Bovine tropical theileriosis (BTT) is an economically important serious disease of dairy animals causing economic losses to the tune of US $ 384.3 million annually in India (Minjauw and McLeod 2003). The disease is caused by an obligate intracellular apicomplexan protozoan parasite *Theileria annulata* and is transmitted mainly by tick vector—*Hyalomma anatolicum anatolicum* in India (Taylor et al. 2007). The pathogenicity of the disease can be evaluated based on alteration in various haematological and biochemical parameters (Dua et al. 2012). The disease is severe in calves (Gupta et al. 2018) and transplacental transmission reported in neonatal calves (Godhara et al. 2009, Sudan et al. 2015) has further added to the debate on characterization of virulent and pathogenic strains of *T. annulata* affecting calves. Such studies are very much significant as they will help in better understanding of the disease pattern and the distribution of the circulating pathogenic genotypes of the parasite (Tuli et al. 2015). Numerous marker genes like ribosomal 18S, ITS, cytochrome oxidase, TAMS, etc have been used over the period of time for genetic characterization studies of *T. annulata* (d’Oliveira et al. 1995, Gubbels et al. 2000, Azmi et al. 2016). However, when it comes to Indian scenario, literature on phylogenetic analysis of calf theileriosis is virtually very much limited. In present study, a local calf isolate of *T. annulata* from Mathura was characterized based on TAMS and 18S gene. Thereafter, analysis was made between the present isolate and other isolates based on these two gene loci to delineate phylogenetic association between various isolates across the world.

The study was in accordance with the ethical standards of the Institutional Animal Ethics Committee (Approval No. 34/2/IAEC/2016).

Blood samples (1 ml aliquot) was collected in clean sterile vacutainer, coated with EDTA anticoagulant, from the jugular vein of earlier confirmed theileriosis infected calf (through microscopic observation, clinical signs and PCR). DNA was isolated from blood using wizard DNA isolation kit (Promega, USA) following manufacturer’s protocol.

Primer selection and PCR amplification: Oligonucleotide primers targeting the TAMS and 18S gene of *T. annulata* were custom synthesized (d’Oliveira et al. 1995, Azmi et al. 2016) from Imperial Life Sciences Pvt. Ltd., Gurugram, India. The PCR reactions were set up into 25 µl volume containing 12.5 µl of Green PCR Master Mix (0.05U/µl Taq DNA polymerase in reaction buffer, 4 mM MgCl₂, 0.4 mM dATP, 0.4 mM dCTP, 0.4 mM dGTP, and 0.4 mM dTTP), 1.5 µl of each primer (15 pmol of each primer) and 5 µl of the extracted DNA template. The total volume of the PCR mix was made up to 25 µl using nuclease-free water. The thermocyclic profile alongside the primer sequence and expected amplicon size are given in Table 1. The respective amplified amplicons were analyzed by agarose gel electrophoresis in 1.25% agarose gel.

The two respective genes were purified using Gel extraction and PCR clean up kit (Fermentas) following the manufacturer’s protocol and the purified PCR products were sent for DNA sequencing to Invitrogen Bio Sciences Pvt. Ltd., Gurugram, India. The sequences obtained were submitted in NCBI and corresponding accession numbers MF384420 and MF384421 were obtained for TAMS and 18S gene, respectively.

Separate phylogenetic trees and divergence tables were
made for both the genes. The phylogenetic tree of both the genes revealed close association between Indian isolates in comparison to isolates across the globe (Fig. 1a, b). Based on TAMS gene, the present isolate showed per cent homologies in the range 65.8–97.2% with various isolates across India and abroad (Fig. 2a). Likewise, 18S gene based per cent homologies of the present isolate varied from 70.5 to 100% with other isolates across India and abroad (Fig. 2b).

Molecular characterization studies primarily involve selective targets. *T. annulata* merozoite surface antigen (TAMS) is widely used for phylogenetic analysis throughout the globe. TAMS is highly specific for *T. annulata* and it does not show cross reactivity with other *Theileria* spp. like *T. parva, T. mutans, T. sergenti, T. buffeli, T. velifera* and *T. taurotragi* (d’Oliveria et al. 1995). Likewise, 18S ribosomal RNA is a universal gene employed for phylogenetic studies of a number of parasites including...
piroplasms (Sudan et al. 2017) although there are records of variations at 5' end of the gene in certain protozans (Sudan and Shanker 2018).

Based on TAMS loci, the present isolate was closer with isolate from Bareilly and Uttarakhand than the isolate from Odhisa and Tamil Nadu. Interestingly, isolates from North India, viz. Mathura, Bareilly and Uttarakhand formed a separate clade on phylogenetic tree and isolates from Southern India, viz. Tamil Nadu and Odhisa formed other clade. Globally, the isolate was to be closer to isolates from Turkey than to isolates from China, Egypt and Tunisia (Fig. 1a). So far as 18S loci is concerned, the present isolate was closer to isolate from Tamil Nadu followed by Odhisa and Bareilly. All the Indian isolates formed a single clade on phylogenetic tree. Globally, on the basis of 18S loci, the present isolate was closer to Egypt isolate followed by Turkey, Tunisia and China isolates (Fig. 1b). Based on TAMS gene, the present isolate showed per cent homologies in the range 65.8–97.2% with various isolates across India and abroad (Fig. 2a). Likewise, 18S gene based per cent homologies of the present isolate varied from 70.5 to 100% with other isolates across India and abroad (Fig. 2b).

In conclusion, for molecular characterization, multiple gene loci are required for better understanding of the phylogenetic position of the given isolate. This compensates the limitation of one gene loci by another one so that a true picture comes into preposition. The characterization of Mathura calf isolate of *T. annulata* based on TAMS and 18S gene revealed that Indian isolates formed separate clade differentiating from most of the other isolates across the globe. Wide variation was noticed in terms of per cent homologies of studied isolate in comparison to other isolates across world and India.

SUMMARY

The TAMS and 18S gene of local calf isolate from semi-arid Mathura were amplified and used for phylogenetic analysis after custom sequencing. Results revealed phylogenetic association between Indian isolates in comparison to isolates across the world. Based on TAMS gene, the present isolates showed per cent homologies in the range 65.8–97.2% with various isolates across India
and abroad. Likewise, 18S gene based per cent homologies of the present isolates varied from 70.5–100% with other isolates across India and abroad. The findings are important from molecular evolutionary point of view.

ACKNOWLEDGEMENTS

The authors are highly thankful to the Director, Research; Dean, CoVSc; Incharge, Central Instrumentation Facility (CIF) and Vice Chancellor, DUVASU, for the facilities provided. The authors also acknowledge the funding agencies (ICAR and RKVY) for providing financial assistance.

REFERENCES

