of Oesophagostomum spp. is slightly high
among goats. However, the EPG estimated in the present study indicated the level of sub-clinical infections in the host species and may initially be of help in planning chemotherapeutic and prophylactic strategies for goats from an area studied and also of the regions with similar climatic conditions. Further, investigation on epizootiology of *Oesophagostomum* spp. in goats in different agroclimatic regions, larval bionomics and pasture burden are required for better understanding of oesophagostomosis in the region.

SUMMARY

In the study 9,480 goats were included using standard parasitological procedure in 13 villages of Sikkim during April 2007 to March 2012. The overall infection rate was 31.12 % with a mean number of eggs per gram of faeces (EPG) as 1450.55. The prevalence was found relatively higher in subtropical high humid area (35.42%) compared to temperate humid zone (28.63%), sub-alpine low humid zone (13.01%) and alpine dry zone (7.14%). Highest infection rate was observed during summer (11.21%) followed by autumn (9.12%) and spring (6.56%). The infection rate was significantly (P<0.05) lower in winter season (4.23%). Age-wise prevalence was 6.09, 10.22, and 14.81% in the animals below 1 year, within 1–2 year and above 2 years of age, respectively. The females were found more (37.15%) susceptible to *Oesophagostomum* spp. infections than the males (24.40%). Year-wise prevalence of these species was also recorded.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Agricultural Research and Education, Government of India for financial assistance under AINP on GIP. Thanks are also expressed to the Director and Joint Director, ICAR Research Complex for NEH Region, Sikkim Centre, Gangtok for providing the necessary facilities.

REFERENCES


