## Prevalence of bovine tuberculosis in cattle of lower and middle ranges of north-western Himalayas

SUSHIL SHARMA<sup>1</sup>, A K PANDA<sup>2</sup>, ATUL KUMAR<sup>3</sup> and SIDHARATH DEV THAKUR<sup>4</sup>

Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 062 India

Received: 4 July 2018; Accepted: 20 July 2018

Key words: Bovine tuberculosis, Cattle, Himachal Pradesh, Mycobacterium bovis

Bovine tuberculosis, caused by Mycobacterium bovis, is a chronic wasting disease of cattle. M. bovis is principal agent of zoonotic tuberculosis and can be transmitted from infected bovines to humans and other animals (Olea-Popelka et al. 2017). M. bovis is the causal agent of human tuberculosis in about 10-15% of the cases in developing countries, and in about 1-2% of the cases in developed countries (Bolaños et al. 2017). Infections in humans are primarily food borne, and are transmitted mainly through consumption of unpasteurized milk and dairy products (Bolaños et al. 2017). M. bovis causes extra pulmonary disease in humans (Dürr et al. 2013). Studies suggest that pulmonary tuberculosis can occur in man by M. bovis through airborne transmission among people (Sunder et al. 2009, Buss et al. 2016). Occupationally exposed personnel such as farmers, veterinarians, slaughterhouse workers, animal product (unpasteurised milk and untreated animal products) handlers are at higher risk of acquiring M. bovis infections (Olea-Popelka et al. 2017). Bovine tuberculosis is prevalent in India but exact burden of the disease is not known (Veerasami et al. 2012). A study from Central India had shown a prevalence of 12.6% of M. bovis in man (Bapat et al. 2017). In Himachal Pradesh, bovine tuberculosis prevalence had been reported to be 14.3% in organized dairy herds (Thakur et al. 2010).

The present study was undertaken to ascertain the prevalence of bovine tuberculosis in animals reared under different farming systems in Himachal Pradesh, India. The study was carried out in 33 panchayats of 5 districts (Kangra, Kullu, Mandi, Solan and Una) of Himachal Pradesh. This region represents 3 agro-climatic zones (Zone-I, Zone-II and Zone-III, altitude varying from 200 m to 2500 m above sea level) of lower and middle ranges of Northwestern Himalayas. Animals (997) comprising 143 Jersey/Holstein Frisian (HF, all females), 611 Jersey/HF crosses (23 males

Present address: <sup>1</sup>Deputy Director (drsushilsharma1961 @gmail.com), Animal Husbandry, Hamirpur, Himachal Pradesh. <sup>2</sup>Professor (akpanda2003@gmail.com), <sup>3,4</sup>Assistant Professor (dratul9@gmail.com, sidharthdevthakur@gmail.com), Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences.

and 588 females), 110 Red Sindhi crosses (all females) and 133 local pahari (46 males and 87 females) cattle, were tested for tuberculosis. One hundred seventy seven (17.8%) tested animals (7 Jersey/HF, 113 Jersey/HF crosses, 9 Red Sindhi crosses and 48 non-descriptive animals) were owned by families of 100 registered tuberculosis patients. These animals were included in the study to establish the transmission of tuberculosis between man and animals. The tested 997 animals were reared under different farming systems, organized government dairy farms (50), organized private dairy farms (95) and private unorganized farms (852).

Single intradermal (SID) tuberculin test was performed as described previously (Cousins 2010). Bovine tuberculin purified protein derivative (PPD, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh) (0.1 ml, 2000 I.U.) was aseptically injected intradermally into the skin fold in the middle of the neck of the animal. The thickness of the skin fold at the site of inoculation was measured with a Hauptner (Hauptner-Herberrholz, Soligen, Germany) at the time of PPD injection and after 72 h, to measure the delayed hypersensitivity reaction. The results were interpreted as negative (<2 mm), inconclusive (2–4 mm) and positive (>4 mm) (Cousins 2010).

Lymph node biopsies and raw milk samples were collected from tuberculin positive reactors to detect *M. bovis* by real time PCR (RT-PCR) at Regional Disease Diagnostic Laboratory-North Zone, Jalandhar, Punjab. Lymph node biopsies were collected from pre-scapular lymph nodes. The glands were aseptically punctured and injected with 2 ml of sterilized normal saline solution. Approximately 2 ml of the fluid from lymph nodes and 50 ml (after rejecting first few strippings) of milk samples were collected from each SID positive animal and were stored and transported at –4°C for RT-PCR analysis (Mishra *et al.* 2005).

SID tuberculin test detected 1.7% (17/997) of the tested animals as positive reactors to tuberculin PPD whereas, 3.3% (33/997) and 94.9% (947/997) were identified as inconclusive and non-infected animals, respectively. All positive (17) cases were detected in organized government dairy farms and prevalence of tuberculosis was 34.0% (17/

| Table 1. Delayed type | of hypersensitivity | reaction to cattle from | different breeds | and age groups |
|-----------------------|---------------------|-------------------------|------------------|----------------|
|                       |                     |                         |                  |                |

| Breed                            | No. of animals | Age (Years) |      |     | Delayed hypersensitivity reaction to tuberculin PPD, Skin fold thickness (mm)* |              |       |
|----------------------------------|----------------|-------------|------|-----|--------------------------------------------------------------------------------|--------------|-------|
|                                  |                | 1–5         | 5–10 | >10 | <2 mm                                                                          | 2 mm to 4 mm | >4 mm |
| Jersey/Holstein Friesian         | 143            | 57          | 77   | 09  | 131                                                                            | 08           | 04    |
| Jersey/Holstein Friesian crosses | 611            | 153         | 390  | 68  | 596                                                                            | 15           | 00    |
| Red Sindhi crosses               | 110            | 21          | 70   | 19  | 91                                                                             | 06           | 13    |
| Local Pahari                     | 133            | 23          | 58   | 52  | 129                                                                            | 04           | 00    |
| Total                            | 997            | 254         | 595  | 148 | 947                                                                            | 33           | 17    |

<sup>\*</sup>Interpretation criteria as per OIE, 2016.

50) in this farming system. Animals (8%, 4150) dairy tested in organized Government farms were inconclusive reactors. Our findings were in agreement with previous study conducted in organized Government dairy farm of Himachal Pradesh, which reported a prevalence of 34.4% (Thakur et al. 2010). Cattle herds should be tested annually and tuberculin reactors should be removed from the herd before they start excreting tubercle bacilli and become a persistent source of infection. In private organized dairy farms (including Go-Sadan), none of the 95 tested animals reacted positively to the PPD but 7.4% (7/95) animals had inconclusive reactions. About 2.8% (22/852) of the tested animals reared under unorganized farming system showed inconclusive reaction. High stocking density and poor ventilation facilitates the spread and transmission of tuberculosis from infected animals to susceptible ones in farm houses. Highest number of tuberculin positive reactors were detected in the age group of 5–10 years (15/595, 2.5%) followed by age group of 1-5 years (2/254, 0.8%) and none in age group more than 10 years (0/148). Higher rates of tuberculin reactions in older animals can occur due to nonspecific immune responses to environmental mycobacteria (Thakur et al. 2010, Philips et al. 2003). The difference in results between cattle of different ages can also be attributed to slow progression of disease to a detectable level (Thakur et al. 2010).

Prevalence of tuberculin reactors was highest among Red Sindhi crosses (11.8%, 13/110) followed by pure Jersey/ HF animals (2.8%, 4/143) (Table 1). None of the Jersey/ HF crosses or local pahari tested animals reacted to tuberculin PPD. Various workers from different parts of the world have also recorded significant differences in the incidences of bovine tuberculosis among crossbred and purebred cattle (Thakur *et al.* 2010, Ameni *et al.* 2003). None of the tested male (69) animals reacted positively to tuberculin testing. In females, out of 928 tested for tuberculosis, 17 (1.8%) were positive, 33(3.6%) inconclusive and rest 878 (94.6%) were negative. Among 177 animals owned by 100 registered tuberculosis patients, none gave a positive reaction to PPD. Only 4 (2.3%) had inconclusive reaction to tuberculin.

Milk samples (17) and 10 lymph node biopsy fluid samples from SID positive reactors were tested for the presence of *M. bovis* by RT PCR (Mishra *et al.* 2005). Around 20% (2/10) lymph node biopsy samples and 17.6%

(3/17) milk samples were detected positive for *M. bovis* by RT-PCR. Excretion of *M. bovis* in milk poses a serious public health threat as milk from all the yielders is pooled in organized farms before disposal. Further, adding fresh contaminated milk to raw/fermented milk or vice-versa, leads to continued presence of mycobacteria in milk (Mariam 2014).

## **SUMMARY**

This study was conducted to ascertain the prevalence of bovine tuberculosis in cattle of different breeds reared under different faming systems and agro-climatic zones of Himachal Pradesh. Tuberculin reactors (17) were detected only in organized dairy farms. Prevalence (15/595, 2.5%) of the disease was highest in animals aged between 5-10 years with 88.2% (15/17) of total reactors being detected in this age group. Tuberculin reactors were found among animal from Red Sindhi crosses (11.8%, 13/110) and pure Jersey/HF animals (2.8%, 4/143). RT-PCR detected M. bovis in milk (20%, 2/10) and lymph node biopsy samples (17.6%, 3/17). M. bovis is zoonotic and shedding of bacteria in milk is a serious public health hazard. Raw milk and products prepared from unpasteurized or raw milk are major vehicles of M. bovis transmission and causation of extra pulmonary tuberculosis in humans.

## ACKNOWLEDGEMENTS

Authors are thankful to Joint Director, Regional Disease Diagnostic Laboratory-North Zone, Jalandhar, Punjab for laboratory facilities provided.

## REFERENCES

Ameni G, Bonnet P and Tibbo M. 2003. A cross sectional study of bovine tuberculosis in selected dairy farms in Ethiopia. *International Journal of Applied Research in Veterinary Medicine* 1: 253–58.

Bapat P R, Dodkey R S, Shekhawat S D, Husain A A, Nayak A R, Kawle A P, Daginawala H F, Singh L K and Kashyap R S. 2017. Prevalence of zoonotic tuberculosis and associated risk factors in Central Indian populations. *Journal of Epidemiology* and Global Health 7: 277–83.

Bolaños C A D, Paula C L, Guerra S T, Franco M M J and Ribeiro M G. 2017. Diagnosis of mycobacteria in bovine milk: an overview. *Revista do Instituto de Medicina Tropical de Sao* 

- Paulo 59: e40.
- Buss B F, Keyser-Metobo A, Rother J, Holtz L, Gall K, Jereb J, Murphy C N, Iwen P C, Robbe-Austerman S, Holcomb M A and Infield P. 2016. Possible airborne person-to-person transmission of *Mycobacterium bovis*—Nebraska 2014–2015. *Morbidity and Mortality Weekly Report* **65**: 197–201.
- Cousins D V. 2016. Bovine tuberculosis. *Manual of Diagnostic Tests and Vaccines for Terrestrial Animals*. OIE, Paris, pp. 1–17. www.oie.int/fileadmin/Home/eng/Health\_standards/tahm/2.04.06\_BOVINE\_TB.pdf
- Dürr S, Müller B, Alonso S, Hattendorf J, Laisse C J, van Helden P D and Zinsstag J. 2013. Differences in primary sites of infection between zoonotic and human tuberculosis: results from a worldwide systematic review. PLoS Neglected Tropical Diseases 7: e2399.
- Mariam S H. 2014. Identification and survival studies of *Mycobacterium tuberculosis* within laboratory-fermented bovine milk. *BMC Research Notes* 7: 175.
- Mishra A, Singhal A, Chauhan D S, Katoch B M, Srivastava K, Thakral S S, Bhardwaj S S, Sreenivas, V and Parsad H K. 2005. Direct identification of *Mycobacterium tuberculosis* and *Mycobacterium bovis* in bovine samples by PCR assay: correlation with conventional techniques. *Journal of Clinical Microbiology* 43: 5670–78.

- Olea-Popelka F, Muwonge A, Perera A, Dean S, Mumford E, Erlacher-Vindel E, Forcella S, Silk J, Ditiu L, El Idrissi A, Raviglione M, Cosivi O, LoBue P and Fujiwara P I. 2017. Zoonotic tuberculosis in human beings caused by *Mycobacterium bovis*-a call for action. *Lancet Infectious Diseases* 17: e21–25.
- Philips C J C, Morris P A, Foster C R W and Tverson R. 2003. Transmission of *Mycobacterium bovis* infection to cattle. *Research in Veterinary Sciences* **74**: 1–22.
- Sunder S, Lanotte P, Godreuil S, Martin C, Boschiroli M L and Besnier J M. 2009. Human-to-human transmission of tuberculosis caused by *Mycobacterium bovis* in immunocompetent patients. *Journal of Clinical Microbiology* 47: 1249–51.
- Thakur A, Sharma M, Katoch V C, Dhar P and Katoch R C. 2010. A study on the prevalence of bovine tuberculosis in farmed dairy cattle in Himachal Pradesh. *Veterinary World* 3: 409–14.
- Veerasami M, Reddy D S, Sugumar P, Naidu S S, Bahekar V, Mahesh Kumar E K, Mukherjee F, Rana S K, Chandran D, Das D and Srinivasan V A. 2012. Multi-antigen print immunoassay for seroepidemiological surveillance of bovine tuberculosis on Indian cattle farms. *Veterinaria Italiana* 48: 253–67.