
54

Indian Journal of Animal Sciences 89(7): 758–767, July 2019/Article

Identification of QTLs for low somatic cell count in Murrah buffaloes
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ABSTRACT

Mastitis, the most frequent and costly disease in buffalo, is the major cause of morbidity. The somatic cell
count, an indirect indicator of susceptibility/resistance to mastitis, is a low heritable trait and thus a perfect candidate
for marker assisted selection. Half sib families (12) were created and the somatic cell count was recorded at 3
stages of lactation during the first lactation of the 2,422 daughters belonging to 12 sires. Partial genome scan was
carried out using interval mapping with different algorithms. The QTLs obtained for each half sib family were
further subjected to meta analysis to identify chromosomal regions associated with somatic cell count on 8
chromosomes of buffalo. Four metaQTL regions were identified on chromosomes BBU1q, BBU8, and BBU10; 3
metaQTL regions on BBU2q, BBU9 and BBU15; 2 metaQTL regions on BBU6 and 1 on BBU7 of buffalo.
Comparative genomics was used for finding out genes underlying the metaQTL regions; 1,065 genes were underlying
the metaQTL regions in buffaloes assuming buffalo–cattle–human synteny. Genes (78) mapped to immune response.
These genes are supposedly important candidate genes for further analysis. Gene ontology and network analysis
was carried out on these genes. The genes identified belonged to immune response and defense mechanism. The
QTL markers identified in the present analysis can be used in the breeding programs of buffalo to select the bulls,
which are less susceptible to mastitis.

Key words: Buffalo, Interval mapping, QTLs, Mastitis, Murrah, Somatic cell count

Present address: 1Research Associate (upasna30@gmail.com),
4Senior Research Fellow (prernakapoor31@gmail.com),
5Principal Scientist (rameshkvijh@gmail.com), Animal Genetics
Division. 2Post Doctoral Fellow (priyankabnrj@gmail.
com), Technical University of Denmark, Kobenhavn, Denmark.
3Post Doctoral Fellow (jyotijoshi111@gmail.com), Dalhousie
University, Nova Scotia, Canada.

Mastitis, the most frequent and costly disease in the dairy
sector, severely affects the milk quality and renders the milk
unfit for human consumption or for further processing. It
also causes reduction in the milk yield in buffalo besides
pain to the animal and lowers the quality of milk by
changing the composition of milk. The extent of various
changes in the composition of milk depends on the
inflammatory response (Kitchen 1981). The somatic cells
in milk are mainly the milk secreting epithelial cells which
are shed from the lining of mammary gland and white blood
cells that enter the mammary gland in response to infection
(Sharma et al. 2011). The somatic cells count is indicator
of both resistance and susceptibility of cows to mastitis and
is an indicator to monitor the level of occurrence of
subclinical mastitis (Patil et al. 2015). If infection occurs
the major increase in somatic cell count is due to influx of
neutrophils into milk to fight infection and these constitute
about 90% of the count (Miller and Paape 1985, Harmon
1994). Clinical mastitis is heritable and has an unfavourable

genetic correlation to milk production and thus has been
included in the breeding programs in addition to milk
production for avoiding increased frequency of mastitis
(Heringstad et al. 1991, 2001). The information on clinical
mastitis records is not routine under field conditions in India
and these information may not be made available
deliberately and thus the indirect selection using somatic
cell score/ somatic cell count is recommended. The
heritability of somatic cell count is low and estimated at
0.11 (Ødegard et al. 2003) while the genetic correlation
between somatic cell count and clinical mastitis varies
greatly from 0.30 to 0.97 (Emanuelson et al. 1988, Weller
et al. 1992, Lund et al. 1999). Klugland et al. (2001)
indicated very high genetic correlation between somatic cell
count and clinical mastitis but the values were reported to
be low for first lactation records. Thus the major interest in
somatic cell score/somatic cell count is as an indicator to
susceptibility to mastitis.

In this paper analysis was carried out to identify
chromosomal regions associated with the susceptibility /
resistance to mastitis using a well defined buffalo population
consisting of 12 half sib families. We present partial genome
scans on 8 chromosomes (of cattle, BTA) equivalent in
buffaloes to identify and map the quantitative trait loci
affecting the somatic cell count in buffaloes which provide
us a tool for indirect selection for resistance to mastitis in
buffaloes.
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at https://reactome.org (Croft et al. 2014, Fabregat et al.
2016) to identify the genes related to immune response in
cattle. Uniprot IDs associated with the identified genes were
downloaded. The Uniprot ID of these genes were used as
input for the webserver STRING (https://string-db.org)
(Szklarczyk et al. 2015) to obtain network of predicted
association for a particular group of proteins/genes.

RESULTS AND DISCUSSION

The somatic cell score was initially not considered to be
heritable and was taken as a management problem.
However, in Scandinavian countries, the records of somatic
cell score and clinical mastitis revealed the heritable nature.
The heritability estimates were made from designed
experiments and studies obtained by Ødegard et al. (2003).
The experiments also revealed the strong genetic correlation
between somatic cell score and mastitis except for the first
lactation records (Lund et al. 1999, Rupp and Boichard
1999, Weller et al. 1992). Gomez-Raya et al. (1998)
revealed that the power of detecting QTL of a given effect
is higher for low heritable traits. Further the somatic cell
score is dependent on mammary gland infection and also
the stage of lactation, age/breed of the individual besides
parity, season and stress level. There is diurnal variation.
Looking at the various factors, the present work recorded
the somatic cell score at 3 different stages of lactation which
covers almost all the seasons, the differences on account of
parity need not be addressed since all the records were for
the first lactation. A total of 2,422 animals were recorded
for the trait with an average of 201.83 daughters per sire.
The sire family, and number of daughters in the sire family
with somatic cell score are presented in Table 1.

The scans of 8 chromosomes studied in the experiments
revealed large number of QTLs for somatic cell count in
buffaloes (Table 2). Total 5 interactions among the QTLs
located on different buffalo chromosomes were statistically
significant. Out of these five interactions, three had
chromosome number 1 and 3 involved chromosome BTA4
and 2 involved BTA 14 chromosome. The representative

MATERIALS AND METHODS

The reference family of buffaloes (animals of known
pedigree and having both genotype and phenotype
information recorded) was created (Vijh 2013, Vijh et al.
2018). The accuracy of the paternity records was
authenticated using a set of DNA markers and only the
daughters with confirmed paternity were recorded for
phenotypes (Vijh 2014). The daughters belonging to 12 half
sib families were recorded for somatic cell count during 3
stages of lactation—initial, mid and late phase. Automatic
somatic cell counter was utilised for recording the somatic
cell counts per ml of milk. All the records were from first
lactation of buffaloes. The mean of 3 counts were utilised
in this experiment. The somatic cell counts were converted
into somatic cell score using log transformation (log2). The
genotype data on 8 chromosomes with 79 microsatellites
on these animals was generated and reported (Vijh 2013,
Vijh et al. 2018).

A total of 12 data set were created, one each for each
sire family. For a single QTL model, the standard interval
mapping and Haley-Knott regression algorithm was utilised.
The values of LOD score were utilised as an evidence of
the existence of QTL. The statistical significance of LOD
was tested using permutation test (Churchill and Doerge
1994) with 1,000 replicates. The multiple QTL models as
implemented in R/qtl were used as they have increased
power to detect QTL, better separation of linked QTLs and
defining epistatic interactions. Full QTL model using the
fitqtl function of R/qtl package was fitted and this also
included the interaction among the qtls. The ANOVA table
indicates the overall fit of the model; the LOD score
obtained is relative to the null model (with no QTL). The
drop one QTL model was utilised to see the effect of each
identified QTL and its related interactions.

QTL meta-analysis was carried out to synthesize QTL
information from 12 independent half sib family analysis
results and also to refine the chromosomal region involved
using Biomercator software v4.2. The QTL meta-analysis
algorithm developed by Goffinet and Gerber (2000) was
used. We fitted 5 models using Gaussian distribution and
the best fit was determined by means of the maximum
likelihood method and Akaike information content. Using
the select model, consensus QTL positions were determined
as the mean of QTL distribution maximizing the likelihood
and confidence interval.

Once the metaQTL regions for somatic cell count with
their confidence interval were known, webserver AnnotQTL
(annotqtl.genouest.org) was utilised for the identification
of genes underlying the QTL region (Lecerf et al. 2011).
Each metaQTL region was taken as an input. The Buffalo-
Cattle synteny based on radiation hybrid panel (Amaral et
al. 2008) was utilised. This provided a list of genes
underlying the identified QTLs for somatic cell count in
buffaloes as Ensembl IDs and also provided a list of human
genes assuming the synteny between cattle and human. The
genes were then mapped using Reactome database available

Table 1. Sire wise distribution of daughters for mean of
somatic cell score

Sire No. of daughters Mean±SE

Sire 1 334 3.05±0.09
Sire 2 186 3.33±0.12
Sire 3 93 2.96±0.17
Sire 4 243 3.27±0.09
Sire 5 288 3.17±0.10
Sire 6 80 3.09±0.21
Sire 7 360 3.09±0.07
Sire 8 293 3.24±0.09
Sire 9 232 2.73±0.09
Sire 10 166 3.08±0.14
Sire 11 93 2.82±0.14
Sire 12 54 2.81±0.19
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chromosomal scans of chromosome 1 and chromosome 9
are depicted (Supplementary Fig. 1). Infact chromosome 6
harbours genes for not only proteins and fats but also for
milk yield and somatic cell score in buffaloes. Total 36
QTLs were found associated with somatic cell count in the
12 halfsib families analysed. The QTLs identified in each
of the halfsibs families were independent of one another.
QTLs’ identification is dependent on the heterozygosity of
the sire on particular marker loci and thus the different QTLs
may be identified in different sire families.

The analysis revealed 36 QTLs for somatic cell score in
buffaloes. There have been no reports of QTL identification
for any of the economic traits in buffaloes. As somatic cell

score is associated with clinical mastitis and the results are
available in cattle identified QTL markers are of large
economic significance. Control of mastitis is of great
importance since it shall make the dairy production more
cost effective by reducing the morbidity in buffaloes. It shall
also help in reduction of the use of antibiotics and
subsequent indirect consumption by humans. It will also
improve the animal welfare. These markers are now a part
of breeding programs in all the developed countries of the
world. In this study, we identified QTL markers on 8
chromosomes for somatic cell count utilising 12 halfsib
families. We identified the QTLs for somatic cell count on
all the 8 chromosomes although in different sire families.

Table 2. Significant QTL locations for somatic cell count for 12 half sib families using Interval Mapping (Haley-Knott regression
and extended Haley-Knott regression) as implemented in R/qtl

Chromosome Position LOD % var F value P value (F) Significance

Sire 1 9 49.2 1.19182 1.26379 2.39414 0.0931 P
1@32.1:4@93.0 1.99465 2.12688 2.0146 0.0925 P

Sire 2 1 14.1 2.44141 4.6275 5.203 0.006427 **
6 36 1.45371 2.7216 3.0601 0.049521 *
9 46.2 5.8735 11.6243 4.3567 0.00041 ***

14 65.1 5.82566 11.5226 4.3186 0.000446 ***
9@46.2:14@65.1 4.63199 9.0244 5.0734 0.000697 ***

Sire 3 1 56.1 4.5661 4.0951 5.3278 0.00867 **
2 16.8 2.8777 2.472 3.2162 0.05016 P
3 84.3 3.4519 3.0088 3.9146 0.02761 *
4 84 7.1645 6.8738 2.981 0.01621 *
7 24 3.2055 2.7766 3.6124 0.03568 *
7 123 2.7379 2.3436 3.0491 0.05802 P
9 46.2 2.5005 2.1276 2.7681 0.07425 P

14 86.1 3.2606 2.8283 3.6797 0.03369 *
Sire 4 1 152.1 2.9159 4.4826 2.026 0.0634 P

4 30 1.4579 2.2103 2.998 0.052 P
7 123 1.342 2.0323 2.756 0.0658 P

Sire 5 3 63.3 1.1491 1.6523 2.4571 0.0876 P
9 37.2 1.5074 2.1738 3.2325 0.041 *

Sire 6 4 117 4.4285 16.766 2.952 0.01352 *
7 126 2.8852 10.432 5.511 0.00631 **

14 77.1 3.9269 14.645 2.579 0.02719 *
4@117.0:14@77.1 3.3003 12.081 3.191 0.01911 *

Sire 7 1 65.1 2.5253 2.9732 1.855 0.0879 P
Sire 8 1 17.1 7.573673 8.641615 5.225046 4.37E–05 ***

1 59.1 1.950581 2.128245 3.860452 0.0223 *
4 102 7.931921 9.076413 5.487942 2.36E–05 ***

1@17.1:4@102.0 6.814774 7.728601 7.009506 2.32E–05 ***
Sire 9 9 55.2 1.475 2.5737 3.194 0.043 *
Sire 10 2 10.8 1.7328 3.3537 3.4226 0.0354 *

2 19.8 3.5277 7.002 2.3819 0.032 *
9 64.2 4.2642 8.5521 2.9092 0.0105 *

Sire 12 1 47.1 7.069 16.771 4.55 0.00182 **
2 91.8 2.498 4.812 3.917 0.02976 *
3 33.3 6.992 16.528 4.484 0.002 **
4 21 1.662 3.087 2.513 0.09644 P
7 126 3.282 6.547 5.329 0.00987 **
9 13.2 3.006 5.923 4.821 0.01456 *

14 44.1 3.777 7.703 6.27 0.00492 **
1@47.1:3@33.3 4.317 9.022 3.672 0.01399 *

***0.001; **0.01; *0.05; P, Probable QTL.

56

mailto:1@32.1:4@93.0
mailto:9@46.2:14@65.1
mailto:4@117.0:14@77.1
mailto:1@17.1:4@102.0
mailto:1@47.1:3@33.3


July 2019] QTLs FOR LOW SCC IN MURRAH BUFFALOES 761

The positions of the QTL regions may differ from family
to family and need to be further analysed to find consensus
regions. The meta analysis of the identified QTL regions
for somatic cell count in buffaloes was carried out on QTLs
on 8 chromosomes of buffaloes. The selection of the model
from the 5 models tested for the analysis was based on
Akaike Information Content. The meta analysis of the QTLs
across 12 families of buffaloes are depicted in Table 3.

Total 24 metaQTL regions were identified (Table 3). The
chromosome BBU1 q, BBU8 and BBU10 had four
metaQTL regions each while BBU2 q, BBU9 and BBU15
had three metaQTL regions on each chromosomes.
Similarly, BBU6 revealed two and BBU7 revealed one
metaQTL region (Fig. 1). Since no information is available
on the QTLs for somatic cell count in buffaloes we
compared the chromosomal positions of buffalo QTLs with
those of cattle QTLs for the trait assuming a high degree of
synteny between cattle and buffalo chromosomes as
reported by Amaral et al. (2008). The QTL region at mean
position 15.42 with a span of 12.85 to 18.00 cM on
chromosome was similarly reported for the trait by Strillacci
et al. (2014). The second metaQTL position on chromosome
arm of BBU1 q was on 47.07 with confidence interval of
42.93 to 51.22 and has also been reported by Cole et al.
(2011). The third mean position on the same chromosome
was at 75.81 and had a confidence interval of 72.5 to 79.11.
QTLs have been reported by several authors in cattle
between the same confidence interval (Bennewitz et al.
2003, Baes et al. 2010 and Chen et al. 2011).

Similarly, the meta-analysis revealed three meta QTL
positions on BTA 2 (equivalent BBU2 q). The metaQTL
region identified in buffalo at mean position 10.77 with a
confidence interval of 9.0 to 16.77 has been reported in
cattle. The second mean position of 19.77 with confidence
interval of 16.17 to 23.37 has been reported by several

workers in cattle (Rupp and Boichard 2003, Cole et al. 2011
and Strillacci et al. 2014). Similarly for chromosome BTA
3 (BBU6), two meta QTL regions were identified. The first
mean position is also reported in literature by Liu et al.
(2012) while the second mean position is reported by Rupp
and Boichard (2003), Cole et al. (2011) and Strillacci et al.
(2014). We identified 4 metaQTL regions on chromosome
BBU8 (BTA4) and out of these four locations, the metaQTL
position at 12.54 has been reported by Cole et al. (2011)
and Wijga et al. (2012) while the location at 25.99 with a
confidence interval between 18.0 to 32.0 has been reported
by several authors in taurine cattle (Rupp and Boichard
2003, Daetwyler et al. 2008 and Cole et al. 2011). The mean
position at 99.69 with a confidence interval of 95.83 to
103.85 has been reported in cattle (Tal- Stein et al. 2010,
Cole et al. 2011 and Wang et al. 2015). The fourth metaQTL
region has been reported in cattle by Strillacci et al. (2014).
For the chromosome BTA 6 (BBU7), we identified only
one metaQTL region at 35.39 mean position which has also
been identified to harbour genes for somatic cell count by
several authors (Daetwyler et al. 2008, Alain et al. 2009,
and Tal-Stein et al. 2010). Incidentally the region also has
QTLs for high milk yield in cattle as reported by Liu et al.
(2004), Khatib et al. (2007), Doran et al. (2014). Same
region has been reported in association studies of milk and
somatic cell score by Meredith et al. (2012). There is
unfavourable genetic correlation between high milk
production and increased frequency of mastitis. We assume
such high correlation between high somatic cell count and
milk yield might exist in buffaloes too. It was thus an
expected result that some of the QTLs for high somatic cell
count shall be positioned close to milk production traits.
The present analysis identified 3 metaQTL regions on BTA
7 (BBU9) which have also been identified in cattle by
various authors. The first metaQTL with mean position at
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Table 3. Locations of metaQTL regions (chromosome wise) for somatic cell count along with their confidence interval

Chromosome BBU AIC Mean position 1 Mean position 2 Mean position 3 Mean position 4
(BTA) Chromosomes value  (C.I.) (C.I.) (C.I.) (C.I.)

1 BBU1q 52.04 15.42 47.07 75.81 154.67
(12.85–18.0) (42.93–51.22) (72.5–79.11) (146.11–155.0)

2 BBU2q 24.03 10.77 19.77 90.77 –
(9.0–16.77) (16.17–23.37) (85.84–99.77)

3 BBU6 17.15 35.76 82.95 – –
(28.34–40.34) (79.9–86.0)

4 BBU8 35.7 12.54 25.99 99.69 111.0
(7.0–21.0) (18.0–32.0) (95.53–103.85) (104.0–117.16)

6 BBU7 5.71 35.39 – – –
(32.0–42.0)

7 BBU9 25.65 24.39 124.0 126.11 –
(21.0–28.0) (114.0–126.24) (124.62–127.59)

9 BBU10 51.23 13.2 22.2 46.76 66.2
(10.2–20.2) (16.2–25.2) (45.1–48.43) (59.51–70.2)

14 BBU15 25.98 43.12 66.12 92.43 –
(34.12–48.12) (62.12–75.12) (88.41–96.46)

Values in parenthesis represent the confidence interval of the metaQTL. BTA implies Bos taurus chromosomes and BBU implies
Bubalus bubalis chromosomes.
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24.39 has been reported by Rupp and Boichard (2003), Ron
et al. (2004), Cole et al. (2011), Strillacci et al. (2014) and
El-Halawany et al. (2017). Similarly, the mean position at
124.0 has been reported by Tal-Stein et al. (2010) and mean
position at 126.11 by Heyen et al. (1999). The chromosome
BTA9 (BBU10) revealed four metaQTL regions. The first
mean position at 13.2 not reported in literature while the
mean position at 22.2 has been reported by Sahana et al.
(2008). Position at 46.76 has been reported by Boichard et
al. (2003) and Cole et al. (2011). The fourth mean position
on BBU10 at 66.2 has been reported by Tal-Stein et al.
(2010) in cattle. The eight chromosome (BBU15) equivalent
to BTA 14 had three metaQTL locations identified and each
has been reported in literature for the trait of interest. The
first location at mean position at 43.12 with a confidence
interval between 34.12 and 48.12 has been reported by
Zhang et al. (1998), Rupp and Boichard (2003), and Cole
et al. (2011) for cattle. Mean position of the metaQTL at
66.12 has been reported in cattle by Lund et al. (2007),
Daetwyler et al. (2008) and Cole et al. (2011). The mean
position at 92.43 also have comparative region identified
in cattle by Rodriguez-Zas et al. (2002), Bennewitz et al.
(2003) and Wang et al. (2015). Thus most of the identified
metaQTL regions have been found to have similar locations
as reported for QTL regions in cattle for which extensive
work has been carried out over the past two decades
especially for Holstein and Jersey breeds of cattle.

It is however known that the detection of QTLs is an
inexact science and thus require the verification in different
populations. Taking into consideration the above statements,
we not only identified the QTLs in 12 half sib families but
also carried out the metaQTL analysis to find the consensus
regions affecting the somatic cell count in buffaloes. Several
strategies have been put forward for the confirmation of
suggestive QTLs for the traits of interest (Spelman and
Bovenhuis 1998, Georges 1999). One of the most common
ones are to check for the genes underlying QTL regions in
the species. In our case, a well documented and curated
buffalo sequence is not available while there is large degree
of synteny between cattle and buffalo chromosomes
(Amaral et al. 2008). Thus we utilised the tools of
comparative genomics to find out the genes underlying QTL
regions in buffaloes. The total genes identified under the
metaQTL regions for somatic cell count were 1065 (Fig.
2). The identified genes which mapped the immune related
genes in the Reactome database (https://reactome.org/) were
78. The list of the genes identified and related to the immune
response or immune system are given in Table 4.

The genes that underlie QTLs for somatic cell count in
buffaloes and related to immune response and defense
mechanism included 6 Interleukin genes, viz. IL12RB2,
IL23R, IL6, IL13, IL14 and IL7. Besides there were cluster
differentiation factors, viz. CD28, CD58 and CD53 (Chan
et al. 1988, Zola et al. 2007). In addition there were genes
related to nuclear pore complexes. The protein encoded by
IL12RB1 is a type I trans-membrane protein identified as a
subunit of the interleukin 12 receptor complex. The

expression of this gene is up-regulated by interferon gamma
in Th1 cells, and plays a role in Th1 cell differentiation.
The up-regulation of this gene is associated with a number
of infectious diseases (Kato-Kogoe et al. 2016). While
Interleukin 6 (IL-6), promptly and transiently produced in
response to infections and tissue injuries, contributes to host
defense through the stimulation of acute phase responses,
hematopoiesis, and immune reactions. Although its
expression is strictly controlled by transcriptional and
posttranscriptional mechanisms, non-regulated continual
synthesis of IL-6 plays a pathological effect on chronic
inflammation and autoimmunity (Woo and Humphries
2013, Tanaka et al. 2014). Interleukin 13 (IL-13) has
biological activities on B cells, monocytes/macrophages and
endothelial cells. IL-13 is primarily produced by TH2 cells,
but it is also secreted by other T helper cell subsets CD8+ T
cells, mast cells, eosinophils and basophils following
activation. IL-13 induces proliferation and immunoglobulin
E (IgE) synthesis by B cells. IL-13 inhibits production of
proinflammatory cytokines and chemokines by monocytes/
macrophages indicating that IL-13 also has important anti-
inflammatory properties. IL-4 is also called the ‘prototypic
immunoregulatory cytokine.’ Like many cytokines, it can
affect a variety of target cells in multiple ways. IL-4 has an
important role in regulating antibody production,
hematopoiesis and inflammation, and the development of
effector T-cell responses (Mitchell et al. 2017). IL7 encodes
a protein-a cytokine important for B and T cell development
(Elkassar and Gress 2010). CD58, or lymphocyte function-
associated antigen 3 (LFA-3), is a cell adhesion
molecule expressed on antigen presenting cells (APC),
particularly macrophages (Jordan et al. 2014). It binds
to CD2 (LFA-2) on T cells and is important in strengthening
the adhesion between the T cells and Professional APC.
Leukocyte surface antigen CD53 is a protein encoded by
this transmembrane 4 superfamily. This encoded protein is
a cell surface glycoprotein that is known to complex with
integrins. It contributes to the transduction of CD2-
generated signals in T cells and natural killer cells and has
been suggested to play a role in growth regulation.
CD28 (Cluster of Differentiation 28) is one of
the proteins expressed on T cells that provide co-
stimulatory signals required for T cell activation and
survival. T cell stimulation through CD28 in addition to
the T-cell receptor (TCR) can provide a potent signal for
the production of various interleukins (IL-6 in particular).
The gene is closely associated with Toll like receptor genes.
CD28 is the only B7 receptor constitutively expressed
on naive T cells. The ITGB2 gene provides instructions for
making one part (the β2 subunit) of at least four different
proteins known as β2 integrins. Signaling through the β2
integrins triggers the transport of the attached leukocyte
across the blood vessel wall to the site of infection or injury.
CTLA4 or CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4), also known as CD152 (cluster of
differentiation 152), is a protein receptor that, functioning
as an immune checkpoint, downregulates immune
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responses. CTLA4 is constitutively expressed in regulatory
T cells but only upregulated in conventional T cells. It acts
as an “off” switch when bound to CD80 or CD86 on the
surface of antigen-presenting cells. NUP 35 functions as a
component of the nuclear pore complex (NPC). NPC
components, collectively referred to as nucleoporins

(NUPs). These NUPs can play the role of both NPC
structural components and of docking or interaction partners
for transient association of nuclear transport factors. May
also play a role in the association of MAD1 with the NPC
(Doye and Hurt 1997). PTPN22 acts as negative regulator
of T-cell receptor (TCR) signaling and positively regulates
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Fig. 1. The metaQTL positions for somatic cell count on 8 chromosomes for buffalo.
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Table 4. Genes associated with somatic cell count identified
using Reactome database

Chromosomes Submitted entities found Mapped HGNC
 entities names

BTA1 ENSBTAG00000017060 P05107 ITGB2
(BBU1q) ENSBTAG00000004777 P60604 S100B

ENSBTAG00000018186 Q13191 PDXK
ENSBTAG00000004833 P17858 NIT2
ENSBTAG00000021901 P04271 TRPM2
ENSBTAG00000010658 O75144 PFKL
ENSBTAG00000020787 P22792 PIK3R4
ENSBTAG00000014880 Q99570 N/A
ENSBTAG00000032656 O94759 CPN2
ENSBTAG00000013057 Q9NQR4 CBLB
ENSBTAG00000048090 O00764 UBE2G2

BTA2 ENSBTAG00000019929 P16410 N/A
(BBU2q) ENSBTAG00000020527 P06756 IDH1

ENSBTAG00000013170 Q9Y2A7 CTLA4
ENSBTAG00000009859 P16220 N/A
ENSBTAG00000002295 O75874 ATF2
ENSBTAG00000007445 P10747 CD28
ENSBTAG00000009777 P63165 NUP35
ENSBTAG00000015718 Q14790 CASP8
ENSBTAG00000001585 P13612 WIPF1
ENSBTAG00000033662 P15336 NCKAP1
ENSBTAG00000005474 Q8NFH5 N/A
ENSBTAG00000009256 O43516 ITGA4

BTA3 ENSBTAG00000014710 P09603 RAP1A
(BBU6) ENSBTAG00000019617 Q9Y2R2 PTPN22

ENSBTAG00000000283 Q5VWK5 CSF1
ENSBTAG00000006466 P28066 CD53
ENSBTAG00000040131 P19397 CD58
ENSBTAG00000003147 O43865 N/A
ENSBTAG00000046797 P19256 NRAS
ENSBTAG00000020641 Q99665 PSMA5
ENSBTAG00000009455 P36871 IL12RB2
ENSBTAG00000019011 P52907 N/A
ENSBTAG00000014295 Q93033 CAPZA1
ENSBTAG00000014983 Q9UKW4 IL23R
ENSBTAG00000018893 P62834 AHCYL1
ENSBTAG00000031575 P23458 VAV3
ENSBTAG00000018203 P01111 N/A

BTA4 ENSBTAG00000014921 O43451 IL6
(BBU8) ENSBTAG00000007572 Q8NHE4 N/A

ENSBTAG00000011127 Q9Y574 NUP205
ENSBTAG00000027134 Q8WXI3 DYNC1I1
ENSBTAG00000006022 Q16864 N/A
ENSBTAG00000020453 Q13616 CLEC5A
ENSBTAG00000007442 P35030 AKAP9
ENSBTAG00000021565 P19801 N/A
ENSBTAG00000004263 Q9HBG4 ATP6V0A4
ENSBTAG00000021761 P15056 BRAF
ENSBTAG00000005419 Q99996 AOC1
ENSBTAG00000008736 Q9NY25 CUL1
ENSBTAG00000018185 Q92621 ASB4
ENSBTAG00000046152 P05231 MGAM
ENSBTAG00000016752 O14576 ASB10
ENSBTAG00000018159 O15504 CASP2
ENSBTAG00000016014 P42575 NUPL2

BTA6 (BBU7) ENSBTAG00000020538 Q8IVU3 N/A
ENSBTAG00000020536 Q9UII4 HERC6

BTA7 (BBU9) ENSBTAG00000015953 P10914 IL13
ENSBTAG00000015957 P36507 IL4
ENSBTAG00000020446 Q14213 THOP1
ENSBTAG00000031235 Q9UM11 N/A
ENSBTAG00000001570 Q9Y496 CSF2
ENSBTAG00000024450 P35225 N/A
ENSBTAG00000031231 P04141 IRF1
ENSBTAG00000012829 P52888 EBI3
ENSBTAG00000025477 P05112 N/A
ENSBTAG00000031387 P05113 FZR1

BTA9 ENSBTAG00000002625 Q9NV96 MAP3K7
(BBU10) ENSBTAG00000005100 O43318 TMEM30A

BTA14 ENSBTAG00000015536 Q9Y6Y9 CPNE3
(BBU15)

Chromosomes Submitted entities found Mapped HGNC
 entities names

Fig. 2. Total number of genes underlying metaQTL regions and
genes associated with somatic cell count.

toll-like receptor (TLR)-induced type 1 interferon
production. CSF2 is a gene which encodes a cytokine that
stimulates the growth and differentiation of hematopoietic
precursor cells from various lineages, including
granulocytes, macrophages, eosinophils and erythrocytes.

The interaction among the genes is presented in
Supplementary Fig. 2. To find out the overall ontology of
these genes we downloaded the GO IDs of the genes and
carried out the analysis using REVIGO webserver
(http:// revigo.irb.hr/) to analyse the GO terms based on
their dispensability (Supek et al. 2011). The results of the
GO analysis revealed cell activation, glucose transport,
immune system processes, wound healing, regulation of
cell killing and the like biological functions. In the cellular
component analysis, the membrane, cytosol extracellular
region, plasma membrane etc. were the ontology terms in
cellular component.

Thus it is observed that a large number of genes which
are associated with the immune response in humans and
probably also in cattle and buffalo which are strong
candidate genes to work on. These genes might be directly
or indirectly associated with the somatic cell count and their

http://revigo.irb.hr/
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QTL regions have been designated in the present study.
Meta-QTL regions associated with somatic cell count were
identified based on the analysis of 12 half sib families. The
genes underlying the QTL regions identified the genes
associated with the immune response which can be probable
candidate genes on which further work can be pursued. The
somatic cell score that has a low heritability (Rupp and
Boichard 2003) and is one of important traits for which the
markers can be of great success for selection of bulls for
low somatic count. The polygenic nature of mastitis make
it challenging to identify the putative causal genes
associated with variation in mastitis resistance. Once the
markers have been identified, this shall help in selection
and propagation of buffaloes which are less susceptible to
mastitis.
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