GnRH treatment and double insemination for management of repeat breeding crossbred cows of *Tarai* region

M K SHUKLA1 and A K MISRA2

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145 India

Received: 6 January 2006; Accepted: 15 June 2008

Key words: Crossbred cows, Double insemination, GnRH, Pregnancy, Repeat breeders

Repeat breeding is a major reproductive problem bearing significant impact on production of the herd. Several etiological factors have been explored and documented, which mainly focused around infection of the uterus (Singh and Pant 1998, Shukla and Wani 2002) and delayed ovulation (Hernandez *et al.* 1993, Dolelel *et al.* 1998) as major determinants of repeat breeding bovines. Accordingly, many treatment regimes involving antibiotics (Rao and Naidu 2000, Shukla and Wani 2002), chemotherapeutic agents (Freemen *et al.* 1997) and hormones (Stevenson *et al.* 1990, Macmillan and Peterson 1993) have been reported with varying results. This study was designed to determine if double insemination during the same estrus period along with GnRH treatment would improve the pregnancy rates in repeat breeding cows.

Crossbred (HF × Sahiwal) cows (30) in second to fourth lactation with a history of 3 or more unsuccessful inseminations with good quality frozen semen were selected for the study. All the selected animals were apparently healthy and were maintained under identical conditions of feeding and management. Clinicogynaecological examination of the animals confirmed normal genitalia and absence of any other disease condition. The animals were cycling normally with clear mucus discharge at estrum.

The animals were divided into 2 equal groups of 15 each and were inseminated with high quality semen from fertile bulls according to the am-pm rule. Additionally, group 1 cows were treated with 10 mg GnRH analogue, buserelin (2.5 ml receptal) i/m, whereas group 2 cows received 2.5 ml normal saline (NS) i/m at the time of first AI. Second AI was repeated after 8 to 16 h of the first AI. The subsequent data for non return to estrus at day 30 after AI were recorded and all the animals, which did not exhibit estrus were palpated per rectum at day 60 for pregnancy diagnosis. The results were

Present address: ¹Assistant Professor (Animal Reproduction, Gynaecology and Obstetrics), Teaching Veterinary Clinical Service Complex, College of Veterinary Science and Animal Husbandry, Rewa, Kuthulia, Rewa 486 001, Madhya Pradesh.

²Director, Project Directorate on Cattle (ICAR), Grass Farm Road, Post Box No. 17, Meerut Cantt, Uttar Pradesh 250 001.

compared statistically using students Z test (Snedecor and Cochran 1994).

Groups differed significantly (Table 1) for the per cent non return rate (86.66 vs 53.33) at day 30 after insemination. The same trend was observed following per-rectal confirmation of pregnancy on day 60 post-insemination. Pregnancy rate in group 1 cows which received GnRH treatment (53.33%) was significantly higher than control cows of group 2 (13.33%). These results are in confirmation to the earlier reports in crossbred cows (Vamerzani et al. 1997, Srivastava and Ahlawat 1998) and HF cows (Rangnekar et al. 2002). Van Rensburg (1962) and Dolelel et al. (1998) recorded a high incidence of abnormal ovulation and reported delayed ovulation as one of the important causes of unsuccessful inseminations (Noakes 1997, Dolelel et al. 1998) in cattle. Hence treatment with GnRH, which facilitates ovulation, is of significance in dealing with such reproductive failure incidences.

Lower preovulatory LH surge reportedly caused repeat breeding in heifers (Gustaffson et al. 1986) and Holstein cows (Bloch et al. 2001). This may also be a reason of repeat breeding in the animals included in our study. Also, some cows might had very long intervals between estrus and ovulations, and between LH surge and ovulations (Bloch et al. 2001) and treatment of such cows with GnRH enabled them to achieve a larger LH peak, which in turn might have resulted in their ovulation within 30 h of estrus (Kaim et al. 2003).

Table1. Effect of GnRH treatment on conception rate in repeat breeding crossbred cows

Treatment groups	Cows not returned to estrus at day 30 post AI (%)	Cows pregnant at day 60 post AI(%)
Group 1 (GnRH)	13/15 (86.67) ^a	8/15 (53.33) ^a
Group 2 (NS)	8/15 (53.33) ^b	2/15 (13.33) ^b

Different superscript within a column indicates significant difference (P<0.05).

SUMMARY

Crossbred repeat breeder cows (30) were divided into 2 equal groups and were inseminated according to the am-pm rule. Group 1 cows were treated with 10 mg GnRH analogue, buserelin (2.5 ml) i/m whereas group 2 cows received 2.5 ml NS i/m at the time of first AI. Second AI was repeated after 8 to 16 h of the first AI. Conception rate in the GnRH treated group (53.33%) was significantly higher than the NS treated control (13.33%).

REFERENCES

- Bloch A, Wolfenson D, Kaim M, Roth Z, Braw-Tal R and Folman Y. 2001. Factors affecting the time intervals between estrus, LH surge and ovulation in high-yield dairy cows. *Journal of Dairy Science* 84 (Suppl. 1): 464 (Abstr.).
- Dolelel R, Aech S and Lopataova M. 1998. Delayed ovulation and embryonic mortality in subfertile cows. Reproduction in Domestic Animals Suppl. 5: 127.
- Freeman C D, Klutman N E and Lamp K C. 1997. Metronidazole: A therapeutic review and update. *Drug* **54**: 679–708.
- Gustafsson H, Larsson K, Kindahl H and Madej A. 1986. Sequential endocrine changes and behaviour during oestrus and metoestrus in repeat breeders and virgin heifers. *Animal Reproduction* Science 10: 261–73.
- Hernandez-caron J, Zaarco L and Lina T. 1993. Incidence of delayed ovulation in Holstein heifers and its effect on fertility and early luteal functions. *Theriogenology* **40**: 1073–81.
- Kaim M, Bloch A, Wolfenson D, Braw-Tal R, Rosenberg M, Voet H and Folman Y. 2003. Effects of GnRH administered to cows at the onset of estrus on timing of ovulation, endocrine responses, and conception. *Journal of dairy Science* 86: 2012–21.

- Macmillan K 1 and Peterson A J. 1993. A new intravaginal progesterone releasing device for cattle (CIDR-B) for oestrus synchronization, increasing pregnancy rates and the treatment of post partum anoestrus. *Animal Reproduction Science* 33: 1–25.
- Noakes D E. 1997. Fertility and Obstetrics in Cattle. 2nd edn, pp. 146. Blackwell Science Ltd, London.
- Rangnekar M N, Dhoble R L, Sawale A G, Gacche M G, Ingawale M V and Jadhav J M. 2002. Effect of Gonadotropin releasing hormone (GnRH, Fertagyl), administration on the conception rate in repeat breeding bovines. *The Blue Cross Book* 18: 20–21.
- Rao K B and Naidu G C. 2000. Effect on mycosal and gentamicin in repeat breeders. *Indian Journal of Animal Reproduction* 21:
- Shukla M K and Wani N A. 2002. Treatment of repeat breeding condition using oxytetracycline and gentamic in therapy in cattle. *Animal Reproduction Science* **26**: 269–70.
- Singh M and Pant H C. 11998. Factors responsible for artificial insemination failure in the field. *Indian Veterinary Journal* 75: 1128-29.
- Snedecor G W and Cochran W G. 1994. Statistical Methods. The Iowa State Univ. Press USA.
- Srivastava S K, Ahlawat S P S.1998. Effect of luteinizing hormone (LH) on pregnancy rate in repeat breeding cows. *Indian Veterinary Journal* 75 (4): 381–82.
- Stevenson J S, Call E P, Scoby R K and Phatak A P. 1990. Double insemination and and gonadotropin releasing hormone treatment of repeat breeding dairy cattle. *Journal of Dairy Science* 73: 1766–72.
- Vamerzani A, Dubey B M and Arneja D V. 1997. Effect of GnRH during different estrous cycle length on pregnancy rates in crossbred cows. *Indian Journal of Animal Production and Management* 13 (1): 50-52.
- Van Rensburg S W J. 1962. Ovulatory failure in bovines. *Onderst Journal of Veterinary Research* 29 (1): 55.