Antibiotic resistance gene typing in *Staphylococcus aureus* isolated from bovine mastitis

MOHSINA MUSHTAQ¹, RAJESH AGRAWAL², MOHD. ALTAF BHAT³, RAJIV SINGH⁴ and NISHI PANDE⁵

Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, Jammu and Kashmir 180 009 India

Received: 28 February 2019; Accepted: 28 March 2019

ABSTRACT

The study was conducted to determine the antimicrobial resistance pattern of Staphylococcus aureus isolates from bovine mastitis. Milk samples (160) collected aseptically from mastitis affected cows at organized dairy farms in and around Jammu were subjected to microbial culture for the isolation and identification of S. aureus using Baird Parker Agar. Presumptive S. aureus isolates (52) were subjected to molecular confirmation through identification of species specific (nuc) gene. In vitro antimicrobial resistance pattern of the isolates against a panel of 13 selected antibiotics, using disc diffusion technique, revealed that the isolates were mostly sensitive to enrofloxacin followed by vancomycin, ciprofloxacin, tetracycline, chloramphenicol, streptomycin, ceftriaxone, erythromycin and gentamicin whereas maximum resistance was shown towards penicillin G followed by ampicillin, amoxyclav, methicillin, gentamicin, streptomycin, erythromycin, tetracycline and ceftriaxone. Methicillin resistance (MRSA) was recorded in 32.69% S. aureus isolates out of which 41.17% isolates carried mecA gene. Among the gentamicin and tetracycline resistant S. aureus isolates, 61.53% isolates carried aacA-aphD gene and 80% isolates carried tetK gene, respectively. Multidrug resistance (MDR) was observed in 71.15% S. aureus and 82.35% MRSA isolates. In conclusion, S. aureus showed maximum sensitivity to enrofloxacin thereby suggesting the use of this drug for effective treatment of mastitis but the development of resistance against this drug cannot be ruled out in the near future, hence, there is a need for accurate diagnosis of mastitis along with the correct selection of antibiotics to prevent bovine mastitis.

Key words: Antimicrobial resistance, Dairy cows, Genotypic, Mastitis, Staphylococcus aureus

Mastitis, although technically defined as any udder injury which results in inflammation of the mammary gland, is mainly caused by the microorganisms that gain entry into the teat canal and mammary tissue. About 200 different organisms are reported to cause bovine mastitis (Blowey and Edmondson 2010). Staphylococcus aureus is a contagious mastitis pathogen with a major effect on milk production and bulk tank somatic cell count (SCC) (Keefe 2012). A high prevalence (80.85%) of Staphylococcus aureus has been observed in dairy cows affected with subclinical mastitis (Yadav 2018). The prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) mastitis in dairy cattle has been recorded as 16.47% (Shrivastava et al. 2017).

A selective pressure for the emergence of antimicrobial resistant bacteria is created by the use of antimicrobials in

Present address: ¹PhD Scholar (mohsina042019@gmail.com), ²Associate Professor (rajesh.agrawal76@gmail.com), ⁴Professor and Head (rajivrajiv101@gmail.com), Division of Veterinary Medicine; ³Professor (draltafbhat@yahoo.com), Division of Veterinary Microbiology and Immunology; 5Assistant Professor (drnishi1976@gmail.com), Division of Gynecology and Obstetrics.

veterinary medicine and the bacteria selected by this pressure can spread to humans either by direct contact with animals or food products or indirectly via environmental pathways (Da Costa et al. 2013). There is a need of determining an efficient tool to use specific antibiotic which can efficiently stop and control bovine mastitis in dairy animals (Hossain et al. 2017). Keeping in view these facts and findings, the present study was conceptualized to determine the phenotypic and genotypic antimicrobial resistance of the Staphylococcus aureus isolates from mastitis affected dairy cows.

MATERIALS AND METHODS

Collection of mastitic milk samples: Lactating crossbred (HF) dairy cows were screened for clinical and sub-clinical mastitis and 160 pooled milk samples were collected from mastitic cows. After proper disinfection of the teat surface with 70% ethyl alcohol, few streams of milk from each quarter were discarded. Aseptically 10 ml of milk was collected in sterile polyethylene screw capped bottles from all the four quarters. The samples were kept in an ice box and immediately carried to the laboratory for analysis.

Isolation of Staphylococcus aureus: Enrichment of milk

samples was done using sterile peptone water (PW) enrichment broth followed by overnight incubation at 37°C. A loopful of enriched milk sample was inoculated on to a Baird-Parker agar (BPA) plate supplemented with egg-yolk tellurite emulsion and the inoculated plates were incubated at 37°C for 24–48 h.

Identification of Staphylococcus aureus isolates: All the presumptive *S. aureus* isolates were subjected to Gram's staining followed by biochemical characterization using catalase, oxidase, DNase and coagulase tests. Molecular confirmation of the *S. aureus* isolates included the detection of the species specific thermonuclease gene (*nuc* gene) using PCR.

In vitro *drug sensitivity of* S. aureus *isolates*: All the *S. aureus* isolates were examined for their antibiogram pattern against a panel of 13 antibiotics using disc diffusion method as described by Bauer *et al.* (1966).

PCR detection of nuc *and* mecA *genes in* S. aureus *isolates:* PCR amplification was performed using a 25 μl reaction containing a final concentration of 0.2 mM dNTPs, 2.5 mM MgCl₂, $1 \times$ buffer, 25 μM of each forward and reverse primer, 1 U of *Taq* polymerase, 2 μl template DNA and the sterile nuclease free water was added to make up the reaction volume. PCR amplification was performed in DNA thermal cycler. The cycling conditions included an initial denaturation of DNA at 94°C for 5 min followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 30 sec and extension at 72°C for 45 sec, followed by a final extension of 7 min at 72°C and hold at 4°C.

PCR detection of tetracycline (tetK and tetM) and gentamicin resistance genes (aacA-aphD) in S. aureus isolates: The PCR amplification was carried out in 25 μl reaction volume containing 0.5 μl of dNTPs, 2.5 μl of buffer, 0.5 μl of MgCl₂, 0.5 μl of each primer set containing forward and reverse primers, 0.3 μl of Taq DNA polymerase, 2 μl of DNA template and sterilized nuclease free water to make up the reaction volume. PCR amplification was performed using DNA thermal cycler. The cycling conditions included an initial denaturation of DNA at 94°C for 3 min followed by 30 cycles of denaturation at 94°C for 30 sec, annealing at 55°C for 30 sec and extension at 72°C for 30 sec, followed by a final extension of 4 min at 72°C and hold at 4°C.

Amplified PCR products were then electrophoresed on a 1% agarose gel in a $1\times$ tris acetate EDTA (TAE) buffer and the DNA bands were visualized under UV trans-illuminator and photographed with gel documentation system.

RESULTS AND DISCUSSION

Out of 160 pooled milk samples collected from mastitic cows, 52 (32.5%) *S. aureus* isolates were obtained on the basis of colony morphology on Baired Parker agar (BPA) (Jet black, shiny colonies surrounded with a halo zone), Gram's staining (Purple coloured, like bunches of grapes) and biochemical test interpretation (catalase positive, oxidase negative, DNase positive and coagulase positive). Similar results were obtained by Abera *et al.* (2010) who reported the presence of 59 (42.14%) *S. aureus* isolates out

of 140 milk samples obtained from bovine mastitis cases in Ethiopia.

In order to confirm the isolates on molecular basis, all the presumptive *S. aureus* isolates (52) were subjected to the identification of species specific (*nuc*) gene and the results were positive for all the isolates (100%). Similar findings were reported by KuŸma *et al.* (2003) who detected the PCR product, a single DNA band of 270 bp in all the 29 *S. aureus* strains (100%) isolated from milk samples.

The susceptibility pattern of the 52 S. aureus isolates determined by the disc diffusion method revealed highest sensitivity towards enrofloxacin (100%) followed by vancomycin (92.30%), ciprofloxacin (88.46%), tetracycline (86.53%), chloramphenicol (84.61%), streptomycin (78.84%), ceftriaxone (73.07%), erythromycin and gentamicin (67.30% each), methicillin (59.61%), amoxyclav (32.69%), ampicillin (13.46%) and penicillin G (11.53%). Isolates showed highest resistance towards penicillin G (88.46%) followed by ampicillin (84.61%), amoxyclav (67.30%), methicillin (32.69%), gentamicin (25%), streptomycin (21.15%), erythromycin (17.3%), tetracycline and ceftriaxone (9.61% each), vancomycin (7.69%), chloramphenicol (5.76%), ciprofloxacin (3.84%) and enrofloxacin (0%). This can be explained by the fact that the newer chemotherapeutic agents like enrofloxacin, vancomycin, ciprofloxacin and chloramphenicol are less commonly used for the treatment of mastitis resulting in higher efficacy of these drugs while the frequent use of some antibiotics like penicillin, streptomycin, amoxyclav and methicillin in animals could be the reason for their ineffectiveness against bacterial isolates. Similar antibiogram pattern was reported by Kumar et al. (2011) who observed highest sensitivity to vancomycin (100%). Bhat et al. (2017) reported similar antibiotic sensitivity pattern of isolates recovered from clinical mastitis cases in bovines of Jammu region with maximum sensitivity of the isolates towards enrofloxacin, gentamicin, amoxicillin/ sulbactam, ceftriaxone/tazobactam, ceftizoxime, ampicillin/ sulbactam and least sensitivity towards oxytetracycline and penicillin. Chandrasekaran et al. (2014) also reported maximum sensitivity of S. aureus isolates towards enrofloxacin (79.8%) and highest resistance towards penicillin (63.5%). In the present study, out of 52 S. aureus isolates, methicillin resistance (MRSA) was recorded in only 17 (32.69%) isolates. Susceptibility pattern of the MRSA isolates to other antibiotics is shown in Table 1. The present findings were in accordance with those of Joshi et al. (2013) who observed 100% susceptibility of MRSA isolates towards Vancomycin.

Multidrug resistance (MDR) i.e. resistance to 3 or more than 3 antibiotics in *S. aureus* and MRSA isolates is shown in Table 2. MRSA strains are multidrug resistant (MDR) owing to the carriage of other resistance genes on the cassette chromosome harbouring the *mec*A gene (Holmes and Zadoks 2011). Our findings are in accordance with those of Kozerski *et al.* (2014) who reported that 12 (24.50%) isolates (7 *S. aureus* and 5 CoNS) were resistant to more

Antibiotic	Resistant		Intermediate		Sensitive	
	n	%	n	%	n	%
Tetracycline (TE)	3	17.64	2	11.76	12	70.58
Erythromycin (E)	6	35.29	4	23.52	7	41.17
Ceftriaxone (CTR)	5	29.41	4	23.52	8	47.05
Gentamicin (GEN)	7	41.17	2	11.76	8	47.05
Vancomycin (VA)	0	0	0	0	17	100
Chloramphenicol (C)	0	0	3	17.64	14	82.35
Ciprofloxacin (CIP)	2	11.76	1	5.88	14	82.35
Penicillin G (P)	16	94.11	0	0	1	5.88
Amoxyclav (AMC)	13	76.47	0	0	4	23.52
Ampicillin (AMP)	16	94.11	0	0	1	5.88
Enrofloxacin (EX)	0	0	0	0	17	100
Streptomycin (S)	2	11.76	0	0	15	88.23

Table 1. Antibiotic sensitivity pattern of MRSA (17 isolates) recorded phenotypically

Table 2. Multi-drug resistance (MDR) pattern of *S. aureus* isolates and MRSA strains

No. of antimicrobials		aureus isolates)	MRSA (17 isolates)		
	n	%	N	%	
3	13	25	4	23.52	
>3	24	46.15	10	58.82	
Total	37	71.15	14	82.35	

than three classes of antibiotics. On the contrary, Umaru *et al.* (2016) reported higher (96.4%) prevalence of MDR in *S. aureus* isolates. Methicillin-resistant *Staphylococci* frequently show multiple resistance to several classes of antimicrobial agents, including aminoglycosides, clindamycin, macrolides, quinolones, sulfonamides and tetracycline (CLSI 2012), leaving only vancomycin as the drug of choice against these agents.

Genotypically, methicillin resistance was detected in only 7 (41.17%) isolates out of 17 MRSA isolates detected phenotypically. It was based on the PCR amplification of the mecA gene at 532 bp. Our findings corroborate with those of Koupahi $et\ al.\ (2016)$ who observed the presence of mecA gene in 105 (47.72%) out of 220 $S.\ aureus$ isolates. Similar findings were reported by Havaei $et\ al.\ (2015)$ who identified 10 (18.52%) mecA positive out of 54 $S.\ aureus$ isolates. These results suggest the presence of some other genes like mecC responsible for methicillin resistance in MRSA isolates as reported by Paterson $et\ al.\ (2014)$. Other reason includes the over production of β -lactamase enzyme (Sancak 2000, Olayinka $et\ al.\ 2009$).

Among the 13 *S. aureus* isolates which were phenotypically resistant to gentamicin, *aacA-aphD* gene was observed in only 8 (61.53%) isolates. The gene *aacA-aphD* codes for a bifunctional enzyme that shows acetyl transferase and phospho transferase activity and confers resistance to gentamicin, kanamycin and tobramycin. It is speculated that intrinsic antibiotic resistance, being the naturally low permeability of the bacterial cell wall, which limits uptake of many antibiotics including amino-

glycosides, is responsible for the other 5 isolates that did not show amplicons of the investigated target gene in this study. These findings corroborate with those of Pekana and Green (2018) who found that among the 15 *S. aureus* isolates which were phenotypically resistant to gentamicin, only 5 (33.3%) isolates carried gentamicin resistance genes. Similarly, Amandeep (2016) found that out of the 83 *S. aureus* isolates, 47 isolates were positive for *aacA-aphD* gene by PCR yielding 227 bp amplicon.

For tetracycline resistance, out of the 5 phenotypically resistant isolates, tetK gene was found in only 4 (80%) isolates while as none (0%) of the isolates carried tetM gene. These results were in accordance with those of Shamila-Syuhada et~al. (2016) who found tetK gene in only 33.3% of the phenotypically resistance tetracycline S.~aureus isolates while as tetM gene was not detected at all. Similar to this, Amandeep (2016) found 25 S.~aureus isolates positive for tetracycline resistant genes, among which 24 isolates were tetK and 1 isolate was tetM positive.

The present study concludes that *S. aureus*, the major causative agent for contagious bovine mastitis, is highly sensitive towards enrofloxacin and hence this drug is a good choice for treatment of bovine mastitis. However, presence of methicillin resistant *S. aureus* (MRSA) and detection of multidrug resistance (MDR) in *S. aureus* and MRSA isolates indicates a major zoonotic threat that needs to be addressed for the prevention of mastitis in dairy cows.

REFERENCES

Abera M, Demie B, Aragaw K, Regassa F and Regassa A. 2010. Isolation and identification of *Staphylococcus aureus* from bovine mastitic milk and their drug resistance patterns in Adama town, Ethiopia. *Journal of Veterinary Medicine and Animal Health* 2: 29–34.

Amandeep. 2016. 'Molecular characterization of antibiotic resistant *Staphylococcus aureus* of milk and milk products origin'. MVSc Thesis, Guru Angad Dev Veterinary and Animal Sciences University, Punjab.

Bauer A W, Kirby W M M, Sherris J C and Turck M. 1966. Antibiotic susceptibility testing by a standardized single disc diffusion method. American Journal of Clinical Pathology 45:

- 493-96.
- Bhat A M, Soodan J S, Singh R, Dhobi I A, Hussain T, Dar M Y and Mir M. 2017. Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. *Veterinary World* **10**(25): 2231–916.
- Blowey R W and Edmondson P. 2010. *Mastitis Control in Dairy Herds*. 2nd edn. Academic Press, Winslow, UK.
- Chandrasekaran D, Nambi A P, Thirunavukkarasu P S, Vairamuthu S, Venkatesan P and Tirumurugaan K G. 2014. A study on treatment of resistant mastitis in dairy cows. *Journal of Applied Research in Clinical and Experimental Therapeutics* **6**(2): 786–91.
- Clinical Laboratory Standards Institute (CLSI). 2012. Performance Standards for Antimicrobial Susceptibility Testing. 15th Informational Supplement. CLSI/NCCLS document. Pennsylvania, USA.
- Da Costa P M, Loureiro L and Matos A J. 2013. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. *International Journal of Environmental Research* and Public Health 10: 278–94.
- Havaei S A, Assadbeigi B, Esfahani B N, Hoseini N S, Rezaei N and Havaei S R. 2015. Detection of *mecA* and enterotoxin genes in *Staphylococcus aureus* isolates associated with bovine mastitis and characterization of Staphylococcal cassette chromosome mec (SCCmec) in MRSA strains. *Iranian Journal of Microbiology* 7(3): 161–67.
- Holmes M A and Zadoks R N. 2011. Methicillin resistant *S. aureus* in human and bovine mastitis. *Journal of Mammary Gland Biology and Neoplasia* **16**: 373–82.
- Hossain M, Paul S, Hossain M, Islam and Alam. 2017. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. *Austin Journal of Veterinary Science and Animal Husbandry* 4(4): 1030–31.
- Joshi S, Ray P, Manchanda V, Bajaj J, Chitnis D S, Gautam V, Goswami P, Gupta V, Harish B N, Kagal A, Kapil A, Rao R, Rodrigues C, Sardana R, Devi K S, Sharma A and Balaji V. 2013. Methicillin resistant *Staphylococcus aureus* (MRSA) in India: Prevalence and susceptibility pattern. *Indian Journal of Medical Research* 137(2): 363–69.
- Keefe G. 2012. Update on control of *Staphylococcus aureus* and *Streptococcus agalactiae* for management of mastitis. *Veterinary Clinics of North America: Small Animal Practice* **28**: 203–16.
- Koupahi H, Jahromy S H and Rahbar M. 2016. Evaluation of different phenotypic and genotypic methods for detection of methicillin resistant *Staphylococcus aureus* (MRSA). *Iranian Journal of Pathology* 11(4): 370–66.

- Kozerski N D, Oliveira J L P D, Moura R A, Silva D R D, Oliveira A F D, Mello P L, Agostinis R O, Goncalves D D, Otutumi L K and Martins L D A. 2014. Antimicrobial profile of multidrug resistant *Staphylococcus* spp. isolated from bovine mastitis cases in the northwest region of Parana state, Brazil. *African Journal of Microbiology Research* 8(37): 3392–97.
- Kumar R, Yadav B R and Singh R S. 2011. Antibiotic resistance and pathogenicity factors in *Staphylococcus aureus* isolated from mastitic Sahiwal cattle. *Journal of Biological Sciences* **36**: 175–88.
- KuŸma K, Malinowski E, Lassa H and K³ossowska A. 2003. Specific detection of *Staphylococcus aureus* by PCR in intramammary infection. *Bulletin of the Veterinary Institute in Pulawy* 47: 183–90.
- Olayinka B O, Olayinka A T, Obajuluwa A F, Onaolapo J A and Olurinola P F. 2009. Absence of *mecA* gene in methicillin-resistant *Staphylococcus aureus* isolates. *South African Journal of Infectious Diseases* **3**(2): 49–56.
- Paterson G K, Harrison E M and Holmes M A. 2014. The emergence of *mecC* methicillin-resistant *Staphylococcus* aureus. Trends in Microbiology **22**(1): 42–47.
- Pekana A and Green E. 2018. Antimicrobial resistance profiles of *Staphylococcus aureus* isolated from meat carcasses and bovine milk in abattoirs and dairy farms of the Eastern Cape, South Africa. *International Journal of Environmental Research and Public Health* 15: 2223.
- Sancak B. 2000. S. aureus'dametisilindirençmekanizmalari. Mikrobiyoloji Bulteni 34: 381-89.
- Shamila-Syuhada A K, Rusul G, Wan-Nadiah W A and Chuah L O. 2016. Prevalence and antibiotics resistance of Staphylococcus aureus isolates isolated from raw milk obtained from small-scale dairy farms in Penang, Malaysia. Pakistan Veterinary Journal 36(1): 98–102.
- Shrivastava N, Sharma V, Nayak A, Shrivastava A B, Sarkhel B C, Shukla P C and Shrivastava A. 2017. Prevalence and characterization of methicillin-resistant *Staphylococcus aureus* (MRSA) mastitis in dairy cattle in Jabalpur, Madhya Pradesh. *Journal of Animal Research* 7(1): 77–84.
- Umaru G A, Kwaga J K P, Bello M, Raji M A and Maitala Y S. 2016. Antibiotic resistance of *Staphylococcus aureus* isolated from fresh cow milk in settled Fulani herds in Kaduna state, Nigeria. *Bulletin of Animal Health and Production in Africa* 64: 173–82.
- Yadav M M. 2018. Prevalence of *Staphylococcus aureus* in lactating cows with sub-clinical mastitis and their antibiogram in Organized Dairy Farm, Maharashtra, India. *International Journal of Current Microbiology and Applied Sciences* 7(3): 3674–80.