Genome-wide association analysis to identify QTL for carcass traits in Hanwoo (Korean native cattle)

MIN-WOOK HONG¹, SO-YOUNG CHOI², NARESH KUMAR SINGH³, HUN KIM⁴, SONG-YI YANG⁵, KYEONGROK KWAK⁶, JONG-BOK KIM⁷ and SUNG-JIN LEE^{8*}

Kangwon National University, Chuncheon 243 41 Republic of Korea

Received: 6 March 2018; Accepted: 20 July 2018

ABSTRACT

A genome-wide association study (GWAS) was performed to investigate the genetic markers associated with carcass traits of Hanwoo (*Bos taurus coreanae*) steer in the Gangwon region of Korea. Hanwoo steer (139) from the Gangwon region were genotyped with Bovine SNP50K BeadChip, and 35,769 SNPs were analyzed for five specific carcass traits after applying several filters. A total of seven quantitative trait loci were detected, of which four, one, and 2 SNPs were detected on various *B. taurus* autosomal chromosomes (BTA) by the respective model. The four significant SNPs associated with backfat thickness were ARS-BFGL-NGS-41475 on BTA 5, ARS-BFGL-NGS-36359 on BTA 19, ARS-BFGL-NGS-56813 on BTA 22, and Hapmap25048-BTA-138242 on BTA 25. Among the detected SNPs, one and two SNPs were associated with marbling score (ARS-BFGL-NGS-110066 on BTA 23) and meat colour (BTB-01920239 on BTA 15 and ARS-BFGL-NGS-24934 on BTA 18). In this GWAS, we identified three positional candidate genes for carcass traits, backfat thickness (*Fibulin-2*, FBLN2; *Sorting nexin 29*, SNX29) and meat colour (*WW domain containing oxidoreductase*, WWOX). Our results suggest that the candidate SNP markers do affect the genomic selection of associated carcass traits for Hanwoo in the Gangwon region.

Key words: Gangwon, Genome-wide association study (GWAS), Hanwoo, SNP markers

The Korean native cattle Hanwoo (*Bos taurus coreanae*) is a crossbreed between Bos indicus and Bos primigenius (Lee et al. 2013a), and is vastly present in the Korean peninsula. Hanwoo was predominantly used for farming purpose in the early days of Korea; however, with industrial development it was taken as beef cattle in the Korean peninsula. Resultant to that, the Hanwoo selection was primarily on progeny test-based breeding programs in order to increase meat production and quality, and to meet the growing demands for beef in Korea (Rhee et al. 2002, Lee et al. 2013a, 2014; Venkata et al. 2015). Korean consumers prefer Hanwoo meat for its palatability and chewiness (Cho and Ko 1998). Therefore, estimated breeding values for carcass weight (CW), backfat thickness (BFT), eye muscle area (EMA), marbling score (MS), and meat colour (MC) were commonly used as selection criteria in an attempt to increase meat yield and quality, which determined further the profitability of the Korean beef industry (Lee et al. 2013b).

The use of genomic selection (GS) using genetic markers

Present address: ^{1, 2, 4, 5, 6, 7, 8}(winhonest@naver.com, csy0312@naver.com, hune1809@naver.com, yse424@nate.com, rudfhr1994@naver.com, jbkim@kangwon.ac.kr, sjlee @kangwon.ac.kr), College of Animal Life Sciences. ³Associate Professor (naresh2101@gmail.com), Department of Veterinary Surgery and Radiology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi.

may be substantially greater than that achieved by selection based upon traditional breeding for economic traits that are being determined post-mortem, that occur late in life, have a low heritability, or are difficult and/or expensive to accurately measure (Davis and DeNise 1998). Thus, in order to identify cattle with superior genetic merits, researchers have identified quantitative trait loci (QTL) for numerous economically important traits using various methods such as restriction fragment length polymorphism and microsatellite typing (Ashwell *et al.* 1997, Boichard *et al.* 2003, Park *et al.* 2012, Nishimaki *et al.* 2013, Kwon *et al.* 2016).

Genome-wide association studies (GWAS) allow to search the genome for associated disease or economic traits by researching variations in genetic frequencies in the whole genome. In addition, SNP chips have facilitated GWAS or GS, which allows for the identification of causative SNPs for economic traits and improves the reliability of breeding value predictions (VanRaden et al. 2009). A recently established bovine SNP panel enabled QTL mapping and the prediction of genetic merits without the use of phenotype and pedigree records (Goddard and Hayes 2009). This approach has been used for precise QTL mapping of milk traits in dairy cattle (Na et al. 1985, Daetwyler et al. 2008, Kolbehdari et al. 2008); in beef cattle, GWAS with SNP array research associated with feed intake traits or carcass traits have been conducted (Barendse et al. 2007, Hulett et al. 2007, Karim et al. 2011).

In Korea, a number of studies on several QTL mapping methods that exploited a linkage disequilibrium between molecular markers and QTL have been suggested and applied (Kim et al. 2011, Lee et al. 2012b, Li and Kim 2015, Li et al. 2017). In addition, a few researchers have reported chromosomal regions, genes, and specific alleles on the B. taurus autosomal chromosome (BTA) 6 that was associated with carcass traits in Hanwoo (Li et al. 2011, Lee et al. 2012a, 2013b). However, most studies on Hanwoo have used the populations (proven bulls, steers) from governmental institutions such as the Korean Cattle Improvement Center of the National Agricultural Cooperative Federation or the National Institute of Animal Science. Although the breeding and improvement of Hanwoo is managed at the national level in Korea, it is expected that there will be differences locally and nationally. Especially, the Gangwon region of Korea has more forests and a more mountainous terrain than other provinces resulting in Gangwon Hanwoo with a larger body physique and a stronger constitution than those in other provinces. They are also relatively good at forming marbling due to their ability to adjust to wide daily temperature range. The aim of this study was to identify candidate genes that affect carcass traits and how SNP distributions impact the traits using GWAS in Hanwoo from the Gangwon region, Korea.

MATERIALS AND METHODS

Resource population and phenotypic measurements: Hanwoo steers (139) sired by 18 bulls that were raised at livestock farms in Hongcheon-gun, Gangwon province, Korea, were used. The steers were born between May 2010 and January 2012 and they were shipped to slaughterhouses from April 2013 to June 2013. Phenotypic and carcass trait data were obtained from the Korea Animal Improvement Association. Phenotypic data in this study included CW, EMA, BFT, MS, and MC. And the evaluation was performed for MS (1, trace; 9, very abundant), MC (1, very light cherry red; 7, very dark red) based on the Korea Animal Products Grading Service Manual.

Genotyping: Tissue samples were collected from Hanwoo steers in Hongcheon-gun of Gangwon province, Korea. DNA was isolated from the tissue using G-spinTM Total DNA Extraction Mini Kit (Intron Biotechnology Inc., Seongnam, Korea). Genotyping was conducted with the Bovine SNP50K BeadChip (Illumina Inc., San Diego, CA), which resulted in 54,609 SNPs. Then, the detected non-biallelic SNPs of over than 2 proceed allele flip. Of the 54,609 SNPs genotyped, 201 SNPs failed to produce genotypes for all the samples in this process. SNP selection criteria were

- 1,647 sex chromosomes that were unmapped to the bovine genome (Bos_taurus_UMD_3.0),
- 1,898 SNPs that had a <98% call rate
- 4,756 SNPs that had a significant departure from the Hardy Weinberg equilibrium (P<0.001), and
- 10,338 SNPs that had a minor allele frequency (MAF)
 P<0.05 in Hanwoo. As a result, 35,769 SNPs were used to identify functional loci (Table 2).

Table 1. Carcass traits of 139 Hanwoo steer

Trait	Average	SD	Minimum	Maximum	CV
Backfat thickness (cm)	12.53	3.940	5	30	31.44
Eye muscle area (cm ²)	93.09	10.074	1 69	126	10.82
Carcass weight (kg)	435.09	38.830	339	553	8.92
Marbling score* (1–9)	5.96	1.795	2	9	30.10
Meat colour** (1-7) 4.55	0.605	3	6	13.30

SD, Standard deviation; CV, Coefficient of variation (%). *The score ranged from 1 (trace) to 9 (very abundant). **The score ranged from 1 (very light cherry red) to 7 (very dark red).

Table 2. Numbers of SNPs in Hanwoo steers and average distances between adjacent SNPs on *Bos taurus* autosomal chromosomes (BTA)

BTA No.	No. of SNPs	Total length (Mb)	Average interval size (kb)	Standard deviation (kb)		
1	2,370	158.09	66.74			
2	1,865	136.50	73.23	80.54		
3	1,783	121.14	67.98	66.99		
4	1,690	120.01	71.05	61.87		
5	1,484	121.08	81.64	79.11		
6	1,786	118.98	66.66	73.91		
7	1,554	112.36	72.35	84.58		
8	1,637	113.01	69.08	57.48		
9	1,402	105.46	75.28	74.39		
10	1,465	104.17	71.16	89.58		
11	1,553	107.14	69.03	62.85		
12	1,159	90.94	78.54	134.27		
13	1,250	83.86	67.14	60.16		
14	1,270	83.15	65.53	62.70		
15	1,158	84.17	72.75	68.69		
16	1,127	81.25	72.16	73.49		
17	1,097	74.89	68.33	66.58		
18	920	65.16	70.90	69.35		
19	993	63.54	64.05	57.06		
20	1,081	71.59	66.29	54.91		
21	996	71.10	71.46	79.39		
22	889	61.12	68.83	61.24		
23	782	52.23	66.87	69.81		
24	893	62.10	69.62	59.50		
25	712	42.64	59.97	50.19		
26	750	50.95	68.03	56.60		
27	671	45.33	67.66	67.78		
28	666	46.18	69.45	61.81		
29	766	51.10	66.80	67.52		
Total	35,769	2499.26				

This quality control procedure was conducted using the PLINK program (Purcell *et al.* 2007).

Statistical analysis: A total of 35,769 autosomal SNP markers remained for GWAS. A linear mixed-model association analysis between five carcass traits and these SNP markers using the genome-wide complex trait analysis (GCTA) program was also performed (Yang *et al.* 2011).

All association analyses were performed using the *mlma* option in GCTA, which applies a linear mixed-effects model that includes the candidate variant.

$$y = Xb + S_1a + S_2u + e$$

where, y is the vector of each carcass trait; b is the fixed effects vector of the candidate variant to be tested for an association; a represents SNP marker effects; u ~ N(0,G σ_u^2) is the random polygenic effect vector where G is the genomic relationship matrix (GRM) that was constructed using the 35,769 SNP markers and σ_u^2 is the polygenic variance; and e ~ N(0,I σ_e^2) is the random residual effect vector where I is the identity matrix and σ_e^2 is the residual variance. S_1 is the incidence matrix for a while X and S_2 are the incidence matrixes for b and u, respectively. A Bonferroni correction was employed to account for multiple testing. P-values for associations with significant SNPs were also estimated by dominance and recessive genotypic models.

RESULTS AND DISCUSSION

In this study, 139 Hanwoo steers were used to identify QTL for carcass traits, viz. BFT, CW, EMA, MS, and MC. The carcass traits were adjusted to 918 days (the average age at slaughter). The carcass traits were generally higher in Gangwon Hanwoo (Table 1) compared with other studies that used Hanwoo samples from government organizations such as the Korean Cattle Improvement Center (Lee et al. 2013b, Kim et al. 2011, Li et al. 2017). Mean carcass trait results from whole Hanwoo in 2013 were BFT of 12.1 mm, an EMA of 83.0 cm², a CW of 367.6 kg, and an MS score of 4.5 (KAPE 2013). These Gangwon Hanwoo carcass traits were better than those reported from other regions. However, the mean BFT trait value was higher than that reported earlier. The present findings were in corroboration with the findings of Sun et al. (2010) and Park et al. (2015), who showed that BFT in slaughtered Hanwoo was higher in the winter. It is considered that Hanwoo can maintain their body temperature in the Gangwon region where the annual average temperature is generally low and the daily temperature range is extremely wide.

Among the 54,609 SNPs from the Bovine SNP50K BeadChip, 35,769 SNPs were available in this study. The

total autosomal genome length was 2,499.26 Mb with an average adjacent marker interval of 69.61±69.0 kb. The shortest BTA was 42.64 Mb in BTA 25 and the longest was 158.09 Mb in BTA 1 (Table 2). The average MAF of all SNPs after filtering was 0.273 and the average distance between genotyped SNPs was evenly distributed from 60 kb to 82 kb.

Genotypic associations of each locus analyzed by GWAS with carcass traits of Gangwon Hanwoo are depicted in Fig. 1 (P<0.001). Table 3 shows the SNPs that were associated with the three carcass traits. A total of seven SNPs were detected, of which four (ARS-BFGL-NGS-41475, ARS-BFGL-NGS-36359, ARS-BFGL-NGS-56813, Hapmap25048-BTA-138242), one (ARS-BFGL-NGS-110066), and two (BTB-01920239, ARS-BFGL-NGS-24934) were associated with BFT, MS, and MC, respectively. The detected SNPs were spread across BTA 5, 15, 18, 19, 22, 23, and 25.

Several QTL studies using GWAS have been conducted to detect any association with carcass traits in beef cattle. However, these studies analyzed associations for specific economic carcass traits or for a specific chromosome. Kneeland et al. (2004) mapped three QTL regions on chromosome 14 that are associated with crossed cattle birth weight. Karim et al. (2011) mapped a region on chromosome 14 that is associated with carcass traits in a composite breed. In addition, many studies provided evidence for carcass traits on chromosomes 14 and 26 in various cattle breeds (Koshkoih et al. 2006, Maltecca et al. 2009, Marques et al. 2009, McClure et al. 2010, Snelling et al. 2010, Bolormaa et al. 2011). Also, Peters et al. (2012) conducted whole genome association analyses using SNP and carcass traits from Brangus heifers. In Korea, many researchers reported that a significant correlation associated with carcass traits were observed on chromosomes 6 and 14 of Hanwoo (Kim et al. 2011, Lee et al. 2012a, Lee et al. 2013b, Li and Kim 2015, Li et al. 2017). However, in this study, no SNPs were found on chromosomes 6 and 14 of Hongcheon Hanwoo. This difference seems to be due to the fact that the previous studies used Hanwoo from a national institution such as the Korean Cattle Improvement Center or National Institute of Animal Science. Therefore,

Table 3. Identification of SNP associated with carcass traits in Hanwoo genotyped with Bovine SNP50K

SNP	Chr	Position	Allele	MAF	b	SE	p-value	Gene
Backfat thickness (cm)								
ARS-BFGL-NGS-41475	5	14,556,289	G/A	0.22	2.802	0.648	1.52E-05	None
ARS-BFGL-NGS-36359	19	62,694,734	A/G	0.19	2.495	0.584	1.97E-05	None
ARS-BFGL-NGS-56813	22	58,998,502	A/G	0.13	3.248	0.771	2.54E-05	FBLN2
Hapmap25048-BTA-138242	25	10,818,342	G/A	0.41	2.203	0.506	1.33E-05	SNX29
Marbling score* (1–9) ARS-BFGL-NGS-110066 Meat color [†] (1–7)	23	961,672	G/A	0.43	0.979	0.233	2.72E-05	None
BTB-01920239	15	79,637,627	A/G	0.31	-0.366	0.082	6.97E-06	None
ARS-BFGL-NGS-24934	18	5,545,560	G/A	0.13	-0.545	0.125	1.38E-05	WWOX

^{*}The score ranged from 1 (trace) to 9 (very abundant); †The score ranged from 1 (very light cherry red) to 7 (very dark red).

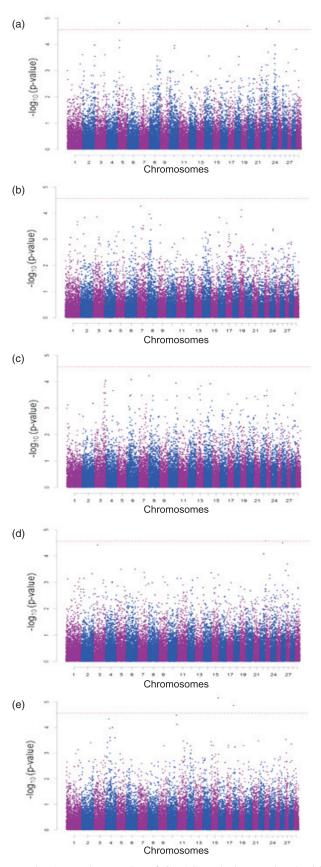


Fig. 1. Manhattan plot of GWAS analysis associated with carcass traits in 139 Hanwoo steer. (a) BFT, backfat thickness; (b) EMA, eye muscle area; (c) CW, carcass weight; (d) MS, marbling score; (e) MC, meat color.

the current study using Hanwoo steers from a single region has completely different results compared to the others. In addition, Hong *et al.* (2017) reported that the LD value of Gangwon Hanwoo was higher than that of the national average. This could be attributed to the effect of Hanwoo inbreeding within the area, and it suggest that the results of current study could have shown as these reasons. Therefore, further studies that identify specific chromosomes might be needed for Hanwoo.

As shown in Table 3, Fibulin-2 (FBLN2) and Sorting nexin 29 (SNX29) had shown possibility as positional and functional candidate genes that the BFT trait related SNPs detected in these genes on chromosomes 22, 25 in Hanwoo, respectively. The SNP for MC was positioned on BTA 18, which is one of the gene WW domains containing oxidoreductase (WWOX). FBLN2 functions associated with BFT in cattle were previously unknown, but the gene is now known to be associated with extracellular matrixrelated factors in bovine oviduct epithelial cells (Tanaka et al. 2016). Raghunath et al. (1999) also described that FBLN2 was associated with fibrillin-containing microfibrils, except for the part immediately adjacent to the dermo-epidermal junction in a normal dermis. In humans, the SNX29 gene is associated with abdominal fat and there is significant evidence that it is located on chromosome 16 (Fox et al. 2012). Sung et al. (2016) found it to be associated with subcutaneous and visceral adipose tissue in women. In the case of cattle, Flury et al. (2014) reported that significant SNPs for the rear udder height trait were positioned on the SNX29 gene. Although the two genes, FBLN2 and SNX29 were not directly related to the BFT trait in cattle, it was suggested that they might be sufficient candidate gene markers of BFT in Gangwon Hanwoo. Fernandes et al. (2016) identified a significant association between the WWOX gene and BFT in Nellore cattle; however, we found that the gene was associated with the MC trait. Overall, our results were significantly different compared to those of previous studies that used Hanwoo cattle (Kim et al. 2011, Lee et al. 2012a, Lee et al. 2013b, Li and Kim 2015). The present study is a good example of how results for a population can differ based on area.

It is very important to develop excellent economic carcass traits in Hanwoo. In the past, the performance test was the only test that considered the phenotype-like progeny test, which normally takes long time to perform, and results could not be predicted. The discovery of genetic markers attributable to a specific economic trait has made it possible to genetically improve livestock, and this is a key factor for decoding various traits or diseases in the future. Recently, many studies that reported an association of SNP markers in Hanwoo on a large-scale SNP panel (50K, 700K, and HD, etc.) have been commercialized. However, Hanwoo were managed for breeding improvement using artificial insemination from a few sires at the national scale, and as a consequence, the coefficient of inbreeding for all Korean Hanwoo have increased (Dang et al. 2011). According to a study on the genetic distance estimation

between a domestic Hanwoo population using microsatellite markers, Hanwoo populations were difficult to maintain by region (Oh et al. 2008). However, we identified different candidate SNP markers associated with carcass traits and compared them with other studies that investigated the association of carcass traits in Hanwoo. Even though the genetic distance is not far between the domestic Hanwoo and Gangwon Hanwoo populations, it has been suggested that Gangwon Hanwoo have inherent characteristics due to the influence of a wide daily temperature range and a mountainous territory compared to other provinces. Therefore, the results from present study might be used as future genetic markers for Gangwon Hanwoo. It is necessary to carry out further studies using a larger number of Hanwoo because of the small number of Hanwoo analyzed in this study. Also, our results suggest that these data could be used as a basic data for the genetic improvement of Hanwoo in the Gangwon region.

ACKNOWLEDGEMENTS

S J Lee has acted as a corresponding author in this manuscript. This study was supported by a Research Grant from Kangwon National University and National Agricultural Cooperative Federation, Republic of Korea (Project No. C1013426-01-01).

REFERENCES

- Ashwell M S, Rexroad Jr. C E, Miller R H, VanRaden P M and Da Y. 1997. Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. *Animal Genetics* **28**(3): 216–22.
- Barendse W, Reverter A, Bunch R J, Harrison B E, Barris W and Thomas M B. 2007. A validated whole-genome association study of efficient food conservation in cattle. *Genetics* **176**(3): 1893–1905.
- Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher M Y and Levéziel H. 2003. Detection of genes influencing economic traits in three French dairy cattle breeds. *Genetics Selection Evolution* 35(1): 77– 101.
- Bolormaa S, Porto Neto L R, Zhang Y D, Bunch R J, Harrison B E, Goddard M E and Barendes W. 2011. A genome-wide association study of meat and carcass traits in Australian cattle. *Journal of Animal Science* **89**(8): 2297–2309.
- Cho B D and Ko Y D. 1998. Hanwoo meat. *Domestic Animal Industry in Korea*, pp 3–25. (Ed.) Jung J K. World Association of Animal Science in Korea.
- Daetwyler H D, Schenkel F S, Sargolzaei M and Robinson J A B. 2008. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. *Journal of Dairy Science* **91**(8): 3225–36.
- Dang C G, Lee J J and Kim N S. 2011. Estimation of inbreeding coefficients and effective population size in breeding bulls of Hanwoo (Korean cattle). *Journal of Animal Science and Technology* **53**(4): 297–302.
- Davis G P and DeNise S K. 1998. The impact of genetic markers on selection. *Journal of Animal Science* **76**(9): 2331–39.
- Fernandes Jr. G A, Costa R B, de Camargo G M F, Carvalheiro R, Rosa G J M, Baldi F, Garcia D A, Gordo D G M, Espigolan R, Takada L, Magalhães A F B, Bresolin T, Feitosa F L B, chardulo

- LAL, de Oliveira H N and de Albuquerque L G. 2016. Genome scan for postmortem carcass traits in Nellore cattle. *Journal of Animal Science* **94**(10): 4087–95.
- Flury C, Boschung C, Denzler M, Bapst B, Schnyder U and Gredler B. 2014. Genome-wide association study for 13 udder traits from linear type classification in cattle. Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. pp. 17–22. Vancouver, BC, Canada.
- Fox C S, Liu Y, White C C, Feitosa M, Smith A V, Heard-Costa N, Lohman K, GIANT Consortium, MAGIC Consortium, GLGC Consortium, Johnson A D, Foster M C, Greenwalt D M, Griffin P, Ding J, Newman A B, Tylavsky F, Miljkovic I, Kritchevsky S B, Launer L, Garcia M, Eiriksdottir G, Jeffery Carr J, Gudnason V, Harris T B, Adrienne Cupples L and Borecki I B. 2012. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. *PLoS Genetics* 8(5): e1002695.
- Goddard M E and Hayes B J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. *Nature Reviews Genetics* **10**(6): 381–91.
- Hong M W, Choi S Y, Kim H, Yang S Y, Kwak K, Kim J B and Lee S J. 2017. Linkage disequilibrium and association analysis of Hanwoo steer in Gangwon region using Bovine SNP50K BeadChip. Annals of Animal Resource Sciences 28(2): 46–55.
- Hulett D L, Hayes B, Chamberlain A J, Krishnan L, McPartlan H, Herd R M and Goddard M. 2007. Cross validation of QTL from linkage analysis and linkage disequilibrium analysis. Association for the Advancement of Animal Breeding Genetics 17: 384–86.
- Karim L, Takeda H, Lin L, Druet T, Arias J A C, Baurain D, Cambisano N, Davis S R, Farnir F, Grisart B, Harris B L, Keehan M D, Littlejohn M D, Spelman R J, Georges M and Coppieters W. 2011. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. *Nature Genetics* 43(5): 405–13.
- Kim Y, Ryu J, Woo J, Kim J B, Kim C Y and Lee C. 2011. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. *Animal Genetics* **42**(4): 361–65.
- Kneeland J, Li C, Basarab J, Snelling W M, Benkel B, Murdoch B, Hansen C and Moore S S. 2004. Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21 and 23 within one commercial line of *Bos taurus*. *Journal of Animal Science* **82**(12): 3405–14.
- Kolbehdari D, Wang Z, Grant J R, Murdoch B, Prasad A, Xiu Z, Stothard P and Moore S S. 2008. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. *Journal of Animal Breeding and Genetics* 126(3): 216–27.
- KAPE (Korea Institute for Animal Products Quality Evaluation). 2013. Available: http://www.ekapepia.com/user/distribution/ distDetaildo;jsessionid=A19333D75C35A67D004212A6F3D5E5AB?nd1906
- Koshkoih A E, Pitchford W S, Bottema D K, Verbyla A P and Gilmour A R. 2006. Mapping multiple QTL for birth weight using a mixed model approach. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. pp. 13–18. Belo Horizonte, MG, Brazil.
- Kwon A, Srikanth K, Lee E, Kim S and Chung H. 2016. Confirmation of genotypic effects for the bovine APM1 gene on marbling in Hanwoo cattle. *Journal of Animal Science and Technology* 58(1): 15.
- Lee J H, Li Y and Kim J J. 2012a. Detection of QTL for carcass quality on chromosome 6 by exploiting linkage and linkage disequilibrium in Hanwoo. *Asian Australasian Journal of*

- Animal Sciences 25(1): 17.
- Lee K T, Chung W H, Lee S Y, Choi J W, Kim J, Lim D, Lee S, Jang G W, Kim B, Choy Y H, Liao X, Stothard P, Moore S S, Lee S H, Ahn S, Kim N and Kim T H. 2013a. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. *BMC Genomics* **14**(1): 519.
- Lee S H, Choi B H, Lim D, Gondro C, Cho Y M, Dang C G, Sharma A, Jang G W, Lee K T, Yoon D, Lee H K, Yeon S H, Yang B S, Kang H S and Hong S K. 2013b. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean Cattle). *PLoS One* 8(10): e74677.
- Lee S H, Lim D, Jang G W, Cho Y M, Choi B H, Kim S D, Oh S J, Lee J H, Yoon D, Park E W, Lee H K, Hong S K and Yang B S. 2012b. Genome wide association study to identity QTL for growth traits in Hanwoo. *Journal of Animal Science and Technology* **54**(5): 323–29.
- Lee S H, Park B H, Sharma A, Dang C G, Lee S S, Choi T J, Choy Y H, Kim H C, Jeon K J, Kim S D, Yeon S H, Park S B and Kang H S. 2014. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. *Journal of Animal Science and Technology* **56**(1): 2.
- Li Y, Gao Y, Kim Y S, Iqbal A and Kim J J. 2017. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo. *Asian Australasian Journal of Animal Sciences* 30(1): 8.
- Li Y and Kim J J. 2015. Multiple linkage disequilibrium mapping methods to validate additive quantitative trait loci in Korean native cattle (Hanwoo). *Asian Australasian Journal of Animal Sciences* **28**(7): 926.
- Li Y, Lee J H, Lee Y M and Kim J J. 2011. Application of linkage disequilibrium mapping methods to detect QTL for carcass quality on chromosome 6 using a high density SNP map in Hanwoo. *Asian Australasian Journal of Animal Sciences* **24**(4): 457–62.
- Maltecca C, Weigel K A, Khatib H, Cowan M and Bagnato A. 2009. Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein × Jersey crossbred population. *Animal Genetics* **40**(1): 27–34.
- Marques E, Nkrumah J D, Sherman E L and Moore S S. 2009. Polymorphisms in positional candidate genes on BTA14 and BTA26 affect carcass quality in beef cattle. *Journal of Animal Science* **87**(8): 2475–84.
- McClure M C, Morsci N S, Schnabel R D, Kim J W, Yao P, Rolf M M, McKay S D, Gregg S J, Chapple R H, Northcutt S L and Taylor J F. 2010. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. *Animal Genetics* 41(6): 597–607.
- Na K J, Lee K S, Kim H S and Kim K S. 1985. Studies on developing new breed (composite) crossed with Korean native cattle and Charolais. 1. Comparison of the growth rate and reproductive traits between Korean native cattle and Charolais crossbreed on the farm performance. *Journal of Animal Science and Technology* 27(4): 193–96.
- Nishimaki T, Ibi T, Tanabe Y, Miyazaki Y, Kobayashi N, Matsuhashi T, Akiyama T, Yoshida E, Imai K, Matsui M, Uemura K, Watanabe N, Fujita T, Saito Y, Komatsu T, Yamada T, Mannen H, Sasazaki S and Kunieda T. 2013. The assessment of genetic diversity within and among the eight subpopulations of Japanese Black cattle using 52 microsatellite markers. *Animal Science Journal* **84**(8): 585–91.
- Oh J D, Jeon G J, Lee H K, Cho B W, Lee M R and Kong H S. 2008. Genetic relationship between populations and analysis

- of genetic structure in Hanwoo proven and regional area populations. *Journal of Life Science* **18**(10): 1442–46.
- Park H R, Eum S H, Park J H, Seo J, Cho S K, Shin T S, Cho B W, Park H C, Lee E J, Sun D W, Lim H T, Lee J G and Kim B W. 2015. Contribution analysis of carcass traits on auction price in Gyeongsangnam-do Hanwoo. *Journal of Agriculture and Life Science* 49(6): 187–95.
- Park S R, Hong M W, Kim H, Lee S K, Lee Y S, Kim J W, Song Y H, Kim K B, Oh J D, Lee H K, Choi J W and Lee S J. 2012. Association between a SNP of Stearoyl-CoA Desaturase-1 (SCD1) gene and economic traits using PCR-RFLP in Hanwoo. *Annals of Animal Resource Sciences* 23(1): 1–7.
- Peters S O, Kizilkaya K, Garrick D J, Fernando R L, Reecy J M, Weaber R L, Silver G A and Thomas M G. 2012. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. *Journal of Animal Science* **90**(10): 3398–3409.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J and Sham P C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. *American Journal of Human Genetics* 81(3): 559–75.
- Raghunath M, Tschödrich-Rotter M, Sasaki T, Meuli M, Chu M L and Timpl R. 1999. Confocal laser scanning analysis of the association of fibulin-2 with fibrillin-1 and fibronectin define different stages of skin regeneration. *Journal of Investigative Dermatology* 112(1): 97–101.
- Rhee M S, Ryu Y C and Kim B C. 2002. Comparative studies on metabolic rate and calpain/calpastatin activity between Hanwoo and Holstein beef. Asian Australasian Journal of Animal Sciences 15(12): 1747–53.
- Snelling W M, Allan M F, Keele J W, Kuehn L A, McDaneld T, Smith T P L, Sonstegard T S, Thallman R M and Bennett G L. 2010. Genome-wide association study of growth in crossbred beef cattle. *Journal of Animal Science* **88**(3): 837–48.
- Sun D W, Kim B W, Moon W G, Park J C, Park C H, Koo Y M, Jeoung Y H, Lee J Y, Jang H G, Jeon J T and Lee J G. 2010. The estimation of environmental effect and genetic parameters on carcass traits in Hanwoo. *Journal of Agriculture and Life Science* **44**(6): 83–89.
- Sung Y J, Pérusse L, Sarzynski M A, Fornage M, Sidney S, Sternfeld B, Rice T, Terry J G, Jacobs Jr D R, Katzmarzyk P, Curran J E, Jeffery Carr J, Blangero J, Ghosh S, Després J P, Rankinen T, Rao D C and Bouchard C. 2016. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. *International Journal of Obesity* 40(4): 662–74.
- Tanaka H, Ohtsu A, Shiratsuki S, Kawahara-Miki R, Iwata H, Kuwayama T and Shirasuna K. 2016. Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. *Molecular Reproduction and Development* 83(9): 815–26.
- VanRaden P M, Van Tassell C P, Wiggans G R, Sonstegard T S, Schnabel R D, Taylor J F and Schenkel F S. 2009. Reliability of genomic predictions for North American Holstein bulls. *Journal of Dairy Science* 92(1): 16–24.
- Venkata Reddy B, Sivakumar A S, Jeong D W, Woo Y B, Park S J, Lee S Y, Byun J Y, Kim C H, Cho S H and Hwang I. 2015. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. *Animal Science Journal* **86**(1): 1–16.
- Yang J, Lee S H, Goddard M E and Visscher P M. 2011. GCTA: a tool for genome-wide complex trait analysis. *American Journal of Human Genetics* **88**(1): 76–82.