Expression profile of H19 and Peg1 among diploid parthenogenetic, female sexed IVF and in vivo derived embryos during pre-implantation development in goat

R RANJAN1, RENU SINGH2, KULDEEP KUMAR3, M SARKAR4, B C DAS4 and SADHAN BAG5

Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 2 August 2014; Accepted: 18 May 2015

Key words: Diploid parthenogenetic embryo, Embryo sexing, H19, Imprinted gene, Peg1

Parthenogenesis was induced in various species for the study of developmental ability of embryos and produced first parthenogenetic mice ‘Kaguya’ (Kono et al. 2004). This has opened up the hope of making parthenogenesis a successful method of cloning in domestic animals. Parthenogenesis does not occur in goats naturally, but artificially parthenogenetic embryo can be produced by various methods. The in vitro developmental potency of parthenogenetic embryos to different stages was done in goat (Pankaj et al. 2012, Ranjan et al. 2013a, Ranjan et al. 2013b). Further, the in vivo development potency of these embryos was also studied following transfer in goat and showed non return, up to 60–70 days (Ranjan et al. 2013c). The preceding information underlines the failure of parthenogenesis in goat to live birth. The major reasons are absence of paternal genes, which are required for normal embryonic development.

So, the present research work was proposed to study the comparative expression profile of paternally imprinted gene (H19) and maternally imprinted gene (Peg1) among diploid parthenogenetic (DIP), female sexed IVF and in vivo derived embryos in caprine.

Ethics: All the experiments were approved by ethics committee of the Indian Veterinary Research Institute, Izatnagar, India.

Embryos production and culture of embryonic cells isolated from early stage embryos: In vitro embryo production was done as per Ranjan et al. (2013a). For parthenogenetic diploid (DIP) embryo development, isolated oocytes were cultured in maturation media supplemented with 15μg/ml of CCB (Ranjan et al. 2013a). Further, the in vivo development potency of these embryos was also studied following transfer in goat and showed non return, up to 60–70 days (Ranjan et al. 2013c). The preceding information underlines the failure of parthenogenesis in goat to live birth. The major reasons are absence of paternal genes, which are required for normal embryonic development.

The DIP, IVF and in vivo derived embryos of 8–16 and morula stages were zona lysed with proteinase-K (0.02%) and cultured in wells on mitomycin C inactivated goat fetal fibroblast monolayer. When the clumped blastomere of individual embryos were divided and made a colony, these cells were eluted by 0.25% trypsin EDTA solution.

Karyotyping of parthenogenetic embryo and sexing of embryonic cell colony: Karyotyping was done as per Ranjan et al. (2013a). The colonies of DIP embryos of cultures were used for gene expression studies. Colonies developed from individual IVF and in vivo derived embryos of 8–16 and morula stage embryos were sexed by Sry gene expression by real time PCR using genomic DNA (Ranjan et al. 2013b).

RNA extraction and reverse transcription: The total RNA was isolated from embryonic cell colony generated from 8–16 and morula stages of DIP (36 and 37), IVF (20 and 22) and in vivo (6 and 5) derived female sexed embryonic cell colonies by RNA kit cDNA was synthesized using

<table>
<thead>
<tr>
<th>Table 1. Primers used for real-time PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>α-actin</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gapdh</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H19</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Peg1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sry</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Present address: 1Scientist (dr_raviranjan@yahoo.co.in), PRSM Division, Central Institute for Research on Goats, Makhdoom. 2,3Research Associate (kshivalya@gmail.com, renumourya@gmail.com), 4,5,6Principal Scientist (msarkar24@gmail.com, bikash67@rediffmail.com, bag658@gmail.com), Physiology and Climatology Division.
iScript select cDNA synthesis kit.

Real time polymerase chain reaction: Relative quantification of different genes was performed using a real time PCR method by using Biorad CFX Software and Eva Green supermix as per standard protocol (Ranjan et al. 2014, Singh et al. 2014). The detail of primers is given in Table 1.

Statistical analysis: Relative expression of gene in fold changes was calculated by 2-ΔΔCt method (Pfaffl et al. 2002) and analysed by one-way ANOVA using SPSS 16.

The expression of H19 gene was detected in all the samples tested in the present study (Figs 1–2). The expression of H19 gene was up regulated significantly ($P<0.05$) in DIP and IVF derived 8–16 and morula as compared to in vivo (Figs 1–2). H19, a growth-related imprinted gene, was reported to be maternally expressed in mouse, human etc. (Bartolomei et al. 1993). In human, the H19 gene expression throughout embryonic development, is strictly controlled which suggested that regulation is essential for the growth of embryonic and extraembryonic tissues (Arima et al. 1997). In mouse, this gene showed monolallelic expression pattern in mouse pre and post implantation embryos (Jino et al. 2005). H19 expression in the parthenogenetic fetuses appeared to be somewhat higher than that in the control fetuses in sheep (Feil et al. 1998, Young et al. 2003). In our study, we also found higher expression of H19 in DIP compared to its IVF and in vivo counterpart (Figs 1–2).

We observed Peg1/Mest (paternally expressed gene-1/MEsodermspecific transcript) gene expression in both stages of DIP, in vivo and IVF derived embryonic cell colony (Figs 1–2). The expression was significantly ($P<0.05$) down regulated in both stages of DIP and in vivo embryos as compared to IVF derived ones (Figs 1–2). Interestingly, in both the stages, there was also no significant difference ($P<0.05$) between DIP and in vivo derived embryos. Peg1/ Mest, an alpha/beta hydrolase-encoding gene was reported to be expressed at high levels in mesodermal tissues (Sado et al. 1993). The mouse Peg1/Mest gene has recently been targeted by homologous recombination and this genetic study indicated that absence of this gene leads to a 20% reduction in fetal growth (Feil et al. 1998). In porcine, Peg1 expression was detected in oocytes and all the stages of preimplantation embryos (Park et al. 2011). In our study, we observed significantly ($P<0.05$) low expression of Peg1/Mest in DIP compared to in vitro and in vivo derived embryos. In sheep, Peg1/Mest expression was detected in the control fetuses and their extra-embryonic membranes, but no expression was observed in the parthenogenetic fetuses and membranes (Feil et al. 1998). This result most likely indicated that in caprine also, Peg1/Mest is imprinted and expressed from the paternal chromosome.

Reports indicated that in vitro culture condition affects gene expression (Doherty et al. 2000, Khosla et al. 2001). Therefore, the changes of relative expression of these genes in DIP and IVF embryos in the present study might be due to the effect of in vitro culture condition. Platonov (2005) reported that death of parthenogenetic mammalian embryos is determined by the absence of expression of the genes of imprinted loci of the maternal or paternal genome, which leads to significant defects in development of tissues and organs. In our earlier experiment we observed early fetus death due to lack of formation of placenta or perturbed developmental gene expression (Ranjan et al. 2013c, Singh et al. 2013, Singh et al. 2014, Ranjan et al. 2014).

In conclusion, the present study demonstrated that in DIP embryos, the expression profile of both paternal and maternally imprinted genes were perturbed, which may be responsible for developmental failure of parthenogenetic embryos in this species.

SUMMARY

In the present study, we explored comparative expression profile of paternally imprinted gene (H19) and maternally imprinted gene (Peg1) among diploid parthenogenetic (DIP), female sexed IVF and in vivo derived embryos in caprine. Embryonic cell colonies were developed from 8–16 and morula stage DIP, IVF and in vivo derived embryos and these colonies were used for studying the paternal and maternal imprinted genes. The paternally and maternally imprinted gene was expressed in both the stages of DIP, IVF and in vivo derived embryos. It was further observed that the expression of H19 gene was up regulated significantly in DIP 8–16 and morula stage embryos as compared to their IVF and in vivo counterpart. The expressions of Peg1 gene was comparatively lower in DIP embryos than in vivo and IVF derived one. Interestingly, the expression of Peg1 gene was comparatively higher in IVF embryos than in vivo counterpart.
ACKNOWLEDGEMENT

Authors are thankful to Director, IVRI, Izatnagar for providing all necessary facilities to conduct this experiment. Authors are also thankful to ICAR for funding NAIP project under which this work has been conducted.

REFERENCES

