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Fluorescence spectroscopy for accurate and rapid prediction of meat composition
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ABSTRACT

The potential of fluorescence spectroscopy was assessed to study cow, goat, sheep and yak meat. Meat samples
were taken from muscles, viz. Gluteus medius (GM), Longissimus dorsi (LD) and Semitendinosus (ST). The moisture,
fat and protein content of meat samples were measured. The emission fluorescence spectra of tryptophan (305–500
nm), riboflavin (410–700 nm) and vitamin A (340–540) were recorded directly on meat samples at 290, 382 and
322 nm, respectively. Principal component analysis (PCA), partial least squares regression (PLSR) and partial least
squares discriminant analysis (PLSDA) were applied to process the spectra obtained. Moisture content with R2=0.94,
protein content with R2=0.86, and fat content with R2=0.91 were predicted from the fluorescence emission spectra.
The PLSDA applied at 410–700 nm fluorescence spectra showed 100, 100, 94.4 and 92.6% of discrimination for
cow, goat, sheep and yak meat, respectively. This study demonstrates that fluorescence spectroscopy has a potential
for the accurate, non-destructive and rapid prediction of meat composition and it could replace existing traditional
analytical methods.
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Meat plays an important role in supplying excellent
nutrients. The elucidation of the health-promotion role of
meat requires databases of values and analytical techniques.
Many analytical techniques are available to evaluate meat
nutrients and create nutrients databases. Nevertheless, these
techniques are time-consuming, destructive, laborious, and
require highly skilled operators and are not easily adapted
to on-line monitoring (Sahar and Dufour 2015, Abasi et al.
2018). There is a continuously growing demand for high-
speed, non-destructive, simple-in-use and accurate
techniques able to replace visual and manual inspections
yet practiced in meat industry at present (Abasi et al. 2018).

Fluorescent spectroscopy based techniques have become
increasingly important in the study of meat and meat products
(Kulmyrzaev et al. 2007). Fluorescence spectroscopy is
considered as a tool to classify bovine muscles according to
their chemical and rheological characteristics (Sahar et al.
2009), for determination of composites of meat (Wold et al.
1999, Skjervold et al. 2003, Sahar and Dufour 2015), to study
tenderness of meat (Egelandsdal et al. 2002, Sahar and
Dufour 2015) and to determine quinolone antibiotics in meat
(Pagani and Ibanez 2018).

The quality of meat products depends on the composition
of the meat. In order to produce meat products of high
quality, it is important to maintain strict control in all stages
of manufacturing processes. The on-line monitoring and

determination of fat, moisture and protein contents in
industrial scale will be helpful in rapid screening of large
number of samples, quick product recall and produce meat
products with high quality. The objective of this study was
to assess the potential of fluorescence spectroscopy to
predict moisture, protein and fat contents of cow, yak, goat
and sheep meat. The potential of fluorescence spectra to
discriminate different meat samples in relation with
biological factors (muscle type and animal type) was also
examined.

MATERIALS AND METHODS

Meat samples: The experimental muscles were supplied
by a local farm (Bishkek, Kyrgyz Republic). Approximately
2–2.5 year-old female cows, yaks, goats and sheep were
selected to consider the animal type factor. Gluteus medius
(GM), Longissimus dorsi (LD) and Semitendinosus (ST)
muscles were removed from carcasses after slaughter. Each
muscle was cut into 2 pieces to conduct 2 kinds of
experiments, chemical composition measurements and
fluorescence spectral measurements. The muscle samples
were identified, vacuum-packaged in polyethylene bags and
stored for 3 days at 4°C and were kept at –20°C until
measurements. The samples were thawed at 4°C before
analysis.

Chemical analysis: The moisture, fat and protein of meat
samples were measured (AOAC 2000). Analysis was
performed in triplicate for each sample and the average
values were taken.
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Fluorescence spectroscopy: Fluorescence spectra were
recorded using a Fluoromax-4 spectrofluorometer (Horiba
Jobin Yvon, USA) provided with a single position (56°).
The meat samples were cut into rectangle with dimensions
of 2×3 cm. The meat specimens were placed between quartz
plates and transferred into the cell holder of the
spectrofluorometer. The emission spectra of tryptophan in
the range of 305–500 nm, riboflavin in the range of 410–
700 nm and vitamin A in the range of 340–540 nm were
recorded with the excitation at 290 nm, 382 nm and 322
nm, respectively. Each spectrum was recorded in 6 copies
on different samples. Total 216 spectra (3 types of spectra,
3 types of muscles, 4 animal types, and 6 repetitions) were
recorded.

Multivariate statistical analysis: The statistical
processing were used to derive relevant information from
the fluorescence spectral data allowing prediction of
chemical composition and discrimination parameters. In
order to reduce scattering effects, the fluorescence spectra
were normalized by reducing the area under each spectrum
to a value of 1 according to Bertrand and Scotter (1992).
Normalization of the fluorescence spectra was conducted
using a custom-designed algorithm written in MatLab (The
MathWorks Inc., MA, USA).

Chemical data tables were standardized to assure zero
mean and unit variance of each column. The experimental
data were arranged in 4 data tables, viz. emission spectra
of tryptophan, emission spectra of vitamin A, emission
spectra of riboflavin, and chemical composition.
Principal component analysis (PCA) was applied to the
normalized fluorescence spectral data to obtain a map
describing chemical variations between the samples studied.
Partial least squares regression (PLSR) was applied to
predict the chemical composition of the meat samples from
fluorescence data. PLSR searches the relationship and
interdependence of two or more random variables and
describes their common structure. The accuracy of the
regression is expressed with a correlation coefficient (R2).
Partial least square discriminant analysis (PLSDA) is one
of the classification methods and rely on the PLS model.
PLSDA was applied to predict membership of an individual
to a group defined as a preliminary (Westerhuis et al. 2008).

The custom-designed versions of PCA, PLSR and
PLSDA (‘SAISIR’ package) programmed in MatLab (The
MathWorks Inc., MA, USA) were utilized in the statistical
data treatment.

RESULTS AND DISCUSSION

Chemical composition: The data show a wide range of
variation in the chemical content of the samples (Table 1).
Yak meat samples had the greatest moisture and the lowest
fat. Sheep meat showed the greatest fat, and the lowest
protein content. The high-fat content was found in sheep
meat, followed by the samples of cow meat. The less meat
samples contained fat, the more moisture was found in it.
Similar results were reported by Sahar and Dufour (2015).
Goat meat exhibited the greatest protein content (21.24–

22.71%) and relatively low fat (4.92–8.62%). GM muscles
contained the highest percentage of fat among the muscles,
whereas LD muscles contained the lowest fat percentages.
Contents of protein were higher in ST muscles (Table 1).
The protein content was inversely proportional to the fat
content of the samples. The values were similar to those
reported by Sahar et al. (2009) and Sahar and Dufour (2015).

Fluorescence properties: Fluorescence spectra were
different between meat samples of various animals (Fig. 1
A-C). The emission spectra in the range of 305–500 nm of
the LD muscle exhibited a maximum peak in 371, 371, 372
and 372 nm recorded with the cow, yak, sheep and goat
meat, respectively (Fig. 1A). These spectra could be
originated from tryptophan residues in proteins (Lakowicz
2006). So, the spectrum recorded on the meat sample
following excitation at 290 nm may be considered as a
characteristic fingerprint, which allows the sample to be
identified. The spectra collected in the range of 340–540
nm wavelengths of the LD muscles showed different shapes
and intensities among the samples with two maxima
observed at 386–394 nm and 461–468 nm (Fig. 1B). Similar
peaks were found in fluorescence spectra obtained from
beef muscles and were assigned to vitamin A (Skjervold et
al. 2003, Kulmyrzaev et al. 2007, Sahar et al. 2009, Sahar
and Dufour 2015).

The spectra collected in the range of 410–700 nm had a
maximum intensity at about 441–467 nm with a shoulder
at 418 nm (Fig. 1C). Additionally, the width and intensities
of the fluorescence spectra differed from one meat sample
to the other. Wold et al. (1999) and Egelandsdal et al. (2002)
showed that 380 nm is the best excitation wavelength for
the quantification of connective tissue. Identification and
quantification of different components of muscle connective
tissue, collagen and elastin, were investigated by intrinsic
fluorescence spectroscopy (Egelandsdal et al. 2002). Elastin
and collagen type 5 showed the most powerful fluorescence
with peaks at 440 and 475 nm after excitation at 380 nm
(Skjervold et al. 2003). The variation of environment affects
the maximum intensity of riboflavin emission (Ladokhin

Table 1. Chemical composition of the meat samples

Moisture (%) Protein (%) Fat (%)

Cow GMa 63.68±0.19 19.92±0.34 15.62±0.32
LDa 68.05±0.20 19.87±0.29 10.87±0.12
STa 65.19±0.29 20.66±0.23 13.01±0.17

Goat GM 69.85±0.49 21.24±0.38 8.62±0.18
LD 69.71±0.49 21.98±0.38 6.56±0.27
ST 70.08±0.49 22.71±0.38 4.92±0.31

Sheep GM 64.11±0.20 17.88±0.18 16.83±0.29
LD 66.54±0.32 18.39±0.24 13.47±0.34
ST 65.29±0.44 19.22±0.14 14.16±0.11

Yak GM 71.06±0.14 20.55±0.24 7.09±0.25
LD 73.07±0.13 20.83±0.25 4.85±0.16
ST 71.32±0.32 22.59±0.24 4.66±0.33

aGluteus medius (GM), Longissimus dorsi (LD) and Semiten
dinosus (ST).

83



788 OZBEKOVA AND KULMYRZAEV [Indian Journal of Animal Sciences 89 (7)

2000, Lakowicz 2006). The shapes of spectra distinctly
changed depending on the moisture content. As the moisture
content increased, maximum intensity of riboflavin
emission increased and maximum intensity wavelength
shifted from 442 nm at 71.82% of moisture to 467 nm at
65.64% of moisture (Fig. 1C). The increase of riboflavin
emission spectra could be explained by the increase of water
content of samples (Fig. 1C). Therefore, the riboflavin
emission spectra could be used as an indicator group for
moisture content. Similar spectral patterns were also found
in the riboflavin emission spectra of the GM and ST muscles

of cow, goat, sheep and yak meat (data not shown).
Multivariate statistical analysis: PCA was applied to

normalized fluorescence spectral data recorded in 305–500
nm, 410–700 nm and 340–540 nm ranges in order to
investigate the variations among meat samples, to determine
whether the groups showed different spectral characteristics
and similarities. The PCA score plot obtained with the
riboflavin emission spectra of the meat samples is presented
in Fig. 2. Principal component A1 and A2 explained 83.5%
and 12% of the total variance of the spectra, respectively.
The discrimination pattern can be explained by differences
in the chemical composition of the samples (Table 1). The
spectra of cow meat generally were scored positively
relative to the principal component A1, while the yak meat
spectra were scored negatively. Yak meat samples were
rather well separated from the other meat samples according
to the principal component A1 which accounted for 83.5%
of the total variance (Fig. 2). Such a separate location of
yak meat samples can be derived from the high moisture
content. Yak meat had higher moisture content than other
meat samples (Table 1). Disposition of the meat samples
relative to A2 indicated that cow, goat and sheep meat
samples were almost similar taken into account the
corresponding riboflavin emission spectra. It can be seen
that different locations of the samples were observed
considering to the chemical content, which makes it possible
to classify meat samples according to the animal species.
Similar results were obtained when PCA was applied to
tryptophan and vitamin A spectra (data not shown).

The PLSR algorithm with cross-validation was used to
develop regression models of the chemical composition and
fluorescence spectra of the meat samples. The numbers of
PLSR factors used for the final models were the numbers
giving first local minimum for the root mean squared error
of validation (RMSEV). The results of PLSR carried out
on spectral and chemical data are reported in Table 2. The
best regression model including 13 components (R2= 0.94)
to predict moisture content was obtained applying PLSR
on riboflavin emission spectra. Tryptophan had the strongest
fluorescence quantum yield among three fluorescent amino
acids found in proteins, therefore protein fluorescence
usually refers to the fluorescence emission of the tryptophan
(Ladokhin 2000). Consequently, tryptophan emission
spectra showictive value (R2 = 0.86) for protein content of
the samples. The results with this technique were quite
similar to the results of Dufour and Frencia (2001).

The prediction of fat was much better from vitamin A
emission spectra (R2=0.91) than from tryptophan and
riboflavin emission spectra (0.54 and 0.69, respectively).
The 340–540 nm range has been proven to be a good
indicator of fat content in food (Lakowicz 2006,
Kulmyrzaev et al. 2007). The high correlation between the
data measured by the traditional and fluorescent
spectroscopic methods indicates that the latter is a very
sensitive technique to predict meat chemical compositions.

PLSDA was used to assess the ability of the fluorescent
spectra to distinguish (as a function of muscle type and
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Fig. 1. (A) Tryptophan emission spectra, (B) vitamin A
emission spectra, and (C) riboflavin emission spectra of the
Longissimus dorsi (LD) muscle of the cow (—), goat (••••), sheep
(– – –) and yak (–••–••) meat.
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samples to eliminate problems related to religious and
economic aspects.

Fluorescence spectroscopy coupled with multivariate
statistical tools was successfully used to develop PLS
regression models to predict moisture, protein and fat
content of the cow, goat, sheep and yak meat. In addition,
by means of multivariate statistical technique, it was
demonstrated that tryptophan, riboflavin, and vitamin A
emission spectra allow discriminating meat samples with
respect to muscle type and animal type. Therefore,
fluorescence spectroscopy as a fast, non-destructive and

85

Fig. 2. PCA similarity map determined by principal components A1 (83.5%) and A2 (12%) of riboflavin emission spectra.

Table 3. PLSDA conducted on spectral data of the investigated
meat samples.

Cow Goat Sheep Yak Percentage of
good classification

Emission spectra (410–700 nm)
Cow 54 – – – 100
Goat – 54 – – 100
Sheep – 3 51 – 94.4
Yak 1 – 3 50 92.6

Emission spectra (305–500 nm)
Cow 43 4 – 7 79.6
Goat – 45 9 – 83.3
Sheep – 3 48 3 88.9
Yak 2 – – 52 96.3

Emission spectra (340–540 nm)
Cow 37 – – 17 68.5
Goat 9 36 2 7 66.7
Sheep – 9 45 – 83.3
Yak 9 – – 45 83.3

Table 2. PLSR statistics to predict chemical contents of the
meat samples from fluorescence spectra

Parameter Tryptophan Vitamin A Riboflavin
emission emission emission
spectra spectra spectra

R2 PLS R2 PLS R2 PLS
components components components

Moisture 0.57 6 0.59 9 0.94 13
(%)

Protein 0.86 8 0.62 9 0.65 11
(%)

Fat 0.54 8 0.91 11 0.69 14
(%)

animal type) meat samples. The results of PLSDA applied
to fluorescence spectra are given in Table 3. The emission
spectra in the range of 410–700 nm with 100, 100, 94.4
and 92.6% of correctly distinguished samples according to
animal type. Moreover, the emission spectra in the range
of 305–500 nm showed a good discrimination for meat
samples. Out of 54 samples of cow meat,11 were recognized
as originated from goat and yak meat, while 2 out of 54
samples of yak meat were recognized as the samples of
cow meat resulting in 96.3% of the yak meat samples being
discriminated correctly depending on animal type. PLSDA
applied on the 340–540 nm emission spectra made it
possible to discriminate the meat samples not exceeding
83.3%. Also, PLSDA allowed distinguishing the meat
samples depending on muscle type with accuracies not less
than 89% (data not shown). The results with this technique
can be used to identify animal species of origin of meat
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on-line control technique may successfully be applied in
the meat industry. In order to test its robustness, the
technique developed in this study will be examined using
greater number of meat samples.
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