Melatonin supplementation improves the intactness of plasma membrane and acrosomal membrane of cryopreserved spermatozoa in Hariana bull

DILEEP KUMAR YADAV¹, ANUJ KUMAR², ATUL SAXENA³ and DILIP KUMAR SWAIN⁴

DUVASU, Mathura, Uttar Pradesh 281 001 India

Received: 12 September 2018; Accepted: 4 January 2019

Key words: Acrosome, Freezing, Hariana bull, Melatonin, Membrane integrity, Semen, Thawing

Generation of reactive oxygen species (ROS) during freeze-thaw cycle reduces semen quality (Ashrafi et al. 2013). Extenders are supplemented with enzymatic and nonenzymatic additives to enhance the post-thawed semen quality. Melatonin (MT), secreted by the pineal gland in the brain (Awad et al. 2006), participates in control of seasonal reproduction (Reiter 1973), affects the immune system (Esquifino et al. 2004) and circadian rhythms (Reiter 1991). The protective effects of MT as an antioxidant are because of its high efficacy as a hydroxyl radical scavenger (El-Sokkary et al. 2003). MT has ability to detoxify reactive oxygen and nitrogen species (Kapadiya et al. 2016). MT also stimulates the activities of enzymes involved in metabolising ROS and preserves cell membrane fluidity. Melatonin has protective effect on sperm parameters in cryopreserved semen of boar (Jang et al. 2009), human (Du Plessis et al. 2010) and ram (Succu et al. 2011, Ashrafi et al. 2011). However, information on the use of MT to improve the post-thaw sperm quality in indigenous Hariana bull is lacking. Therefore, present study was designed to investigate the role of MT on intactness of plasma membrane and acrosome of Hariana bull spermatozoa after freezing-thawing.

The present study was conducted at the University Instructional Livestock Farm Complex during 2017–18. Apparently healthy breeding Hariana bulls (4), 7.5–8.5 year-old, weighing between 450–500 kg were used for semen collection and freeze-thaw evaluation. Total 32 ejaculates were collected (eight from each bull) using artificial vagina. The ejaculates having mass activity 3 and above, forward progressive motility 80% and above were selected for freezing with liquid nitrogen. Ejaculates were diluted in Tris diluent with concentration of 100×10^6 spermatozoa/mL and were divided equally into 4 groups (1 control and 3 treatments groups). Groups were Gr 1, control (without addition of MT); Gr 2, 0.5 mM MT; Gr 3, 1.0 mM MT and

Present address: ¹MVSc Scholar (drdileep833@gmail.com), ^{2,4}Assistant Professor (anujduvasu@rediffmail.com, dilip_swain @yahoo.com), ³Professor and Head (dratulsaxena @rediffmail.com), College of Veterinary Sciences and Animal Husbandry.

Gr 4, 2.0 mM MT. In all the experimental groups, MT was supplemented with EYTG in 100×10⁶ spermatozoa/ml. Semen ejaculates were processed for equilibration, followed by their freezing and thawing in the semen biology laboratory as described earlier (Shah *et al.* 2017). Intactness of plasma membrane was evaluated using hypo-osmotic swelling test (HOST) using hypo-osmotic solution of 150 mOsm/L (Shah *et al.* 2017, Yadav *et al.* 2017) and sperm acrosomal status was evaluated using Giemsa stain (Watson 1975) after equilibration and freezing-thawing in all the groups. Data obtained from the study were statistically analysed using 2-way ANOVA and Post Hoc Tukey test was used to study the significance using SPSS 16.1 version (Chicago, USA).

Per cent spermatozoa showing intact acrosome in all the 4 groups are illustrated in Fig. 1. Results revealed nonsignificant (P>0.05) difference among the Gr 1, 3 and 4 in per cent of HOS positive response in pre-freeze stage (Fig. 1). However, significant (P<0.05) difference was observed between Gr 1 and 4. Post thaw HOS response was significantly higher (P<0.05) in Gr 4 as compared to Gr 1, 2 and 3 in freeze-thawed semen. Percentage of intact acrosome was significantly (P>0.05) higher in Gr 4 as compared to Gr 1 and 2, however no significant difference was observed between Gr 1, 2 and 3 in pre-freeze stage. In

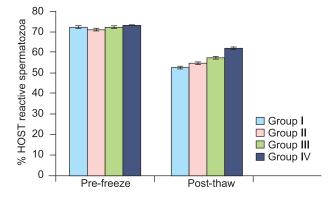


Fig. 1. Effect of melatonin on per cent HOST response of Hariana bull spermatozoa at pre-freeze and post-thaw stage (mean±SEM, bars indicate the standard error).

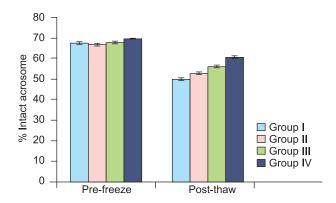


Fig. 2. Effect of melatonin on per cent intact acrosome of Hariana bull spermatozoa at pre-freeze and post-thaw stage (mean±SEM, n=32). Bars indicate the standard error of mean.

post thawed stage, the percentage of intact acrosome was significantly (P>0.05) higher in Gr 4 as compared to other three groups and significant difference was observed in percentage of intact acrosome among Gr 1, 2, 3 and 4 being lowest was in Gr 1 and highest in Gr 4 (Fig. 2).

Melatonin was used for semen cryopreservation in different animal species such as bull (Ashrafia *et al.* 2013), he-buffalo (Asma-ul-Husna *et al.* 2017), ram (Succu *et al.* 2011), stallion (Izadpanah *et al.* 2015), boar (Martin *et al.* 2011) and mithun (Perumal *et al.* 2016) with varying degree of beneficial effects. It was further postulated that MT can be useful to certain extent for cryopreservation of bull spermatozoa (Ashrafia *et al.* 2013). Such study is lacking in Hariana bulls. Therefore, the present study was conducted.

Our findings are in accordance with Kapadiya et al. (2016) who reported that 2 mM MT had significantly higher per cent of HOS positive spermatozoa at post-dilution, postequilibration and post-thaw stages of cryopreservation as compared to control in Kankrej semen. Similarly, Ashrafi et al. (2013) reported significantly greater HOST reactive sperm per cent for 2 mM MT as compared to control group in Holstein bulls at post-thaw stage of the cryopreservation. However, Perumal et al. (2013, 2015) found significantly higher HOST reactive spermatozoa at 3 mM MT concentration for liquid storage of mithun semen. Chankitisakul (2014) also observed significantly higher HOST reactive spermatozoa at 1 mM MT during cooling storage of boar semen; while Jang et al. (2007) in boar reported a nonsignificant effect on per cent HOST reactive spermatozoa in MT added semen extender during incubation. This might be owing to variation in animal species.

Melatonin maintains plasma and mitochondrial membrane integrity and cytoskeleton structure of flagella of sperm as cell protecting effects (Perumal *et al.* 2013). MT also protects and stimulates the activities of antioxidant enzymes such as superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT), which help to maintain the membrane transportation and fertility of the spermatozoa (Perumal *et al.* 2013). This might be the

mechanism implicated in increasing the HOST positive sperm per cent in the present study.

The physiologic acrosomal reaction is a well-coordinated process that can occur only in a living spermatozoon in response to natural inducers. Acrosomal integrity of mammalian spermatozoa is the prerequisite for capacitation, normal acrosome reaction and successful fertilization *in vivo*. In contrast, loss of acrosomal content can occur with the breakdown of the membranes during cell death, cryopreservation and during addition of oxidants which showed similar acrosomal changes (Perumal *et al.* 2009).

Percentage of spermatozoa with intact acrosome was significantly (P≤0.05) higher in Gr 4 as compared to Gr 1, 2 and 3 at post-thawed stage. However, no significant difference was observed between Gr 1, 2 and 3 at pre-freeze stage. Gr 2 and 3 also showed significantly (P≤0.05) higher percentage acrosomal integrity as compared to Gr 1 at postthawed stage. Our findings were in concurrence with Kapadiya et al. (2016), who reported 2 mM MT had significantly higher percentage of sperm with acrosomal intactness at post-dilution, equilibration and post-thaw stages of cryopreservation as compared to control in Kankrej semen. Similarly, Ashrafi et al. (2013) reported significantly lower acrosomal abnormality in 2 mM MT at post-thawed stage of cryopreservation in Holstein bulls. El-Raey et al. (2014) reported a significant improvement in post-thawed acrosomal integrity by using lower concentration of MT in Egyptian buffalo bulls. However, Perumal et al. (2013) and Perumal et al. (2015) observed a significant rise in intact acrosome sperm per cent using 3 mM MT in liquid storage of mithun semen.

Melatonin, in sperm cells is able to react with many ROS directly for protecting mammalian cells against oxidative stress (Perumal *et al.* 2013, 2015). Beneficial effect of addition of MT on acrosomal integrity in the present study may be attributed to its stabilizing combat for the integrity of plasmalemma of spermatozoa.

SUMMARY

Supplementation of MT @ 2 mM was more beneficial in cryopreservation of Hariana bull spermatozoa as evidenced from post-thawed sperm membrane integrity and acrosomal intactness. Melatonin can be recommended to be used @ 2 mM concentration into the semen extender to increase the post thaw sperm functional attributes in Hariana bull.

REFERENCES

Ashrafi I, Kohram H and Ardabilib F F. 2013. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. *Animal Reproduction Science* **139**: 25–30.

Ashrafi I, Kohram H, Naijian H, Behreini M and Poorhamdollah M. 2011. Protective effect of melatonin on sperm motility parameters on liquid storage of ram semen at 5°C. *Journal of African Biotechnology* **10**: 6670–74.

Asma-ul-Husna A U, Ansari M S, Rakha B A, Ejaz R, Ullah N and Akhter S. 2017. Melatonin supplementation in extender

- enhances the post thaw quality of buffalo bull spermatozoa. *Pakistan Journal of Zoology* **49**(1): 163–67.
- Awad H, Halawa F, Mostafa T and Atta H. 2006. Melatonin hormone profile in infertile males. *International Journal of Andrology* **29**: 409–13.
- Chankitisakul V. 2014. Supplementation of a commercial extender (BTS) with melatonin to improve quality of boar semen in cooling storage at 15°C. *Khon Kaen Agriculture Journal* **42**(4): 617–26.
- Du Plessis S S, Hagenaar K and Lampiao F. 2010. *In vitro* effects of melatonin on human sperm function and its scavenging activities on NO and ROS. *Andrology* **42**: 112–16.
- El-Raey M, Badr M R, Rawash Z M and Darwish G M. 2014. Evidences for the role of melatonin as a protective additive during buffalo semen freezing. *American Journal of Animal and Veterinary Sciences* **9**(4): 252–62.
- El-Sokkary G H, Kamel E S and Reiter R J. 2003. Prophylactic effect of melatonin in reducing lead-induced neurotoxicity in the rat. *Cellular and Molecular Biology Letters* **8**: 461–70.
- Esquifino A I, Pandi-Perunal S R and Cardinali. 2004. Circadian organization of the immune response: A role for melatonin. *Clinical and Applied Immunology Reviews* **4**: 423–33.
- Izadpanah G, Shahneh A Z, Zhandi M, Yousefian I and Emamverdi M. 2015. Melatonin has a beneficial effect on stallion sperm quality in cool condition. *Journal of Equine Veterinary Science* 35: 555–59.
- Jang H, Kim Y, Kim B, Park I, Cheong H, Kim J, Park C, Kong H, Lee H and Yang B. 2009. Ameliorative effects of melatonin against hydrogen peroxide—induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reproduction in Domestic Animals 10: 1439–66
- Jang H Y, Park C K, Cheong H T, Kim J T, Lee H K, Im S K and Yang B K. 2007. Antioxidative effect of pyruvate, taurine and melatonin, and relationships of the evaluation methods on boar sperm viability for in vitro storage. Journal of Animal Science and Technology (Korea) 49(6): 729–36.
- Kapadiya P S, Nakhashi H C, Sutaria T V, Rathod B S and Suthar B N. 2016. Melatonin as an additive to shield the hazardous effects of cryopreservation on kankrej bull semen. *Indian Journal of Animal Reproduction* **38**(1): 16–19.
- Martin H D, Baron F J, Bragado M J, Carmona P, Robina A,

- Garcia M L J and Gil M C. 2011. The effect of melatonin on the quality of extended boar semen after long-term storage at 17°C. *Theriogenology* **75**(8): 1550–60.
- Perumal P, Barik A K, Mohanty D N, Das R K and Mishra C. 2009. Seminal characteristics of Jersey crossbred bulls. Proceedings of 'XXV Annual Convention of the Indian Society for Study of Animal Reproduction and International Symposium'. pp. 196.
- Perumal P, Chamuah J K, Nahak A K and Rajkhowa C. 2015. Effect of seasons on semen production, effect of melatonin on the liquid storage (5°C) with correlated study of birth rate in mithun (*Bos frontalis*). *Asian Pacific Journal of Reproduction* **4**(1): 1–12.
- Perumal P, Vupru K and Khate K. 2013. Effect of addition of melatonin on the liquid storage (5°C) of mithun (*Bos frontalis*) semen. *International Journal of Zoology*. Article Id 642632, http://dx.doi.org/10.1155/2013/642632.
- Reirer R J. 1973. Pineal control of a seasonal reproductive rhythm in male golden hamster exposed to natural daylight and temperature. *Endocrinology* **92**: 423–30.
- Reiter R J. 1991. The Pineal Gland: Reproductive Interactions. pp. 269–310. Vertebrate Endocrinology: Fundamental and Biomedical Implications. (Eds) Pang P K T and Schreibman M P. Academic Press, San Diego.
- Shah N, Singh V, Yadav H P, Verma M, Chauhan D S, Saxena A, Yadav S and Swain D K. 2017. Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa. *Animal Reproduction Science* 182: 111–22
- Succu S, Berlinguer F, Pasciu V, Satta V, Leoni G G and Naitana S. 2011. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. *Journal* of Pineal Research 50: 310–18.
- Watson P F. 1975. Use of Geimsa stain to detect changes in acrosome of frozen ram spermatozoa. *Veterinary Research* 97: 12–15.
- Yadav H P, Kumar A, Shah N, Chauhan D S, Saxena A, Yadav S and Swain D K. 2017. Effect of cholesterol loaded cyclodextrin supplementation on tyrosine phosphorylation and apoptosis like changes in frozen thawed *Hariana* bull spermatozoa. *Theriogenology* 9: 164–71.