Estimation of genetic parameters for chosen udder traits of different dairy ewes

PAVOL MAKOVICKÝ1, PETER MAKOVICKY2, MILAN MARGETÍN3 and MELINDA NAGY4

J Selye University, Bratislavská cesta 3322, 945 01 Komárno, Slovak Republic

Received: 14 June 2018; Accepted: 8 February 2019

Key words: Dairy ewes, Genetic parameters, Milk production, Udder traits

Relationship between udder shape characteristics and milking performance in dairy ewes has been investigated since the 1970s (Sagi and Morag 1974, Gootwine et al. 1980) as an effort to adapt the ewe to machine milking. Labussière (1988) proposed that the use of morphology selection criteria benefit the milking ability of ewes; declared the need of vertically implanted teats at the lowest point of the cistern and to introduce improved udder traits in the selection objectives of ovine breeding schemes, which was addressed in selection programs in the Mediterranean countries only a decade later (De la Fuente et al. 1996, Marie-Etancelin et al. 2006). The reason for the increased interest on dairy sheep udder and new breeding schemes was baggy udder, found in sheep selected for high milk yield. In such sheep, the cisternal part of the udder below the teat orifice is enlarged, as is the angle between the teat and the vertical axis of the udder (Fernández et al. 1995, Marie-Etancelin et al. 2005, Makovický et al. 2014, 2017). Milking of these baggy udders is not efficient because part of the cisternal milk remains below the teat orifice unless the milker applies manual manipulation of the udder during stripping (Bruckmaier et al. 1997, Bruckmaier and Blum 1998). Additionally, horizontally implanted teats cannot hold the weight of the milking unit, and it tends to fall off. That kind of additional manipulation during milking prolongs the total milking time of the herd, with milking already being one of the most time-demanding procedures on ewe milk farms. It can also lead to an inadequately milked udder that is undesired for udder health. Depending on the breed, incomplete milk removal during milking can be marked in the total daily yield of the herd. Therefore, the mammary gland morphology is an important factor in determining the aptitude for the machine milking of dairy animals.

Nine different sheep genotypes, viz. Purebred Improved Valachian (IV), Improved Valachian × Specialized Dairy Breeds (25%), Improved Valachian × Specialized Dairy Breeds (50%), Improved Valachian × Specialized Dairy Breeds (75%), Purebred Tsigai (T), Tsigai × Specialized Dairy Breeds (25%), Tsigai × Specialized Dairy Breeds (50%), Tsigai × Specialized Dairy Breeds (75%), Purebred Lacuane (LC), were included in this experiment to determine the morphological traits of the ewes.

Three-breeding crosses with 25%, 50% and 75% of the genetic contribution of both specialized dairy breeds, viz. Lacuane and East-Friesian (SBD) formed during the entire period were significantly less from the assessed population (5% of the assessed population). For estimation of covariance components and genetic parameters determining the linear udder traits of sheep, data from measurements carried on one experimental flock were used. Estimation of covariance components followed by calculation of genetic parameters was conducted using restricted maximum likelihood method (REML) and the multiple-trait animal model BLUP-AM, using the REMLF90 and VCE 4.0 programs (Groeneveld and García-Cortés 1998). The estimation of covariance was based on a multiple trait animal model including 7 traits.

Genetic parameters were determined separately for udder depth (UD), cistern depth (CD), teat position (TP), teat size (TS), udder cleft (UC), udder attachment (UA) and udder shape (US) besides external udder measurements namely udder length (UL), udder width (UW), rear udder depth (RUD), cistern depth (CDc), teat length (TL) and teat angle (TA). Linear assessments (1145) were carried from 356 ewes and 1055 external udder measurements (327 ewes) using untransformed data. In addition to genetic correlations, the value was set using the Pearson phenotype correlation, for the calculation the same data sets were used as the calculation for genetic correlations. Phenotypic correlations were calculated using CORR procedure in SAS (SAS 2002–2008).

For estimation of covariance components and genetic parameters for all of the above parameters, the following model was used:

\[y_{ijklmn} = m + Y_{1} + LS_{j} + GEN_{k} + P_{l} + b^{*}DIM_{ijklm} + a_{m} + p_{n} + e_{ijklmn} \]

where \(y_{ijklmn} \) dependent variables studied; \(Y_{1}, \) year (fixed
effect with 5 to 7 levels); LS, lactation stage (fixed effect with 4 levels; from 40th to 99th lactation day, from 100th to 160th lactation day, from 160th to 210th lactation day); GENk, genotype (breed group, fixed effect with 9 levels); P, parity (fixed effect with 3 levels; first, second, third and further parity); a, additive genetic effect of ewes; DIMijklmn, days in milk (covariate; 40 to 210 days in milk); t, permanent environmental effect of ewes; eijklmnop, residual error.

Table 1 shows the coefficients of heritability (on the diagonal), genetic correlations (above the diagonal) characterizing the linear udder traits of sheep. Heritability coefficients calculated (h²), using a 7 character system, were low and ranged from 0.090 (for udder attachment) to 0.294 (for cistern depth). Coefficients of heritability (on diagonal), genetic correlations (above diagonal) characterizing the external udder traits of sheep are given in Table 2. Heritability coefficients calculated using a 7 character were low and ranged from 0.081 (for udder width) to 0.480 (for cistern depth). Moreover, the heritability estimates in this study were in agreement with the estimates for other sheep breeds. Estimates for udder-type traits ranged from 0.20 to 0.37 for TA, 0.16 to 0.25 for UD (Ugarte et al. 2001, Casu et al. 2002, Serrano et al. 2002, Fernández et al. 1997) and equal to 0.19 for UC (Casu et al. 2002).

Knowledge of the morphology of the mammary gland is critical for the deployment of technified dairy production, since it is directly related to the efficiency of milking.

Table 1. Heritability coefficients (on diagonal), genetic (above diagonal) correlations for linear udder traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>UD</th>
<th>CD</th>
<th>TP</th>
<th>TS</th>
<th>UC</th>
<th>UA</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udder depth</td>
<td>0.217</td>
<td>0.580</td>
<td>0.550</td>
<td>0.005</td>
<td>–0.064</td>
<td>–0.095</td>
<td>0.445</td>
</tr>
<tr>
<td>Cistern depth</td>
<td>0.294</td>
<td>0.980</td>
<td>–0.261</td>
<td>–0.380</td>
<td>0.071</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td>Teat position</td>
<td>0.242</td>
<td>–0.381</td>
<td>–0.404</td>
<td>0.096</td>
<td>0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teat size</td>
<td>0.275</td>
<td>–0.391</td>
<td>–0.117</td>
<td>0.096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udder cleft</td>
<td>0.205</td>
<td>–0.323</td>
<td>–0.274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udder attachment</td>
<td>0.090</td>
<td>0.756</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udder shape</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Heritability coefficients (on diagonal), genetic (above diagonal) correlations for external udder measurements

<table>
<thead>
<tr>
<th>Trait</th>
<th>UL</th>
<th>UW</th>
<th>RUD</th>
<th>CD</th>
<th>TL</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udder length</td>
<td>0.219</td>
<td>0.468</td>
<td>0.871</td>
<td>0.415</td>
<td>0.113</td>
<td>0.349</td>
</tr>
<tr>
<td>Udder width</td>
<td>0.081</td>
<td>0.101</td>
<td>0.549</td>
<td>0.013</td>
<td>0.717</td>
<td></td>
</tr>
<tr>
<td>Rear udder depth</td>
<td>0.223</td>
<td>0.448</td>
<td>0.252</td>
<td>0.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistern depth</td>
<td>0.480</td>
<td>–0.090</td>
<td>0.958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teat length</td>
<td>0.358</td>
<td>–0.195</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teat angle</td>
<td>0.290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This study was done during realization of the project APVV-0458-10.

SUMMARY

Morphology of udder in ewes in one experimental herd was examined on the basis of linear evaluation (7 traits; 9 points scale; 1145 data for each trait) and exact measurements of udder (6 parameters; 1055 measurements at each trait) were taken. Estimation of covariance components and genetic parameters were done using REMEL and BLUP-AM (VCE 4.0 package) for 7 traits (linear evaluation) or 6 traits (udder measurements). Heritability coefficients for individual traits of linear evaluation varied from 0.090–0.294. Heritability coefficient (h²) for teat position was 0.242, 0.275 for teat size, and 0.294 for cistern depth, which is related to teat position. The highest value of genetic correlation (rg=0.980) was found between cistern depth and teat position. Negative genetic correlation was detected between teat position and teat size (–0.381), and teat position and udder cleft (–0.404). Heritability coefficients and genetic correlations of exact measurements of udder were comparable with traits of linear evaluation. For the parameter, udder length and rear udder depth, the detected band-measures were h² = 0.219 or 0.223. Highest h² was found for cistern depth (0.480), teat length (0.358) and teat angle (0.290) similar to linear evaluation.

REFERENCES

factors influencing the milking ability of ewes and the organization of milking. *Livestock Production Science* **18**: 253–74.

