Zinc is one of the essential trace elements that play an important role in nutrient metabolism. Zinc-containing enzymes participate in the synthesis and/or breaking down of carbohydrates, lipids, proteins, and nucleic acids and encompass all known classes of enzymes. Also, zinc participates as a co-factor in the metalloenzymes that are important for regulation of antioxidative status (Prasad et al. 2011). Zinc is a part of around 250–300 enzymes from all six-enzyme classes (Prasad et al. 2011). Zinc is an integral part of superoxide dismutase (SOD) enzyme that participates in the antioxidant defense system (Bartlett et al. 2003). Adding ZnO nanoparticles in the diets improved performance traits of broiler viz. body weight gain, feed conversion ratio, etc at the starter period (Ahmadi et al. 2013). Similarity, nanochelating technology is a new field that gives the ability to design and manufacture nanostructures via the self-assembly method (US8288587 B2 in the US Patent). However, literatures survey also revealed that nonomaterials caused oxidative stress by means of producing free radicals in the animal body (Choi et al. 2010, Wang 2008). Therefore, the present study was carried out to investigate the effects of different levels of zinc oxide nanoparticles on the antioxidant status and activity of some enzymes used as body health indicator in the broilers during starter period (1–21 d).
respectively. The basal diets (Table 1) were formulated to meet all nutrients for all the experimental birds during starter period (NRC 1994). Feed and water were provided in plastic feeders and waterer to minimize environmental Zn contamination throughout the entire feeding trial. For uniform mixing of ZnO-NPs to the basal diet, dicalcium phosphate (DCP) was used as a carrier to dilute ZnO-NPs powder for blending the ration to achieve the desired experimental levels. The ZnO-NPs was obtained from the US Research Nano-material Inc (Houston, TX 77084, USA). ZnO-NPs characteristics are presented in Table 2.

Determination of Zn in the basal diet: Around 5 g sample of the basal diet was precisely ground and digested at 120°C by 5 ml of concentrated HNO₃ acid for one hour in a Tecator digestion system (Tecator Digestion Unit). The digested sample was cooled and then 3 ml of 70% HClO₄ acid was added for further digestion at 200°C and the process continued until the solution become colourless. A sample blank (as control) was also run along with test sample at the same time. The digested sample was carefully passed through a sieve and filtered into a volumetric flask. The contents of digestion tube were repeatedly washed with deionized water to obtain a complete extract of the minerals. Zinc concentration in the basal diet was determined by atomic absorption spectrophotometry (Jahanian et al. 2008).

Data collection: At the end of the trial (21d), four birds (one bird per replicate) from each experimental treatment were randomly selected and blood sample was collected from brachial vein. The serum was separated using a centrifuge (3000×g, 15 min at 4°C) and then immediately transferred to laboratory for determining different parameters.

Antioxidant assay: The antioxidant enzymes were measured by using commercial kits (Randox, Pars Azmon Co. Tehran, Iran) and Auto Diagnostic Analyzer (Alcyon 300, USA). For measuring activity of SOD, a commercial kit was used (Aebi 1983). Measurement of the enzyme was expressed in the production of superoxide radicals resulted by xanthine and xanthine oxidase and then reacted with 2-(4-iodophenyl)-3-(4-nitrophenol) 5-phenyltetrazolium chloride (INT) to form a red colour, and then was read at 505 nm. The amount of GPx activity was determined by using a commercial kit by measuring the rate of oxidation of nicotinamide adenine dinucleotide phosphate (NADPH) at 340 nm. Based on definition, one unit of SOD activity clarifies equal to the amount of enzyme necessary to produce 50% inhibition in the INT reduction rate. Total antioxidant capacity (TAC) was measured by using commercial kits (Randox, Pars Azmon Co. Tehran, Iran) and Auto Diagnostic Analyzer (Alcyon 300, USA). Malondialdehyde (MDA) was determined by a selective third-order derivative spectrophotometric method previously reported (Botsoglou et al. 1994).

Serum enzyme assay: Alanine aminotransferase (ALT; Bowers and Macomb 1966), aspartate aminotransferase (AST; Bergmeyer and Walefeld 1974), alkaline phosphatase (ALP; Bowers and Macomb 1966), and lactate dehydrogenase (LDH, Bergmeyer and Walefeld 1974) were measured by using commercial kits (Randox, Pars Azmon Co. Tehran, Iran) and Auto Diagnostic Analyzer (Alcyon 300, USA). The level of enzyme activity was assayed by an automatic biochemical analyzer (Alcyon 300, USA).

Statistical analysis: Data were analyzed by the mixed model procedure of the SAS (2003) for completely randomized design (CRD) with different levels of ZnO-NPs supplementation in the basal diets as the factors examined. Linear and quadratic effects were determined utilizing regression relationship for equally spaced treatments.

RESULTS AND DISCUSSION

Results indicated that supplementation of ZnO-NPs in the diet had significantly (P<0.05) increased level of total antioxidant capacity (TAC), SOD (P<0.05) and GSH-Px (P<0.05) in the birds fed with 60 and 90 mg ZnO-NPs/kg basal diet in comparison to control treatment. The highest (1.65 mmol/l) level of TAC was observed in the birds fed diet supplemented with 90 mg (T4) ZnO-NPs per kg basal diet. However, the concentration of MDA numerically (P>0.05) decreased in the birds fed ZnO-NPs compared to control (Figs 1–4). ZnO-NPs levels had not significantly (P>0.05) affected the activity of different enzymes (AST, ALP and ALT); although a decreasing trend of enzyme activity in comparison with control treatment in the bird fed diets containing ZnO-NPs was observed (Fig 5).
Zhao et al. (2014) indicated that dietary inclusion of zinc in the form of ZnO nanoparticles with a graded level of 60 mg/kg significantly increased the activity of antioxidant enzymes such as GSH-Px and SOD which is in agreement with our study results. However, Berg and Shi (1996) reported that a negative correlation exist between ZnO-NPs supplementation in the diet and the concentration of MDA in rats. Literature indicated that nonomaterial in the animal body induce oxidative stress by means of lipid peroxidation that increase concentration of MDA and impair antioxidant defense system (Wijnhoven et al. 2009, Asharani and Wu 2008, Chen 2008).

There are several enzyme systems that catalyze reactions to neutralize free radicals and reactive oxygen species (ROS) produced during oxidative stress condition. Glutathione peroxidase (GSH-Px), Superoxide dismutase (SOD) and total antioxidant capacity (TAC) are the important antioxidant parameters that represents the ability to protect the body opposite produced H_2O_2 in the body cells during oxidative stress (Rather et al. 2011). There is an interrelationship between the activities and the intracellular levels of these metabolites, protecting themselves from oxygen toxicity (Grazioli et al. 1998). The concentration of malondialdehyde generally serves as an indicator of ROS mediated injury and the concentration of MDA in blood and tissues is generally used as biomarker of lipid peroxidation (Ahmadi and Rahimi 2010). Oxidative stress is the major cause of reduction in growth rate and economical traits in broilers and increased incidence of infectious and metabolic diseases in poultry; which can be minimized by the use of anti-stress compounds (Sen 1995).

The findings of our study were contradictory with report of Fazilati (2014) who investigated the effect of different levels of zinc oxide nanoparticles (25–200 ppm) on the serum enzyme activity in rats and reported that dietary ZnO-NPs had significantly increased the activity of ALT, AST and ALP enzyme in male rats. Sharma et al. (2009) indicated that exposure time and concentration of nanoparticles used are the most important factors affecting on farm animal. It had also been suggested that exposure to ZnO-NPs led to negative effects on the cells likely DNA mutation, genotoxic potential by means of lipid peroxidation and oxidative stress in the body. Generally, the observed incompatibility in different reports may be due to the dosage of nanoparticles, time of exposure, animal species and experimental method (Ahmadi and Rahimi 2010). It is believed that a healthy diet improves the exogenous antioxidant concentration and reduces the risk of tissue damage. In our earlier study, ZnO-NPs supplementation at 90 mg per kg of basal diet significantly improved the growth performance and blood parameters in broiler chickens during the starter phase (Ahmadi et al. 2013). In conclusion, results suggest that dietary supplementation of 90 mg of ZnO-NPs per kg of
basal diet improved antioxidative status in the broiler chicks during starter period (1–21 d) and had a positive effect on the health of broilers.

REFERENCES

