Protective effects of melatonin against fluoride-induced oxidative stress in rats at high altitude

PRINCE VIVEK¹, VIJAY K BHARTI², SAHIL KALIA³, ARUP GIRI⁴, KRISHNA KUMAR⁵ and BHUVNESH KUMAR⁶

Defence Institute of High Altitude Research, DRDO, Leh-Ladakh, Jammu and Kashmir 194 101 India

Received: 5 December 2017; Accepted: 6 July 2018

ABSTRACT

This study was conducted to evaluate the protective effects of melatonin against fluoride-induced oxidative stress-mediated haematological and biochemical changes in rat at high altitude. Adult male Wistar rats (6) were given the basal diet and drinking water ad lib. for first 7-days which was considered as the control period. Thereafter, they were exposed to NaF (@ 50 ppm) per-oral through drinking water for the next 14 days followed by melatonin treatment (@ 15 mg/kg BW, p.o.) for the next 14 days. The result showed induction of oxidative stress during NaF treatment alone, which caused significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity, and % inhibition of DPPH, MDA, and water intake. Whereas, total antioxidant capacity (FRAP) and body weight gain were significantly reduced during NaF exposure. Haemogram analysis indicated significant decrease in haemoglobin, packed cell volume, erythrocytes, lymphocytes, platelets count, whereas increase in MCH, monocytes, neutrophil, and eosinophil during NaF exposure. However, melatonin administration after 14 days of fluoride treatment resulted in significant amelioration of adverse changes occurred in different blood-biochemical parameters and also increased the total antioxidant status. Notably, the body weight gain improved during melatonin administration. These findings indicated induction of oxidative stress-mediated adverse change in haematology and biochemical parameters, and amelioration effect of oral dose of melatonin in rats under high altitude stress condition. Hence it can be concluded that melatonin acts as a potent antioxidant agent, which may be orally supplemented for amelioration of fluoride-mediated oxidative stress even under prevalent high altitude stress.

Key words: Antioxidant, Fluoride, Haematology, High altitude, Melatonin, Oxidative stress, Rats

Leh-Ladakh is a high altitude (HA) region situated at altitude varying from 10,000 to 18,500 feet from mean sea level, and has adverse environmental factors like hypobaric hypoxia, severe cold, high wind velocity and scorching solar radiation and extreme variation in environmental temperature range from +20 to –39°C (Bharti et al. 2017, Kalia et al. 2017). These environmental factors causes high altitude stress and which inevitably results in increased oxidative stress (West 2004, Miller et al. 2013). Increased level of fluoride in water in high altitude regions enhances the fluoride exposure dose and prevalence of fluorosis (Arjun et al. 2017). Earlier study reported that the prevalence of dental fluorosis often have dealt population living in areas of increased altitude and the fluoride level of water (Hou et al. 2014). Fan et al. (2016) reported positive correlation between altitude and skeletal fluorosis with higher incidence of skeletal fluorosis at high altitude. Sodium fluoride (NaF) can exacerbate the additional effects of oxidative stress resulting in increased level of free radicals production which disrupts the efficiency of antioxidant system and causes the oxidative damage of macromolecules (Miller et al. 2013). The moderate level of fluoride intake leads to fluorosis, weakened antioxidant defence systems, and increased oxidative stress in rat liver and kidney (Bharti et al. 2011). Past study suggested that the alterations of acid-base balance in surviving people and animals at high altitude caused by hypoxia could decrease urinary excretion of fluoride and thus increase fluoride retention in the body (Whitford 1997). In addition, edema in liver and kidneys caused by hypoxia has been seen in people living at high altitude (Haijun et al. 2008). Therefore, human beings and livestock population existing under this adverse climatic condition of high altitude and simultaneously exposed to polluted water and air containing higher level of metal or toxic trace elements, including fluoride might have intense adverse impact on their health and performance. Hence, among various ameliorating strategies, supplementation of antioxidant seems to be an...
important step to decrease the elevated levels of free radicals production (Reiter et al. 2002) and so it could ameliorate the high altitude-induced oxidative stress. In this regard, the discovery of the pineal hormone melatonin heralded a new field of research in animal physiology. Various in vivo and in vitro studies revealed that melatonin have a powerful antioxidant potential through its free-radical scavenging actions on antioxidant enzyme systems and non-enzymatic antioxidants (Narayana et al. 2002, Vijayalaxmi et al. 2004, Reiter et al. 2005, Bharti and Srivastava 2009, Bharti et al. 2012). Hence, it could be beneficial in reduction or prevention of oxidative damage caused by toxicants and oxidative materials (Reiter et al. 2002, 2005). In spite of several reports advocating the protective role of melatonin in animal model, none of the studies investigated on single group of animals acting as control, fluoride treatment, as well as melatonin treatment, which could simulate clinical case for treatment. In addition, the ameliorative effect of oral dose of melatonin on blood-biochemical parameters is inconclusive and what is available in the literature is contradictory. Furthermore, there is no study that investigated the ameliorative effect of melatonin in high altitude stress coupled with fluoride exposed animal model. Therefore, the aim of present study was to evaluate the possible protective effects of oral dose of melatonin against fluoride-induced oxidative stress in rats under high altitude stress condition.

MATERIALS AND METHODS

This study was performed for 35 days (7-day control period, 14 day treatment I, 14 days treatment II) during winter at Defence Institute of High Altitude Research (DIHAR), Leh-Ladakh, a high altitude place situated at 3500 m above from mean sea level (MSL).

All the chemicals used were of AR grade. Double distilled water was used for the preparation of all solutions. While collecting blood samples, adequate human care were taken to minimize pain and discomfort to the animals. The collection of samples was carried out in accordance with the guidelines laid down by the CPCSEA laws and regulations. The design of this study was approved by the DIHAR/IAEC Committee.

Experimental animals: Male Wistar rats (6) of approximately three months of age, weighing 225.40±0.93 g were kept under polycarbonate caging system and rice husk was used as the bedding material. All the animals were keenly examined for any abnormality or overt signs of ill health. The rats were housed with room temperature and relative humidity set at 21±2°C and 50±10%, respectively and lighting was controlled to give 12 h light and 12 h darkness. One week of acclimatization was allowed before commencement of experimental trial and treatment.

Experimental diet: Ingredients for the experimental basal diet of the rats were supplied from ration store of the institute DIHAR, DRDO. The diet was prepared daily as per the ingredients level given in Table 1.

Experimental design: Single group of animals were used for control, fluoride treatment as well as melatonin treatment to avoid effect of animal’s on blood-biochemical changes on antioxidant therapy in clinically ailing individual. This study was conducted for 35 days, first 7 days was considered as control period, next 14 days was oral fluoride treatment period @ 50 ppm, and another 14 days all the animals were treated with melatonin till the end of 35th day of study. Appropriate oral dose of melatonin @ 15 mg/kg BW was optimized from earlier experiment as described by Tian et al. (2003), and was administered through basal diet after dissolving in 20% ethanol and thereafter evaporated before mixing to the diets. The F-level in drinking water was calculated and thereafter the required concentration @ 50 ppm NaF of F– was made by addition of NaF daily to drinking water for 14 days. All the animals were given basal diet and drinking water ad lib. Food and water intake of animals were monitored every day.

Sample collection and preparation: Whole blood was collected aseptically in EDTA coated vacutainer vials under sterile conditions in the morning hours by the puncture of retro-orbital venous plexus. Plasma was separated from the collected whole blood at 3500×g for 10 min at 4°C and stored at –80°C for all future laboratory analysis. Prior to assay, plasma was thawed and centrifuged at 15000×g for 15 min to remove any insoluble matter present and only supernatant was used for evaluation of various parameters.

Analysis of haematological parameters: All the haematological parameters like Hb, RBC, basophil, neutrophil, eosinophil, monocytes, lymphocytes, platelets, MCH, MCV and PCV were estimated using Auto-Haematology Analyzer (BC-2800 Vet, Mindray) in freshly collected blood samples as per instrument protocols.

Analysis of blood biochemical parameters: Alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were estimated using commercially available kits as per the manufacturer’s protocol (Span Diagnostics Pvt. Ltd) with the help of microplate reader (Spectra Max5e, Molecular Device).

Determination of oxidative stress and antioxidant parameters: Malonaldehyde (MDA) levels in plasma samples were measured by method of Beuge et al. (1978),

Table 1. Ingredients used as rat feed

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage (%)</th>
<th>Amount/kg (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Fish meal</td>
<td>12</td>
<td>120</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Maize ground meal</td>
<td>55</td>
<td>550</td>
</tr>
<tr>
<td>Molasses</td>
<td>2.50</td>
<td>25</td>
</tr>
<tr>
<td>Soya oil</td>
<td>2.50</td>
<td>25</td>
</tr>
<tr>
<td>Salt</td>
<td>0.40</td>
<td>4</td>
</tr>
<tr>
<td>Ca-Phosphate</td>
<td>1.25</td>
<td>12.5</td>
</tr>
<tr>
<td>Ground limestone</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>Choline</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>Vit. Premixture</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>Niacin</td>
<td>0.30</td>
<td>3</td>
</tr>
</tbody>
</table>

January 2019 | MELATONIN PROTECT FROM FLUORIDE-INDUCED OXIDATIVE STRESS AT HIGH ALTITUDE 35
whereas the total antioxidant activity of plasma were measured by ferric reducing antioxidant power (FRAP) assay as per the method of Benzie and Strain (1996). The free radical scavenging activity of plasma was measured by DPPH assay as per Blois (1958).

Statistical analysis: With the help of Graph Pad Prism 5, data were analysed by one-way ANOVA method and level of significance considered at P<0.05. All the results are expressed as mean±SE.

RESULTS AND DISCUSSION

In present study, same animals were used as control, fluoride exposure and exposure to melatonin to understand the pathophysiology of body under concomitant exposure to pathological agents and response to protecting agent at high altitude. Parameters like feed and water intake, average body weight gain, haematological, biochemical and antioxidant parameters were investigated.

Changes in feed intake, water intake, and body weight:
The rat exposed to fluoride showed a significant decrease in daily feed intake as compared to control period, however it increased significantly (P<0.05) during melatonin administration. On the other hand, the water intake of the animals gradually increased significantly (P<0.05) throughout the study period of 35 days. With respect to period of control days, a significant (P<0.05) decrease in body weight was observed during fluoride exposure, which increased significantly (P<0.05) during melatonin administration (Table 2).

So, present study revealed significant decrease in feed intake during fluoride exposure as compared to control day, thereafter significantly increased up to the normal level during melatonin administration. This might be due to alteration of the activities of various enzymes by the F ion, resulting in hyperglycemic effect and interruption of catabolic process and up-regulation of antioxidants which protect tissue damages.

Changes in haemogram:

Haemoglobin (Hb), red blood cells (RBC), mean corpuscular haematocrit (MCH), mean corpuscular volume (MCV) and packed cell volume (PCV) were measured which indicated significant (P<0.05) decrease in RBC, Hb and PCV during fluoride exposure and significant (P<0.05) increase during administration of melatonin (Table 3). Also the significant (P<0.05) increase of mean values of MCH and MCV during fluoride exposure decreased after melatonin administration. The leukogram indices like neutrophil, eosinophil and monocyte significantly (P<0.05) increased during fluoride treatment and significantly decreased during melatonin administration (Table 3). The mean value of lymphocyte and platelet value significantly (P<0.05) decreased during treatment of fluoride and simultaneously increased during administration of melatonin (Table 3).

Several studies about effect of NaF on haematological parameters in experimental animals reported similar trends (Eren et al. 2005, Karadeniz and Altintas 2008, Kant et al. 2009). There are no studies on sodium fluoride being taken as proven agent for inducing oxidative stress in rats under high altitude stress condition. Our studies showed significant decrease in erythrogram indices, i.e. RBC, Hb, and PCV during NaF exposure as compared to control days, which was in concord with study done in past (Giri et al. 2015). Sodium fluoride has the potential to cause destruction of haemopoietic tissue (Patel and Dhande 2000). The levels of the above parameters were significantly reversed during melatonin administration, which might be due to removal of free radicals by melatonin (Zaghlool and Gad 2014). These findings agreed with the previous studies on livestock animals as well as laboratory animals (Ahmed et al. 2011, Zaghlool and Gad 2014). The significant increase in the value of MCH and MCV during NaF exposure as compared to control days was in accordance to studies done in past (Giri et al. 2015) and the levels of the above parameters were significantly reversed during the administration of melatonin (Karimungi et al. 1996). Hence, decreasing trend of the mean values of erythrogram indices in rats might be due to rise of oxidative stress level and tissues damage by fluoride exposure at high altitude. These findings agreed with the previous studies in rat (Zaghlool and Gad 2014). These changes might be due to the fact that association of fluoride toxicity may increase the susceptibility to oxidative stress that may lead to a reduced capacity of rats to cope with stressors in this environment.

Table 2. Effect of melatonin on feed intake, water intake, and body weight of sodium fluoride exposed male rat at high altitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0–7th day</th>
<th>14th day</th>
<th>21st day</th>
<th>28th day</th>
<th>35th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed intake (g/day)</td>
<td>32.9 ±0.00</td>
<td>30.9 ±0.40</td>
<td>29.08 ±0.50</td>
<td>36.3 ±1.00</td>
<td>37.2 ±0.34</td>
</tr>
<tr>
<td>Water intake (ml/day)</td>
<td>6.01 ±0.46</td>
<td>10.24 ±3.97</td>
<td>14.23 ±2.54</td>
<td>16.82 ±0.55</td>
<td>18.63 ±1.74</td>
</tr>
<tr>
<td>Body weight (g/animal)</td>
<td>225.4 ±0.93</td>
<td>222.4 ±0.64</td>
<td>210.5 ±1.08</td>
<td>228.4 ±2.10</td>
<td>232.2 ±1.32</td>
</tr>
</tbody>
</table>

Values are presented as mean±SEM. abcdIndicates significant difference (P<0.05) within the same row in comparison with 7th, 14th, 21st, 28th and 35th days.
Lymphocyte (%) 94.00±0.44 83.71 a±0.36 74.29 ab±0.68 87.43 abc±0.30 90.86 abcd±0.91
Basophil (%) 2.29±0.42 1.29±0.18 1.43±0.20 1.86±0.26 2.57±0.48

Inhibiting lipid peroxidation process (Vural et al., 2001). These results confirmed the potent antioxidative properties of melatonin.

The total antioxidant capacity determined by FRAP assay decreased significantly (P<0.05) during fluoride exposure and increased significantly (P<0.05) during melatonin administration (Table 4). Similarly, the free radical scavenging activity determined by DPPH assay showed significant (P<0.05) increase in scavenging activity by fluoride exposure which further decreased significantly after melatonin supplementation (Table 4). In one study, it was found that fluoride consumption decreases the total antioxidant capacity in colony-bred male albino rats (Vasant et al., 2010). Interestingly, Thangapandiyan and Miltonprabu (2013) reported insignificant increase in total antioxidant scavenging activity of plasma on fluoride exposure, which was decreased to significant level by melatonin supplementation. This may be attributed to the fact that with increase in levels of oxidative stress and increase in generation of free radicals by fluoride exposure, there was need of increased scavenging of the same, thereby leading to a rise in DPPH levels. All the above parameters indicate that melatonin supplementation could be instrumental in mitigating the oxidative stress induced by fluoride exposure in rats at high altitude.

Changes in liver function biomarkers: ALP, AST and ALT are biomarkers for clinical diagnosis of liver injury (Bulle et al., 1990). In present study, alkaline phosphatase

Table 3. Effect of melatonin on haemogram of sodium fluoride exposed male rat at high altitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0–7th day</th>
<th>14th day</th>
<th>21st day</th>
<th>28th day</th>
<th>35th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (×10⁹/l)</td>
<td>8.10±1.10</td>
<td>7.66±1.11</td>
<td>6.37±1.13</td>
<td>7.47±1.15</td>
<td>8.31±1.07</td>
</tr>
<tr>
<td>Hb (gm/dl)</td>
<td>15.03±1.14</td>
<td>14.35±1.13</td>
<td>13.46±1.15</td>
<td>14.49bc±0.10</td>
<td>15.46bcd±0.11</td>
</tr>
<tr>
<td>MCH (Pg/dl)</td>
<td>17.26±1.26</td>
<td>18.48±1.15</td>
<td>19.35±1.09</td>
<td>19.13±1.21</td>
<td>17.24±1.12</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>46.98±0.74</td>
<td>47.76±0.53</td>
<td>45.8±0.26</td>
<td>47.54±0.11</td>
<td>46.57±0.23</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>50.86±0.59</td>
<td>47.90±0.12</td>
<td>46.20±0.16</td>
<td>47.69±0.23</td>
<td>49.57±0.11</td>
</tr>
<tr>
<td>Neutrophil (%)</td>
<td>3.43±0.40</td>
<td>4.00±0.00</td>
<td>5.14±0.26</td>
<td>4.57±0.20</td>
<td>3.14±0.14</td>
</tr>
<tr>
<td>Eosinophil (%)</td>
<td>2.29±0.42</td>
<td>4.43±0.26</td>
<td>4.14±0.26</td>
<td>3.43±0.37</td>
<td>2.00±0.58</td>
</tr>
<tr>
<td>Basophil (%)</td>
<td>2.29±0.42</td>
<td>1.29±0.18</td>
<td>1.43±0.20</td>
<td>1.86±0.26</td>
<td>2.57±0.48</td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>94.00±0.44</td>
<td>83.71±0.36</td>
<td>74.29±0.68</td>
<td>87.43bc±0.30</td>
<td>90.86bcd±0.91</td>
</tr>
<tr>
<td>Monocyte (%)</td>
<td>1.57±0.30</td>
<td>1.57±0.20</td>
<td>3.14ab±0.26</td>
<td>2.57±0.30</td>
<td>2.43±0.20</td>
</tr>
<tr>
<td>Platelet (×10³/µl)</td>
<td>244.30±2.30</td>
<td>227.10±0.40</td>
<td>224.90±0.51</td>
<td>236.10±2.03</td>
<td>241.70bc±0.42</td>
</tr>
</tbody>
</table>

Values are presented as mean±SEM; abcdIndicates significant difference (P<0.05) within the same row in comparison with 7th, 14th, 21st and 28th days.

Change in antioxidant and oxidative stress level: The MDA levels which are indicative of extent of lipid peroxidation rose significantly (P<0.05) after fluoride exposure which were significantly reduced by melatonin supplementation and brought back to near control levels (Table 4). These results were in-accordance with the studies done in the past (Blaszczyk et al., 2008). The MDA levels decreased significantly during administration of melatonin.

It has been found that the melatonin is most effective in inhibiting lipid peroxidation process (Vural et al., 2001). These results confirmed the potent antioxidative properties of melatonin.

Table 4. Effect of fluoride and melatonin on antioxidant and oxidative stress level of male rats at high altitude

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0–7th day</th>
<th>14th day</th>
<th>21st day</th>
<th>28th day</th>
<th>35th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (µmole/ml)</td>
<td>7.40±0.48</td>
<td>11.96±0.30</td>
<td>13.05±0.30</td>
<td>7.99±0.30</td>
<td>8.17±0.30</td>
</tr>
<tr>
<td>FRAP (µmol/l)</td>
<td>0.98±0.38</td>
<td>0.19±0.50</td>
<td>0.50±0.32</td>
<td>0.32±0.40</td>
<td>0.40±0.10</td>
</tr>
<tr>
<td>DPPH (%)</td>
<td>3.54±0.13</td>
<td>5.38±0.12</td>
<td>7.43±0.13</td>
<td>9.79±0.11</td>
<td>11.3±0.12</td>
</tr>
</tbody>
</table>

Values are presented as mean±SEM; abcdIndicates significant difference (P<0.05) within the same row in comparison with 7th, 14th, 21st and 28th days. DPPH, 1,1-diphenyl-2-picrylhydrazyl; FRAP, Ferric reducing ability of plasma; MDA, Malondialdehyde.

In conclusion, the present study observed protective effects of melatonin against sodium fluoride mediated oxidative stress-induced adverse changes in some haematological, biochemical and antioxidant related...
parameters in rat at high altitude. Sodium fluoride (@ 50 ppm, p.o.) caused adverse effect on feed and water intake, body weight, haemogram, plasma biochemical, and oxidative stress parameters in rats. Melatonin supplementation generally reversed the adverse changes brought by administration of sodium fluoride. This indicated protective effect of melatonin against oxidative stress conditions at high altitude. Our results prove that melatonin may be a potential agent in development of a neutraceutical conditions at high altitude. Our results prove that melatonin may be a potential agent in development of a neutraceutical

Acknowledgement

This study was supported in the form of a Senior Research Fellowship (SRF) to the first author by CSIR, New Delhi and research facilities provided by Defence Institute of High Altitude Research (DIHAR), DRDO, India for conducting this study is duly acknowledged. We would like to thank all the technical staff of our animal facility and Dr Puneet Ranjan, Veterinarian (STA-B) for assistance throughout this study.

References

