Genetic diversity analysis of Ghurrah pig based on microsatellite markers

PRASANTA BORO¹, B H M PATEL², NIHAR RANJAN SAHOO³, G K GAUR⁴, TRIVENI DUTT⁵, MUKESH SINGH⁶ and B C NAHA⁷

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 16 November 2018; Accepted: 16 January 2019

Key words: Genetic variation, Ghurrah pig, Microsatellite markers, Population bottleneck

Piggery sector acts as the backbone of tribal and rural economy. Majority of Indian pig population is nondescriptive (76% as per 2012 Census), locally adapted and reared by marginal and small farmers. They show diversified morphology and relatively lower productive and reproductive performance (Sahoo et al. 2012, Boro et al. 2016). Despite, having poor growth rate and lower feed conversion efficiency, these desi pigs have unique features such as better heat tolerance, meat quality, early sexual maturity (Kumaresan et al. 2008, Karunakaran et al. 2009) and quality bristles (Mohana et al. 2014) compared to exotic/crossbreds which indicates their potential for conservation and improvement. The primary objective of a conservation programme is to preserve as much genetic diversity as possible which requires precise evaluation and breed characterization (Boettcher et al. 2010). Ghurrah breed of indigenous pig has been registered as 8th pig breed of the country which makes this study more important.

The study included 40 Ghurrah pigs, which were selected from the breeding tract. The native pigs, which looked alike and lacked the history of crossbreeding, were selected from their breeding tracts as per the phenotypic breed characteristics mentioned in breed descriptor of NBAGR. To ensure un-relatedness, only 2 pigs from each village were sampled for the study. Sixteen pairs of primers (S0026, S0005, Sw2410, Sw830, Sw632, Swr1941, Sw122, IGF1, Sw2406, Sw72, S0226, Sw2008, S0101, S0143, S0068, S0178) gave good amplification. All animals were genotyped for those 16 fluorescence-labeled microsatellite markers amplified in four multiplex PCRs.

Genomic DNA was isolated from the leucocytes of blood samples (Sambrook and Russell 2001) using proteinase-K and phenol. The genomic DNA isolated was checked for quality, purity and concentration. The multiplex-PCRs were performed in 25 μ L volume containing 50 to 100 ng of

Present address: \(^1\)(boroprasanta99@gmail.com), College of Veterinary Science and Animal Husbandry, Tripura; \(^2\)(mpatellpm @gmail.com), ICAR-IVRI, Bengaluru; \(^{3,4,5,6}\)(vet.nihar @gmail.com, gyanendrakog@gmail.com, triveniduttivri @gmail.com, drmsingh9@gmail.com), \(^7\)(binoychandranath @gmail.com), Veterinary, Maracherra, Tripura.

porcine genomic DNA as template, 1× PCR buffer, 0.1 to 1.0 mM of forward (fluorescence labeled with FAM, VIC, NED and HEX) and reverse primers, 200 mM of each dNTP, 1× Green Tag buffer and 1 U of Taq polymerase. The reactions were performed on the thermal cycler under the thermal cycle profile: denaturation at 95°C for 10 min in the first cycle, 35 cycles of 95°C for 45 sec, 56–63°C for 45 sec, 72°C for 45 sec, and extension at 72°C for 10 min for the last cycle. Electrophoresis in 1% agarose gel was used to make sure that PCR products were well amplified. The multiplex-PCR products were genotyped using capillary electrophoresis with fluorescent detection (ABI 3730 DNA Analyzer, Applied Biosystems, USA). The fragment size was calibrated with Peak Scanner Software version 1.0 (ABI PRISM, Applied Biosystems, USA).

Various measurements of within breed genetic variations, viz. observed number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He) for each locus were estimated using POPGENE software package (Yeh et al. 1999). The polymorphism information content (PIC) was calculated by the formula given by Botstein et al. (1980) with the EXCEL Toolkit. Allele frequency distribution of the microsatellite loci was examined by using program Bottleneck 1.2.02, for mode shift (Luikart et al. 1998a,b), which may indicate if a recent genetic bottleneck has occurred. To determine whether a population exhibits a significant number of loci with gene diversity excess, three tests, namely 'sign test', 'standardized differences test' and 'Wilcoxon sign-rank test' were employed.

Alleles (136) were observed in the 16 microsatellites; polymorphisms at all loci were observed in the examined population.

The allele size varied from 88 to 96 bp at locus S0026 to 203–243 at locus S0005. The total number of alleles ranged from 4 (Swr 1941 and SO143) and 21 (SO005). The genetic diversity within the population is explained by effective number of alleles and heterozygosities at different loci. The effective number of alleles ranged from 1.34 (Swr1941) to 11.51 (SO005) with a mean of 5.01±0.57. The mean observed heterozygosities are lower than the expected

Table 1. Population genetic variability in Ghurrah pig

ISAG Locus	Na	Ne	Но	Не	Allelic range	PIC	F
S0026	5	4.42	0.61	0.773	88–96	0.75	0.21
S0005	21	11.51	0.73	0.91	203-243	0.91	0.21
Sw2410	8	4.64	0.60	0.78	104-122	0.78	0.24
Sw830	10	4.33	0.31	0.77	178-202	0.76	0.60
Sw632	10	3.73	0.55	0.73	148-168	0.73	0.25
Swr1941	5	1.34	0.15	0.26	202-216	0.25	0.40
Sw122	8	5.26	0.48	0.81	107-121	0.81	0.41
IGF1	7	5.30	0.43	0.81	195-207	0.81	0.47
Sw2406	13	6.02	0.62	0.83	223-235	0.83	0.26
Sw72	6	4.03	0.41	0.75	100-112	0.74	0.45
S0226	4	3.07	0.27	0.67	192-198	0.66	0.60
Sw2008	5	2.38	0.33	0.58	95-103	0.56	0.42
S0101	8	5.18	0.45	0.81	200-216	0.80	0.45
S0143	9	4.09	0.56	0.76	151-167	0.75	0.26
S0068	9	4.95	0.32	0.80	219-239	0.80	0.60
S0178	8	6.29	0.62	0.84	108-124	0.84	0.27
Mean±SE	8.50±0.99	4.78±0.57	0.47 ± 0.04	0.74 ± 0.05	_	0.74 ± 0.04	0.38±0.12

Na, observed number of alleles; Ne, effective number of alleles; Ho, observed heterozygosity; He, expected heterozygosity. PIC, polymorphism information content; F, fixation index.

values based on these 16 studied loci. The observed and expected heterozygosities ranged from 0.15 to 0.73 (0.47±0.04) and 0.17 to 0.91 (0.71±0.05) in Ghurrah breed of pig, respectively. The variations in genetic diversity of European pig breeds were also reported in various other studies (Fredholm *et al.* 1993, Van Zeveran *et al.* 1995, Laval *et al.* 2000, Martinez *et al.* 2000). However, high genetic diversity was reported earlier in indigenous pigs (Behl *et al.* 2002, Sahoo *et al.* 2015, Sahoo *et al.* 2016a,b) of India and also in Chinese and Mexican pig populations (Lemus Flores *et al.* 2001, Fang *et al.* 2005).

PIC value in this study varied from 0.25 (SwR1941) to 0.91 (SO005) with the average value 0.74±0.04. All the markers had PIC values higher than 0.5 (except SwR1941), which is a useful indicator of genetic variability and forms the basis for developing breeding or genetic improvement strategy for a population. The present study resulted in identification of 7 highly polymorphic SSR loci, viz. S0005, SO026, SO178, Sw2406, SO097, SO226 and SO068 based on the parameters like PIC value, gene diversity, and polymorphic alleles. These 7 polymorphic primers can be effectively used in further molecular breeding programs since they exhibited very high polymorphism over other loci.

F value for markers ranged from 0.21 (SO005) to 0.60 (Sw830, SO143 and SO068). The mean F value was 0.38±0.12 which indicated the amount of inbreeding in the population. The higher F indicated presence of low heterozygosity suggesting that these populations might have been managed under uncontrolled mating system leading to mating between the close relatives and increase in inbreeding co-efficient.

Under Sign test, the expected numbers of loci with heterozygosity excess were 9.54 IAM (Infinite Allele Model), 9.52 TPM (Two-phased model) and 9.41 SMM

(Stepwise Mutation Model). Heterozygosis excess under TPM and SMM were not significantly (P>0.05) lower than the observed numbers of loci, the null hypothesis that the population is under mutation-drift equilibrium was accepted. Also the mode shift indicator, i.e. qualitative method of estimation of bottleneck, for a mode shift in allele frequency classes with 16 microsatellite loci as per earlier recommendations of 8–10 loci (Spencer et al. 2000) showed the normal L-shaped curve (Fig. 1). The L shaped curve indicated the abundance of low frequency (<0.10) alleles. This finding suggested the absence of any detectably large, recent genetic bottleneck (last 40-80 generations) in declining population, where the probability of low frequency allele's loss was very high. Under Wilcoxon rank test, probability values were 0.001, 0.09 and 0.92 for IAM, TPM and SMM, respectively, which indicates the significant (P<0.05) value in case of IAM only.

The panel of microsatellites evaluated in Ghurrah pig of India in the present study showed moderate heterozygosity and polymorphism. The present study clearly verified that

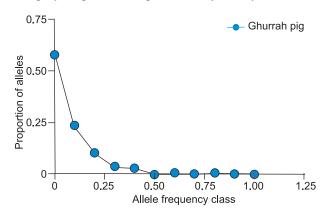


Fig. 1. L-shaped curve obtained for qualitative method of estimation of bottleneck.

using this panel of microsatellites markers, different breeds or populations of native Indian pigs can be suitably investigated for the relationships and genetic diversity.

SUMMARY

For analysis of genetic variation within Ghurrah, the local pigs of Rohilkhand region was explored using 16 FAO-ISAG microsatellite markers with 40 genetically unrelated pigs from the native breeding tract. Genomic DNA was isolated and amplified with microsatellite primers labeled with fluorescent dyes and genotyped using genetic analyser. The estimates of various genetic diversity parameters revealed mean number of observed alleles (Na), effective number of alleles (Ne), observed (Ho) and expected (He) heterozygosity values, polymorphic information content (PIC) and F-values to be 8.5±0.99, 4.78±0.57, 0.47±0.04 and 0.74±0.05, 0.74±0.04 and 0.38±0.03, respectively. The high PIC value suggested that all the microsatellite markers were highly polymorphic and suitable for molecular characterization of this pig. There was substantial genetic variation and polymorphism across the studied loci. There was absence of genetic bottleneck in the studied population. The medium inbreeding coefficient indicates a need to formulate the appropriate breeding strategies to enhance heterozygosity in the population.

ACKNOWLEDGEMENTS

The authors are grateful to Director, ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh for providing facilities, ICAR-AICRP Pig for financial support and the project staffs for their help in blood collection and survey works.

REFERENCES

- Behl R, Kaul R, Sheoran N, Behl J, Tantia M S and Vijh R K. 2002. Genetic identity of two Indian pig types using microsatellite markers. *Animal Genetics* **33**: 158–59.
- Boettcher P J, Tixier-Boichard M, Toro M A, Simianer H, Eding H, Gandini G, Joost S, Garcia D, Colli L and Ajmone-Marsan P. 2010. Consortium, GLOBALDIV. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. *Animal Genetics* **41** (Suppl. 1): 64–77.
- Boro P, Patel B H M, Sahoo N R, Naha B C, Madkar A, Gaur G K, Singh M, Dutt T, Verma M R, Upadhyay D and Singh A K. 2016. Phenotypic attributes of Bareilly Desi pig. *International Journal of Advanced Biological Research* **6**: 390–93
- Botstein D, White R L, Skolnick M and Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *American Journal of Human Genetics* **32**: 314–31.
- Fang M, Hu X, Jiang T, Braunsweig M, Hu L, Du Z, Feng J, Zhang Q, Wu C and Li N. 2005. The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. *Animal Genetics* **36**: 7–13.
- Fredholm M, Wintero A K, Christensen K, Kristensen B, Nielsen P B, Davies W and Archibald A. 1993. Characterization of 24 porcine (AC)n- (TG)n microsatellites: Genotyping of unrelated animals from four breeds and linkage studies. *Mammalian Genome* 4: 187–92.

- Karunakaran M, Mandal M, Rajarajan K, Karmakar H D, Bhatt B P, Das J, Bora B, Baruah K K and Rajkhowa C. 2009. Early puberty in local Naga boar of India: Assessment through epididymal spermiogram and *in vivo* pregnancy. *Animal Reproduction Science* 111: 112–19.
- Kumaresan A, Bujarbaruah K M, Karunakaran M, Das A and Bardoloi R K. 2008. Assessment of early sexual maturity in nondescript local pigs of north east India: testicular development, spermiogram and *in vivo* pregnancy. *Livestock Science* **116**: 342–47.
- Laval G, Iannuccelli N, Legault C, Milan D, Groenen MA, Giuffra E, Andersson L, Nissen P H, Jorgensen C B, Beeckmann P, Geldermann H, Foulley J L, Chevalet C and Ollivier L. 2000.
 Genetic diversity of eleven European pig breeds. *Genetics Selection Evolution* 32:187–203.
- Lemus Flores C, Ulloa-Arvizu R, Ramos-Kuri M, Estrada F J and Alonso R A. 2001. Genetic analysis of Mexican hairless pig populations. *Journal of Animal Science* **79**: 3021–26.
- Luikart G, Allendorf F W, Cornuet J M and Sherwin W B. 1998a.
 Distortion of allele frequency distributions provides a test for recent population bottleneck. *Journal of Heredity* 89: 238–47
- Luikart G, Sherwin W B, Steele B M and Allendorf F W. 1998.
 Methods for using molecular genetic data in priority setting for conservation of animal genetic resources. *Animal Genetics* 41(Suppl. 1): 64–77.
- Martinez A M, Delgado J V, Rodero A and Vega-Pla J L. 2000. Genetic structure of Iberian pig breeds using microsatellites. *Animal Genetics* **31**: 295–301.
- Mohana N H, Debnath S, Mahapatra R K, Nayak L K, Baruah S, Das A, Banik S and Tamuli M K. 2014. Tensile properties of hair fibres obtained from different breeds of pigs. *Biosystems Engineering* 119: 35–43.
- Nineteenth (19th) Livestock Census. 2012. All India Report. Ministry of Agriculture, Department of Animal Husbandry, Dairying and Fisheries, Krishi Bhawan, New Delhi.
- Sahoo N R, Banik S, Das A, Pankaj P K, Kaushik P and Tamuli M K. 2012. Phenotypic attributes of Ghungroo breed of pig. *Indian Veterinary Journal* 89: 89–90.
- Sahoo N R, Naskar S, Banik S and Pankaj P K. 2016. Microsatellite based diversity analysis of native pigs of North-Eastern India. *Indian Journal of Animal Research* 50: 831–38
- Sahoo N R, Nesa N, Naskar S, Banik S and Pankaj P K. 2015. Genetic diversity analysis of Ghoongroo pig based on microsatellite markers. *Indian Journal of Animal Sciences* 85: 1215–19.
- Sahoo N R, Nesa N, Naskar S, Banik S, Pankaj P K and Sahoo M. 2016. Microsatellite and mitochondrial diversity analysis of native pigs of Indo-Burma biodiversity hotspot. *Animal Biotechnology* 27: 52–59
- Sambrook J and Russell D W. 2001. *Molecular Cloning, a Laboratory Manual.* pp. 50–200. 3rd Edn, Cold Spring Harbor Laboratory Press, NY, USA.
- Spencer C C, Neigel J E and Leberg P L. 2000. Experimental evaluation of the usefulness of microsatellite DNA for detecting bottlenecks. *Molecular Ecology* 9: 1517–28.
- Van-Zeveran A, Peelman L, Van de Weghe A and Bouquet Y. 1995. A genetic study of four Belgian pig populations by means of seven microsatellite loci. *Journal of Animal Breeding and Genetics* 112: 191–204.
- Yeh F C, Yang R and Boyle T. 1999. POPGENE Version 1.31. Microsoft window based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research.