Managemental practices and welfare of pack animals in middle Himalayan region of India

TANUSHA¹, RUPASI TIWARI², P K BHARTI³ and TRIVENI DUTT⁴

ICAR-Indian Veterinary Research Institute, Izatnagar 243 122 India

Key words: Management practices, Pack animals, Welfare

In India there are around 1.58 million equines which are primarily kept in Himalayan region and scarcely distributed in other parts of the country (Annual Report 2009). More than 500 villages in Uttarakhand depend mainly on pack animals for their supply and transportation (Farooque et al. 2008). In hilly region the pack animals, mainly mules and horses, transport people, agricultural commodities, building materials and play a major role as a source of livelihood to the farmers. But these animals often suffer from maltreatment, overloading and ill feeding despite their uses (Swarup 2007). Animals suffer from lack of shelter, insects bite at markets or working sites. Shortage of fodder and grazing areas and rising costs of feeds are big problems especially in winters (Burn et al. 2010). Therefore the present study was undertaken taken to focus on the managemental practices and welfare of pack animals of hilly areas in middle Himalayan region of India.

The present study was conducted purposively in Chamoli and Uttarkashi districts of Uttarakhand during the winter (January and February 2015). The pack animal owners were selected using snowball sampling and a total sample size of 80 respondents (40 from each district) was selected. Each owner selected had a minimum of 2 pack animals. Information regarding the socio-economic status, existing management and welfare practices followed was collected using a semi-structured and pre-tested interview schedule by personally interviewing the respondents and physical observation of animals. Different practices followed by them were also observed keenly, recorded and compared as per the standard practices recommended for the pack animal rearing and welfare. Analysis of collected data was done as per Snedecor and Cochran (1994).

The study revealed that majority of the pack animal owners were middle aged with a mean age of 36 years and education up to high school and they were rearing pack animals as their primary occupation with more than 9 years of experience. The owners provided concentrate, green fodder and dry fodder but it depended on the availability, price and kind of work taken by the animals. The concentrates fed included gram, jaggery, wheat bran and about 4.8 kg concentrate was fed during the work. The amount of concentrate feed reduced to 1.98 kg during the day of rest. Rao et al. (2010) also found that the equine owners provided jaggery to protect animals from tiredness and cold and to aid proper digestion. About 18% of the pack animal owners answered in favour of decreasing quantity of concentrate in resting hours (Panwar 2004). Majority of the owners fed green fodder (more than 2 kg) during the work and only 1.75 kg during the rest. The majority of respondents fed 3 to 4 kg dry fodder on working day and reduced the quantity to about 2.7 kg during the rest; however there was no significant difference between amounts of provided feeds during rest and working hours. The fodder fed mainly included the local available grass, lucerne and maize and dry fodder were mainly bhoosa and straws. Mineral mixtures and salt were not fed to the animals. Present study agrees with Rao et al. (2010) who reported that about 95% of equine owners fed mostly straw and stovers like wheat bhoosa to provide bulk to the feed. Biswas et al. (2009) reported that equines were provided available feed, mainly grass, and few cereal by-products. Mineral mixture was rarely fed as a routine practice. The owners were feeding animals in the best possible way but this was not as per the scientific recommendations.

With regards to housing management and welfare, it was found that cent per cent of the owners had a provision of kutcha type sheds for the animals and majority (51.51%) of the sheds had a height of 6 to 7 feet followed by 19.7% having sheds with height of 8 feet. It was lower than the recommended height of 15 to 20 feet. The roofs of sheds were temporary and were made of tent or tin sheets and the walls were either absent or made of stones. The animals were tied together under one shed and the floor space area for each animal was lower than the recommended value of 10×10 feet² (3×3 m²) for mules and 14×14 feet² (4.2×4.2 m²) for horses. The ventilation inside the sheds was however adequate, but this may be because of no proper walls favouring easy passage of air. Disinfection of the sheds was not carried out and there was no provision of drainage. This study is in line with study of Biswas et al. (2013), who found that floor space was not adequate and the equine sheds had no proper height but in most cases the houses had proper ventilation.

Present address: 4Joint Director (EE) (triveniduttivri@gmail.com).
Majority of the owners (72.5%) practiced deworming but only 32.5% respondents were practicing regular deworming of their pack animals. Panwar (2004) reported that about 40% respondents were practicing deworming of the pack animal but did not practice it regularly. Regular vaccination was not done by any of the respondents. Majority of the owners (52.5%) had never vaccinated their animals followed by 47.5% who had sometimes vaccinated their animals against equine influenza. Panwar et al. (2008) also reported that no mule and donkey owner was practicing vaccination of the animals. Biswas et al. (2013) also reported that no mule and donkey owner was practicing vaccination of the animals. Biswas et al. (2013) reported that vaccination was not carried out in most (96%) of the animals. Isolation of the diseased animals was practiced only by 27.5% of the pack animal owners while 72.5% respondents did not isolate the diseased animals. It might be due to lack of scientific knowledge about isolation and no provision of extra shelter by the pack animal owners. About 60% of the owners used local or traditional medicines (turmeric, mustard oil and local weeds called *Eupatorium adenophorum*) for remedies of leg and back injuries (Shelima et al. 2007, Biswas et al. 2013). Majority of the respondents (87.5%) said that they took the animals to the veterinary doctor for treatment followed by local healers (6.25%), paravets (5%) and self-treatment (1.25%). None of the respondents left the animal without treatment which showed that they are concerned about the health of the animals. It resembles with the findings of Biswas et al. (2013), who found that owners mostly got animals treated by veterinary doctors but this findings do not agree with the findings of Mekuria and Abebe (2010) and Shelima et al. (2007) where animals were mostly treated with traditional medicines without consulting a registered veterinarian.

It is evident that 100% respondents were aware of the attributes like freedom from thirst and hunger, freedom from injuries and diseases etc. About 90% respondents said that they knew about freedom from fear and distress of the animals followed by 87.5% knowing about freedom from pain and discomfort; 81.25% respondents told about the freedom to express normal behaviour and enough space for movement of animals. But none of the respondents were aware about the Space Prevention of Cruelty to Animals (SPCA) or People for Ethical Treatment of Animals (PETA) as animal welfare agencies.

The welfare or ethical practices used by the farmers (Table 1) suggested that majority of the respondents (52.5%) have never beaten their animals followed by rarely beating of animals (27.5%). The respondents said that beating is required when the animals do not walk properly or not listen to him. Usually they used thin sticks to beat the animals. All the owners massaged their animals after work. The present study contradicts the findings of Ramaswamy

**Table 1. Distribution of welfare and ethical practices used by pack animal owners**

<table>
<thead>
<tr>
<th>Welfare/ Ethical practices</th>
<th>Load (in kg)</th>
<th>Hours used for work (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beating the animal</td>
<td>n=80</td>
<td>n=80</td>
</tr>
<tr>
<td>Rarely</td>
<td>22 (27.5)</td>
<td>Yes</td>
</tr>
<tr>
<td>Sometimes</td>
<td>16 (20)</td>
<td>No</td>
</tr>
<tr>
<td>Never</td>
<td>42 (52.5)</td>
<td>-</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate percentage of respondents.

**Table 2. Distribution of pack animals based on observed health and behaviour parameters**

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Horse (n, 22)</th>
<th>Mule (n, 203)</th>
<th>Pooled (n, 225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coat</td>
<td>dry/ matted/ uneven</td>
<td>18 (81.82)</td>
<td>203 (100)</td>
</tr>
<tr>
<td></td>
<td>coat normal</td>
<td>4 (18.18)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Ectoparasites</td>
<td>present</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td>22 (100)</td>
<td>203 (100)</td>
</tr>
<tr>
<td>Mucous membrane</td>
<td>anaemic</td>
<td>7 (31.82)</td>
<td>65 (32.02)</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>15 (68.18)</td>
<td>138 (67.98)</td>
</tr>
<tr>
<td>Limb deformity</td>
<td>present</td>
<td>0 (0)</td>
<td>51 (25.12)</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td>22 (100)</td>
<td>152 (74.88)</td>
</tr>
<tr>
<td>Scars on body</td>
<td>present</td>
<td>9 (40.91)</td>
<td>160 (78.81)</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td>13 (59.09)</td>
<td>43 (21.18)</td>
</tr>
<tr>
<td>General aptitude</td>
<td>alert</td>
<td>20 (90.91)</td>
<td>149 (73.4)</td>
</tr>
<tr>
<td></td>
<td>apathetic</td>
<td>2 (9.09)</td>
<td>54 (26.6)</td>
</tr>
<tr>
<td>Response to owner</td>
<td>friendly</td>
<td>22 (100)</td>
<td>203 (100)</td>
</tr>
<tr>
<td></td>
<td>aggressive</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate percentage of respondents.


Gazette of India, Ministry of Food and Agriculture. 1965. The Prevention of Cruelty to Draught and pack animals rules (Gazette of India 1965).


TRANSFORMING LIVES

through training and excellence in reproductive technologies in Livestock

Integrated Livestock Development Centres (ILDC)
• Provides Artificial Insemination and other Veterinary services at the door steps of farmers
• More than 5500 centres in 11 states of India
• Benefitting more than 3.5 million farmers

Dr. Vijaypat Singhania Training Institute for Rural Development
Gopalnagar, District – Janjir Champa, Chhattisgarh
• Accredited by the Department of Animal Husbandry, Dairying and Fisheries, Government of India for the training of AI technicians.
• Recognized by Chhattisgarh State Skill Development Authority (CSSDA) as a Vocational Training Provider.
• Affiliated to Agriculture Skill Council of India (ASC)

Dr. Vijaypat Singhania Centre of Excellence for Assisted Reproductive Technologies in Livestock
Embryo Transfer (ET) and In-Vitro Fertilization (IVF) Lab
Gopalnagar, District – Janjir Champa, Chhattisgarh

Dr. Vijaypat Singhania Centre of Excellence for Assisted Reproductive Technologies in Livestock
Embryo Transfer (ET) and In-Vitro Fertilization (IVF) Lab
Vadgaon Rasai, Shirur, Dist Pune, Maharashtra

Dr. Vijaypat Singhania Centre of Excellence in Bovine Genetics
Hasda, Berla, Dist Bemetara, Chhattisgarh
For production of frozen semen from various Cattle and Buffalo breeds.

Mobile ET and IVF Lab for cattle
Taking advanced Assisted Reproductive Technologies like Embryo Transfer and In-Vitro Fertilization to the door steps of dairy farmers for the first time in India.

For further details please contact:
JK Trust, Jekagram, Pokhran Road No:1, Thane West – 400 606, Maharashtra, India
Website: www.jktrust.org
Phone / Fax: 022 2537 5840
E-mail: ET-IVF@jktrust.org