Effect of genetic and non-genetic factors on semen production performance of Karan Fries and Tharparkar breeding bulls

A PANMEI, A K GUPTA, P R SHIVAHRE, AVTAR SINGH, S K DASH and M BHAKAT

ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India

Received: 7 January 2016; Accepted: 10 February 2016

ABSTRACT

The present study was conducted at Artificial Breeding Research Centre, to ascertain the influence of genetic (3 genetic groups of Holstein Friesian and Tharparkar crosses and pure Tharparkar) and non genetic (Periods i.e., 1997–2000, 2001–2004, 2005–2008 and 2009–2012; seasons i.e., winter, summer, autumn and rainy; age group i.e., <2 yrs, >2–2.5 yrs, >2.5–3 yrs and >3 yrs) factors on semen production performance of Karan Fries (KF) and TP breeding bulls. Overall percent of males reserved for breeding was 16.67% in KF and 22.73% in TP. Out of males reserved for breeding, 58.97% KF and 20% TP males produced semen. Only 64.9% produced freezable semen in KF bulls whereas in TP bulls, all males which donated semen produced freezable quality semen. Periods of birth showed significant effect on % age at first successful collection (AFSC) and (P<0.05) % age at first successful freezing (AFSF) (based on AFSC) in KF, wherein genetic groups revealed significant influence on % AFSC and % AFSF (on the basis of >18 months of age). For both KF and TP, overall least square means of AFSC, AFSF, ALSF (age at last successful freezing), ALSC (age at last successful collection), SPP (semen production period), FSPP (freezable semen production period) and AD (age at disposal) were 879.21, 1077.65, 1659.87, 1425.53, 831.82, 775.44 and 1329.38 days, respectively. Effect of period of birth was significant for all the traits except AFSC. Season of birth had no significant effect on all the traits while genetic groups and age at disposal have significant effect on AFSC and AFSF, respectively.

Key words: Genetic factors, Karan Fries, Non-genetic factors, Semen production, Tharparkar

For better productivity and profitability, AI centre needs to know the factors affecting the quantity and quality of semen obtained under their specific managemental conditions so as to select the best producers for genetic improvement, adapt management of bulls to improve semen output and to avoid wastage of dairy bulls through culling. Tyagi et al. (2006) reported that 8.36% of the crossbred bulls which have reached semen donation stage are culled due to non-donation of semen. Chacko (2005) reported that only 27% of males reserved for breeding, 58.97% KF and 20% TP males produced semen. Only 64.9% produced freezable semen in KF bulls whereas in TP bulls, all males which donated semen produced freezable quality semen. Periods of birth showed significant effect on % age at first successful collection (AFSC) and (P<0.05) % age at first successful freezing (AFSF) (based on AFSC) in KF, wherein genetic groups revealed significant influence on % AFSC and % AFSF (on the basis of >18 months of age). For both KF and TP, overall least square means of AFSC, AFSF, ALSF (age at last successful freezing), ALSC (age at last successful collection), SPP (semen production period), FSPP (freezable semen production period) and AD (age at disposal) were 879.21, 1077.65, 1659.87, 1425.53, 831.82, 775.44 and 1329.38 days, respectively. Effect of period of birth was significant for all the traits except AFSC. Season of birth had no significant effect on all the traits while genetic groups and age at disposal have significant effect on AFSC and AFSF, respectively.

Key words: Genetic factors, Karan Fries, Non-genetic factors, Semen production, Tharparkar

Present address: 1,3Ph.D student (pannei.achun07@gmail.com, drpr06@gmail.com), Dairy Cattle Breeding Division, 2,4 Principle Scientist (guptaa2009@gmail.com, avtar54@gmail.com), 5Senior Scientist (bhakat.mukesh@gmail.com), 6Assistant Professor (shaktikan07@gmail.com), Department of Animal Genetics and Breeding, GADVASU, Ludhiana.

Effect of genetic and non-genetic factors on semen production performance of Karan Fries and Tharparkar breeding bulls

A PANMEI, A K GUPTA, P R SHIVAHRE, AVTAR SINGH, S K DASH and M BHAKAT

ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India

Received: 7 January 2016; Accepted: 10 February 2016

ABSTRACT

The present study was conducted at Artificial Breeding Research Centre, to ascertain the influence of genetic (3 genetic groups of Holstein Friesian and Tharparkar crosses and pure Tharparkar) and non genetic (Periods i.e., 1997–2000, 2001–2004, 2005–2008 and 2009–2012; seasons i.e., winter, summer, autumn and rainy; age group i.e., <2 yrs, >2–2.5 yrs, >2.5–3 yrs and >3 yrs) factors on semen production performance of Karan Fries (KF) and TP breeding bulls. Overall percent of males reserved for breeding was 16.67% in KF and 22.73% in TP. Out of males reserved for breeding, 58.97% KF and 20% TP males produced semen. Only 64.9% produced freezable semen in KF bulls whereas in TP bulls, all males which donated semen produced freezable quality semen. Periods of birth showed significant effect on % age at first successful collection (AFSC) and (P<0.05) % age at first successful freezing (AFSF) (based on AFSC) in KF, wherein genetic groups revealed significant influence on % AFSC and % AFSF (on the basis of >18 months of age). For both KF and TP, overall least square means of AFSC, AFSF, ALSF (age at last successful freezing), ALSC (age at last successful collection), SPP (semen production period), FSPP (freezable semen production period) and AD (age at disposal) were 879.21, 1077.65, 1659.87, 1425.53, 831.82, 775.44 and 1329.38 days, respectively. Effect of period of birth was significant for all the traits except AFSC. Season of birth had no significant effect on all the traits while genetic groups and age at disposal have significant effect on AFSC and AFSF, respectively.

Key words: Genetic factors, Karan Fries, Non-genetic factors, Semen production, Tharparkar

Present address: 1,3Ph.D student (pannei.achun07@gmail.com, drpr06@gmail.com), Dairy Cattle Breeding Division, 2,4 Principle Scientist (guptaa2009@gmail.com, avtar54@gmail.com), 5Senior Scientist (bhakat.mukesh@gmail.com), 6Assistant Professor (shaktikan07@gmail.com), Department of Animal Genetics and Breeding, GADVASU, Ludhiana.
highly significant for different semen production traits (Mandal et al. 2010, Ahmad et al. 2011, Paldusova et al. 2014). The aim of this study was to investigate genetic and non-genetic factors influencing production performance in KF (Holstein Friesian cross with Tharparkar) and TP (purebred) breeding bulls. Karan Fries and TP bulls in our present study were reared at the Artificial Breeding Research Centre (ABRC) and produced through selective breeding.

MATERIALS AND METHODS

Data collection and classification: The present investigation was carried out on 1740 Karan Fries and 154 Tharparkar males born during the period 1997–2012. Data were collected from the records maintained at Artificial Breeding Research Centre. Different traits were generated, so as to study the production performance of Karan Fries and Tharparkar breeding bulls. These include age at disposal (AD), age at first successful semen collection (AFSC), age at last successful freezing (ALSF), frozen semen production period (FSPP) and semen production period (SPP). To assess the effect of various genetic and non-genetic factors on production performance, the data were grouped into different classes based on period of birth (P-1, 1997–2000; P-2, 2001–2004; P-3, 2005–2008 and P-4, 2009–2012), season of birth (Dec–March, winter, S-1; April–June, summer, S-2; July–Sep, rainy, S-3 and Oct–Nov, autumn, S-4), age at first semen donation (<2 years, D-1; 2–2.5 years, D-2; 2.5–3 years, D-3 and >3 years, D-4) and genetic groups (F1, G-1; > ¾ crosses, G-2; interbred, G-3 and TP, G-4).

Statistical analysis: To evaluate the effect of various genetic and non-genetic factors on production performance of breeding bulls, data were analyzed by Chi-square test (Snedecor and Cochran 1968). Data on age and production characteristics were analysed by least squares techniques as described by Harvey (1975) as disproportionate subclass numbers existed in the data. The models were used with the assumption that different components being fitted into the model are fixed, linear, independent and additive. The following model was used to study the effect of season, period, genetic group and age group on the age and production performance:

\[Y_{ijklm} = \mu + S_i + P_j + G_k + D_l + e_{ijklm} \]

where \(Y_{ijklm} \), mth observation in ith season, jth period and kth genetic group belonging to lth age group; \(\mu \), overall mean; \(S_i \), effect of ith season of birth (i=1 to 4); \(P_j \), effect of jth period of birth (j=1 to 3); \(G_k \), effect of kth genetic group (k=1 to 4); \(D_l \), effect of lth age group (l=1 to 4); \(e_{ijklm} \), random error NID \((0, \sigma^2_e)\).

For AFSC, age effects were deleted from the above model. For testing the differences among least squares means (using inverse coefficient matrix), Duncan’s Multiple Range Test as modified by Kramer (1956) was used.

RESULTS AND DISCUSSION

Over the period of our study, 1,740 KF and 154 TP males were born where only 16.8% KF and 22.73% TP males were reserved for further breeding programme. Out of the total male calves reserved, 171 KF (58.97%) and 7 TP (20.00%) males produced semen. The semen from all the donor bulls was not freezeable due to poor mass activity and post thaw revival (Table 1). Therefore, semen of only 111 KF (64.91%) was found to be freezeable. The present values were higher than the values reported by Sethi et al. (1989), Khate (2005) for KF bulls and Tyagi et al. (2006) for crossbred bulls. In TP, all the males producing semen also produced freezeable quality semen. The results indicated that the percent of male calves reserved and produced freezeable semen was higher in TP as compared to KF males. This may be due to the smaller herd size of TP cattle and better adaptability of the breed in existing environment. Breed differences in proportion of males reaching successful freezing were significant (P<0.05).

Table 1. Production performance of KF and TP males.

<table>
<thead>
<tr>
<th>Breed</th>
<th>No. born</th>
<th>Reserved (%)</th>
<th>Produced semen (%)</th>
<th>Produced freezeable semen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF</td>
<td>1740</td>
<td>16.8</td>
<td>58.97</td>
<td>64.91</td>
</tr>
<tr>
<td></td>
<td>(292)</td>
<td>(286)</td>
<td>(171)</td>
<td>(111)</td>
</tr>
<tr>
<td>TP</td>
<td>154</td>
<td>22.73</td>
<td>20.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>(35)</td>
<td>(35)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
</tbody>
</table>

Chi square value 4.8110*

*χ(P<0.05): **χ(P<0.01).

The effect of period and season of birth on production performance of KF and TP males reaching the age at first semen collection (AFSC) and age at first semen freezing (AFSF) were analyzed (Table 2). The values for % AFSC and % ASF for the period 2009–2012 for both the breeds were not calculated because most of the males reserved for breeding in this period did not yet reach semen production stage.

Males born in the main herd were reserved and shifted to ABRC where those were trained for semen production at younger age. Overall trends indicated that, the performance of KF males in terms of reaching quality semen production stage was the best in the P-2 and P-3 which may be due to better training, improved feeding and managerial practices over the years although only half of the reserved males in the P-3 could reach ASF. The values of % AFSC, % ASF (from out of males donating semen) and the overall % ASF (out of males reserved) were estimated and found that % AFSC (P<0.01) and overall % ASF (P<0.05) were significant. In case of TP, there was no male reserved during P-2, as less number of males are born during this particular period. The values of %ASF
out of TP males donating semen were same i.e 100% in both the two periods (P-1 and P-3) which may be due to less number of animal records for the TP breed of cattle maintained at NDRI herd over these periods. Since, TP males reserved over the period (1997–2012) were only 35 out of 154 born, leading to small data size, no specific conclusion could be drawn.

Different climatic conditions in different seasons also influence the performance of males in terms of production of quality semen. Reserved KF males donating semen for the first time (% AFSC) was highest in summer (64.18%) and lowest in winter season (53.85%) born males. % of AFSF out of AFSC KF males which reached freezable quality semen production stage (AFSF) was maximum in S-2 (74.42%) and minimum in S-3 (58.97%) born males. This variation in proportion of males that actually reach frozen semen production stage is mainly influenced by availability of different quantity and quality of green fodder in different seasons of the year. Considering the effect of season of birth in TP, males born in S-3 are all disposed off before reaching semen production stage which could be due to poor growth, surplus or disease condition. The values of % AFSC and overall % AFSF indicate that all the TP males reaching first semen production stage also produced freezable quality semen with maximum values found in S-4 (42.86% and 100.00% respectively) born males. Higher values for TP males born during S-4 may be due to favourable climatic conditions and quality leguminous green fodder availability in subsequent months thereby resulting in better growth, early sexual maturity and hence lesser disposal. An overview of the results on production of KF and TP breeding bulls indicated that percentage of bulls producing freezable quality semen was less in the crossbred cattle as compared to purebred bulls which is in agreement with the findings of Mukhopadhyay et al. (2010).

The effect of genetic groups on performance of KF and TP breeding bulls was depicted in Table 3. Maximum number of F1 males (82.86%) donated semen, but lesser number of those could reach the stage of freezable quality semen production (48.28%). Lesser number of F1 reaching stage of freezable quality semen productions may be due to higher disposal of F1 males, before they are included in test set of progeny testing programme. Thippeswamy et al. (2014) reported that F1 males produced significantly higher proportions (57.00±10.00) of poor quality ejaculates compared to the interse mated bulls. Several investigators
also reported that the semen characteristics of the Indian crossbred bulls get better as percentage of exotic level also reported that the semen characteristics of the Indian crossbred bulls get better as percentage of exotic level. Generally, production performances are reported to increase with age of bull (Mathevon et al. 2010). The effect of period of birth on AFSF and ALSF was significant (P<0.05) on AFSF. The results indicate that period of birth had significant effect (P<0.05) on ALSC, SPP, FSPP and AD. Influences of season of birth were not significant for any of the generated traits.

Males belonging to genetic group 1 (F1) were the first to reach AFSC while genetic group 4 (TP) were the last to give their first donation. Brito et al. (2004) reported that sexual development (in terms of age at first donation and age at first freezing) of B. indicus and crossbred bulls (B. indicus × B. taurus) is delayed as compared to B. taurus bulls. Chase et al. (2001) and Casas et al. (2007) reported significant effect of breed on age at puberty, though age at first collection generally precedes age of puberty while other investigations failed to detect an effect of genetic group on age at sexual maturity was significant (P<0.05) on AFSF. The results indicate that period of birth had significant effect (P<0.05) on ALSC, SPP, FSPP and AD. Influences of season of birth were not significant for any of the generated traits.

Presence of less number of bulls in P-4 may be due to most of the bulls still undergoing semen donation and had not yet reached the ALSC stage. The results indicate that period of birth had significant effect (P<0.05) on ALSC, SPP, FSPP and AD. In similar line, Mukhopadhyay et al. (2010) reported a significant effect of period of birth on SPP, FSPP and AD. Influences of season of birth were not significant for any of the generated traits.

<table>
<thead>
<tr>
<th>Genetic group</th>
<th>AFSC</th>
<th>ALSF</th>
<th>SPP</th>
<th>FSPP</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1 (F1)</td>
<td>796.21±32.57a</td>
<td>1174.54±59.60</td>
<td>1647.14±112.66</td>
<td>894.75±78.30</td>
<td>800.02±75.99</td>
</tr>
<tr>
<td>G-2 (3/4 or above)</td>
<td>798.41±26.25a</td>
<td>1048.39±45.21</td>
<td>1592.15±85.73</td>
<td>681.73±82.09</td>
<td>744.93±68.83</td>
</tr>
<tr>
<td>G-3 (Interbred)</td>
<td>810.84±21.66a</td>
<td>1052.65±38.78</td>
<td>1607.76±55.33</td>
<td>841.69±66.51</td>
<td>816.86±66.63</td>
</tr>
<tr>
<td>G-4 (TPxTP)</td>
<td>1111.37±55.22ab</td>
<td>1035.01±76.08</td>
<td>1792.44±156.20</td>
<td>774.01±89.26</td>
<td>1814.21±221.49</td>
</tr>
</tbody>
</table>

Table 4. Least squares means±SE of the performance traits due to effect of period, season, genetic group and age.

Mean with at least one subscript do not differ significantly (*P<0.05).
years. Chauhan et al. (2010) reported significant effect of age at sexual maturity on AFSSF. After analysing the age and seminal attributes, it can be concluded that period of birth had significant effect on AFSSF, ALSF, ALSC, SPP, FSSP and AD. Similarly, Khutun et al. (2013) reported that period of birth had significant effect (P<0.05) on AFSC, AFSSF, ALSF, SPP and FSSP. Season of birth has no significant effect on any of the generated traits under study while genetic groups and age at sexual maturity have significant effect only on AFSC and AFSSF respectively.

From all observed effects, period of birth of KF bulls and genetic group of both KF and TP have the highest impact on their performance. The period of birth effect is likely to be caused by improved feeding and management practices over the years. Genetic groups and age at sexual maturity have significant effect on AFSC and AFSSF, respectively of the breeding bulls. Therefore, our results revealed that the main difference of TP breeds is the late maturity as compared to exotic breeds. Since our present study clearly demonstrates that, though greater number of crossbred (F1) males donates semen, lesser number of those could produce freezeable quality semen. However, on the other hand, even though less number of Tharparkar males donate semen, all of them are of freezeable quality. In order to take advantage of the above reasons, TP (indigenous) males may be subjecting to training at an early age, thereby decreasing the initial age of semen donation and also to obtain freezeable quality semen.

ACKNOWLEDGEMENT

The authors are thankful to the Head, DCB Division and Incharge, ABRC of NDRI, India for providing necessary facility. The authors also thankful to the Director, NDRI, India for financial assistance provided during the research work.

REFERENCES

Harvey W R. 1975. Users guide for LSMLMW and MIXMDL PC-2 Version. Mixed model least-squares and maximum likelihood computer program. 4255 Mumford Drive, Columbus, Ohio 43220, USA.

Harvey W R. 1975. Users guide for LSMLMW and MIXMDL PC-2 Version. Mixed model least-squares and maximum likelihood computer program. 4255 Mumford Drive, Columbus, Ohio 43220, USA.

