Puerarin protects rat liver and kidney against cadmium-induced oxidative stress

JICANG WANG¹, HUALI ZHU², CAI ZHANG³, HONGWEI WANG⁴, ZIJUN YANG⁵ and ZONGPING LIU⁶

Henan University of Science and Technology, Kaiyuan Avenue, 471 023, Luoyang, PR China

Received: 11 December 2018; Accepted: 14 February 2019

ABSTRACT

Oxidative stress is thought to be involved in cadmium (Cd) induced toxicity. This study examined the possible protective effect of puerarin on cadmium chloride (CdCl₂, 2 mg/kg b.w.) induced toxicity in male rats. Male SD rats were treated with either intraperitoneal Cd and/or oral puerarin (100 mg/kg. b.w.) for 4 weeks. The results demonstrated that exposure to Cd led to an increase in the level of BUN, ALT and AST in serum. Cadmium raised the concentrations of MDA and GSH, and decreased antioxidants activities (SOD, CAT, and GSH-Px) in the liver and kidney. Conversely, administration of puerarin markedly attenuated Cd-induced biochemical alterations in serum, liver, and kidney tissues. These results suggest that puerarin exerts protective effects against Cd toxicity attributable to its antioxidant actions.

Key words: Cadmium, Kidney, Liver, Oxidative stress, Puerarin

Cadmium (Cd) is a persistent bioaccumulating element in the environment (Nwokocha et al. 2012). Together with other heavy metals, Cd was listed in the International Register of Potentially Toxic Chemicals by the United Nations Environment Program (Nna et al. 2017). It has been listed as one of the top ten toxic compounds for human health (Hirano et al. 1996). Because of good characters, Cd was widely used in industries for rubber processing, galvanizing, nickel and Cd batteries in the electrode material, plastic and glass pigments, pesticides production and poly vinylchloride (PVC) stabilizer and other industries (Kidambi et al. 2003).

Cadmium is present in air, soil, water and food (Calderon et al. 2003, Satarug et al. 2004, Sarkar et al. 2013). People are exposed to Cd from water, rice, potato, tobacco, soil, sleek seeds, root and leaf of vegetables which were polluted by Cd. Exposure to exogenous chemicals can lead to the production of free radicals, which can result in oxidative stress when the free radical production exceeds the protective effect of antioxidants (Wu et al. 2003).

It is reported that Cd and several other industrial chemicals can cause oxidative stress in different cells and organs of the body (Patra et al. 1999; Valko et al. 2005). The toxicity of Cd has been reported in liver, kidney, lungs, brain, bones, testes and other organs. Cadmium can cause cancer and histopathological damage to male reproductive organs (Massanyi et al. 2007; Wang et al. 2018).

Pueraria root has become widely used in the Western dietary supplements recently, and it is a traditional chinese medicine (Prasain et al. 2012). Puerarin is a major isoflavone compound separated from the root of Pueraria lobata. Researchers have shown that puerarin has the abilities of antioxidative, anti-apoptosis, renal protection and hepatoprotective effects (Liu et al. 2011, 2012, Xie et al. 2011). Despite the pharmacological benefits, the mechanisms of the protective effects of puerarin are still unclear. The aim of this work was to investigate the conceivable ameliorative impact of puerarin on Cd induced toxicity on SD rats.

MATERIALS AND METHODS

Male SD (Sprague Dawley) rats (6 weeks old, 180–200 g) were purchased from Experimental Animal Center (Zhengzhou, China). The experimental animals were free to obtain rodent food under the conditions of constant temperature (24±2°C, with air conditioner) under 12 h light/dark schedules in animal house of Henan University of Science and Technology. These animal investigations were carried out in accordance with the University Animal Care and User Committee guidelines at Henan University of Science and Technology.

Chemicals and reagents: Reagents and kits used in the assays were of the blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), reduced glutathione (GSH), maleic dialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) from Nanjing Jiancheng (Nanjing, China). CdCl₂ was purchased from Aladdin Industrial...
Corporation. Puerarin (>98% purity) was purchased from Mianyang Oriental Source Technology Co., Ltd (Mianyang, China). All other reagents were analysis grade.

Experimental design: After acclimatization to the laboratory conditions for 2 weeks, the rats were randomly divided into four experimental groups with 6 rats in each group. They were treated everyday as follows: control group; CdCl₂-treated group (received 2 mg/kg bw of CdCl₂ intraperitoneally); puerarin-treated group (received 100 mg/kg bw of puerarin by oral gavage); and CdCl₂ + puerarin-treated group (received 2 mg/kg bw of CdCl₂ intraperitoneally and 100 mg/kg bw of puerarin intragastrically).

The experiment lasted for 4 weeks. Rats were weighed every week. 24 h after the administration of the last dose, the rats were anesthetized with ether anesthesia and sacrificed by decapitation.

Blood and tissue sample preparation: Blood samples were collected for hematological studies in EDTA test tubes. The second blood samples were collected from femoral artery into tubes from all the animals in each group for serum separation. The liver and kidney were removed, then weighed. The relative weight of the livers and kidneys were calculated.

Hematological studies: The determination of complete blood count, red blood cell counts (RBC), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) concentration, hematocrit (HCT), mean corpuscular volume (MCV), platelet (PLT) counts, and mean platelet volume (MPV) were assessed according to the standard hematological techniques.

Biochemical assays: The levels of ALT, AST, BUN were measured in serum using commercial kits.

Liver and kidney were kept at –80°C. They were homogenized in PBS (pH 7.4), then centrifuged (3,000 g, 10 min) before analysis. The resultant supernatant was utilized for analysis of MDA, GSH, SOD, CAT, and GSH-Px activities using commercial kits.

Statistical analyses: The results were represented by the mean±SE of number of observations. All statistical analyses were carried out by SPSS 15.0 statistical software. Comparison of means was carried out by one-way analysis of variance (ANOVA) and Duncan’s multiple range test (DMRT). Values were considered significant when P<0.05 or P<0.01.

RESULTS AND DISCUSSION

Changes in the body weight, relative weight of organ: No significant changes were observed between puerarin alone treated and control group (Table 1). In Cd-treated rats, the body weight gain reduced significantly compared with the control group (P<0.01). Treatment with puerarin (100 mg/kg) alongside cadmium increased the body weight compared with the cadmium group. However, there was no significant difference between them (P>0.05). Weight gain is related to the availability and absorption of nutrients (Asagba and Eriyamremu 2007). The Cd-induced decrease of nutrient digestion and absorption have also been researched (Eriyamremu et al. 2005). Cadmium inhibits the action of digestive and absorption enzymes (Asagba 2010). This finding may explain the weight loss of rats as observed in this experiment.

At the same time, the relative weight of liver increased significantly (P<0.01). However, The group which was treated with puerarin (100 mg/kg) alongside cadmium showed that the decrease of relative weight of liver was significant compared with the control group (P<0.05) after the exposure for 4 weeks. The alterations of the relative weight of organ in Cd intoxicated rats could be due to tissue damage and the reduction in their functions (Pari and Shagirtha 2010). But cadmium can increase the relative weight of kidney, however, compared with the cadmium group, there was non-significant difference (P>0.05).

Table 1. Body weight, relative weight of organ in control and experimental rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight</th>
<th>Relative weight of organ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (g)</td>
<td>Final (g)</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cadmium172.40±4.55</td>
<td>232.50±9.65**</td>
</tr>
<tr>
<td>Puerarin</td>
<td>175.38±4.96</td>
<td>280.72±7.61</td>
</tr>
<tr>
<td>CdCl₂ + puerarin</td>
<td>Cadmium177.14±5.61</td>
<td>240.57±7.54</td>
</tr>
</tbody>
</table>

P<0.05, *P<0.01 (compared with control group). aP<0.05, abP<0.01 (compared with Cd exposed group).

Hematological parameters: Cadmium-exposed group showed a significant decrease (P<0.05 or P<0.01) in RBC, MCHC, Hb and HCT in relation to the control rats. In addition, MCV, PLTs, MPV were non-significant changed in comparison with the control group. Cadmium and puerarin exposure increased the RBC, MCHC, Hb and HCT when compared with Cd treated rats significantly (P<0.05 or P<0.01) (Table 2).

Exposure to Cd can result in toxic effects on blood, because Cd binds to the erythrocyte membrane, causing not only qualitative and quantitative leukocyte diseases, but also hematological disturbance such as anemia (Yuan et al. 2014). In the current study, Cd exposure caused anemia. Anemia in rats after treatment with Cd was observed in several other studies (Ashour 2014, Mladenoviæ et al. 2014). Accumulation of Cd in hematopoietic tissues, liver, kidney, and spleen might inhibit erythropoietic activity (Horiguchi et al. 2011). In addition, Cd causes anemia by accelerating the rate of erythrocyte destruction (hemolysis) due to changes in membrane permeability caused by kidney damage (Ashour 2014, Yuan et al. 2014). Moreover, inflammatory cytokines play an important role in inhibiting erythropoiesis of peripheral blood cells (Dakeshita et al. 2009).

Cd-induced dysfunction of liver and kidney and the protective effect of puerarin: Previous studies showed
that exposure to Cd leads to liver damage and dysfunction (El-Boshy et al. 2017). The results of this study showed that the activities of ALT and AST in the serum of Cd-treated rat were significantly increased (P<0.01, Fig. 1) which is in agreement with previous studies (Cao et al. 2017). These elevated enzymes indicate that cell overflow and destruction of liver membrane structure and thereby function get affected. The administration of puerarin (100 mg/kg) significantly decreased Cd-induced hepatotoxicity as shown by diminished ALT and AST levels (P<0.05 or P<0.01). Puerarin has a strong protective effect and is widely used in clinical practice for the treatment of liver disease (Hwang et al. 2007, Liu et al. 2011, Li et al. 2013). The protective effect of puerarin on liver damage by Cd in rats may be achieved by reducing the activities of serum ALT and AST. This study indicates that puerarin has protective effects on liver damage induced by Cd in rats. This protective impact of puerarin might be because of its action of restraining the Cd induced generation of ROS and keep up the structural integrity of the membrane.

Kidney damage due to Cd intoxication could be evaluated by measuring the serum markers of renal functional integrity, which are the biochemical signs of renal tissue damage. BUN is utilized for evaluating renal glomerular function filtration and its concentrations in the serum depends generally on glomerular function. In this study, the serum BUN level in Cd-treated group was higher than the control rats (P<0.01) (Fig. 1). Significant restoration of BUN was observed in the rats concurrently treated with puerarin, offering protection against Cd toxicity. This finding shows that the administration of Cd modified the glomeruli and tubular capacity. A comparable finding was made by Gaurav et al. (2011), who reported that BUN levels were expanded in the serum of Cd-intoxicated rats. However, this finding is not in concurrence with Horiguchi et al. (1996), who observed that administration of Cd did not modify the BUN level in rats. The absence of consistency is likely owing to the course of introduction and dose utilized in their study.

Contents of GSH and MDA in the liver and kidney:

GSH and MDA increased significantly (P<0.05 or P<0.01) in Cd treated groups compared to the control group (Fig. 2). However, compared to CdCl₂ group, GSH and MDA concentrations were significantly decreased (P<0.05 or P<0.01) in Cd + puerarin groups. GSH is a tripeptide and a cysteine rich protein that participates in the maintenance of cytoplasmic and membrane thiol status. It is an antioxidant and a powerful nucleophile, critical for cellular protection such as detoxification of ROS. In the current study, Cd increases the contents of GSH in liver and kidney. It could be because of increased use of GSH by the cells act as scavengers of free radicals induced by Cd. Researches have demonstrated that Cd presentation is connected with
oxidative stress by creating ROS and LP (Xu et al. 2010). LP inactivates cellular components by oxidative stress in free radical chain reaction, at last resulting in loss of membrane integrity or oxidation. In this study, increased MDA level due to Cd exposure induce excessive free radicals formation which do harm to biological macromolecules (Stohs et al. 2001). Cd intoxicated rats pretreated with puerarin demonstrated a marked decrease in the levels of GSH and MDA. This might be because of puerarin, a good free radicals scavenger, which hinders lipid peroxidation and protein carbonylation.

Antioxidant activities in the liver and kidney: Our results showed that the activities of antioxidative enzymes SOD, CAT and GSH-Px decreased in the liver and kidney of the rats exposed to Cd (Fig.3, P<0.05 or P<0.01). It was on the contrary with that of testes (data not shown). Our results showed significant differences (P<0.05) in comparison to Cd group and Cd + puerarin groups compared to Cd group. We found that puerarin increased the activities of SOD, CAT and GSH-Px significantly (P<0.05) in Cd + puerarin groups compared to Cd group. Our results showed that puerarin increased the activities of SOD, CAT and GSH-Px significantly. It showed that puerarin could reduce oxidative injury induced by Cd in rats.

In conclusion, our results showed that Cd was able to cause marked oxidative stress in addition to depletion of the antioxidative enzymes and inhibited the activities of antioxidant enzymes. Puerarin has effective protective effects on Cd-induced oxidative stress in rat liver and kidney. The results showed that puerarin seems to be potent hepatoprotective and nephroprotective drug to maintain a healthy liver and kidney.

Fig. 3. Effect of Cd and puerarin on SOD (U/mgprot), CAT (U/mgprot), GSH-Px(U/mgprot) levels of rats liver and kidney (*P<0.05, **P<0.01 compared with control group, #P<0.05, ##P<0.01 compared with Cd-exposed group).

ACKNOWLEDGEMENTS

This study was supported by the Natural Science Foundation of Henan Province (No: 182300410048).

REFERENCES

exerts preventive, ameliorative and prophylactic effects on cadmium chloride-induced oxidative stress in the uterus and ovaries of female Wistar rats. *Food and Chemical Toxicology* **102**:143–55.

