Effect of molasses based multi-nutrient herbal supplements on hematobiochemicals, serum lipid, antioxidants and hormonal profile in buffalo calves

PUNITA KUMARI¹, P SINGH², A K VERMA³, G K GAUR⁴ and A DAS⁵

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 23 March 2019; Accepted: 10 April 2019

ABSTRACT

Effect of molasses based multinutrients herbal supplements (MMS) containing ground fenugreek seed and deoiled mahua seed cake at two different ratios (1:1; MMS-I or 1:3; MMS-II) on hematobiochemicals, serum lipid, antioxidants and hormonal profile in male buffalo calves was assessed for 9 months. Fifteen male Murrah buffalo calves (10 to 15 months of age and mean body wt. 234–236 kg) were randomly distributed into 3 groups (5 each) according to Randomized Block Design (RBD). All animals were fed individually with conventional concentrate mixture, available green fodder (3–4 kg DM/d) and wheat straw *ad lib*. to meet out nutrients requirement. While animals in control group (C) were fed no supplement but animal's diet in group T₁ and T₂ supplemented with MMS-I and MMS-II, respectively at 44 g/100 kg body weight or 200 g /100 kg metabolic body weight (kgW^{0.75}). The values of Hb, PCV, RBC, WBC, platelets count, serum total protein, uric acid, creatinine, urea level, total cholesterol, triglyceride, high density lipoprotein (HDL) and T₃ hormone level were comparable among 3 groups. Serum glucose, globulin, antioxidants and testosterone levels were significantly increased but serum albumin, A/G ratio, low density lipoprotein (LDL) and cortisol levels were significantly decreased among supplemented groups as compared to control group and hormone T₄ was significantly higher in T₁ group. The results showed that supplementation of MMS-I and MMS-II in the diet of buffalo calves improved serum glucose, globulin, antioxidants, T₄ and testosterone levels but lower albumin, A/G ratio, LDL and cortisol.

Key words: Blood biochemical, Buffalo calves, Deoiled mahua seed cake, Fenugreek seed, Haematology

The WHO encourages using medicinal herbs and plants to substitute or minimize the use of chemicals through the global trend to go back to nature (WHO 2004). Using medicinal herbs and seeds as feed additives to ruminants seem to be a recent trend globally (Singh et al. 1993, Wanapat et al. 2015). Molasses based supplements have been developed as a scarcity feed (Ranjhan et al. 1973, Verma et al. 1995). Moreover, attention is being paid on herbal feed supplements using fenugreek seed and deoiled mahua seed cake (DMSC) that may either influence feeding pattern, growth of favorable microorganisms in the rumen or stimulate the secretion of various digestive enzymes, which in turn may improve the efficiency of nutrients utilization, resulting in improved production and reproductive performance of animals (Ojha et al. 2012, Inamdar et al. 2015, Kumar 2015, Ankita et al. 2016).

Fenugreek is abundant in polyphenolic compounds

Present address: ¹PhD Scholar (puneeta.kri@gmail.com), ²Principal Scientist (putan60@gmail.com), ³Head and Director (vermaak62@gmail.com), Animal Nutrition Division; ⁴Principal Scientist (gyanendrakg@gmail.com), Livestock and Production Management Division, ICAR-IVRI, Izatnagar, Uttar Pradesh. ⁵Principal Scientist (drasitdas@rediffmail.com), ICAR-NDRI, Karnal.

(Rayyan et al. 2010), has anti-microbial, hypoglycemic (Broca et al. 2000), hypolipidemic, hypocholestoremic (Sowmya and Rajyalakshmi 1999), anticancer, antiulcer, anthelmintic and antioxidant effect on animals (Xue et al. 2007), contains alkaloids like trigonelline, flavonoids and saponins (3–5%) (Singh and Garg 2006). Deoiled mahua seed cake (DMSC) is also good source of saponins, and tannins (Singh and Singh 1991). So fenugreek and DMSC can effectively be used as a functional feed and can be employed as excellent source of tannins and saponins as well as intact protein. Thus, the present experiment was designed to assess the effect of molasses based multinutrients herbal supplements (MMS-I and II) on hematobiochemicals, serum lipid, antioxidants and hormonal profile in buffalo calves.

MATERIALS AND METHODS

Animal's management and experimental feeding: Healthy male Murrah buffalo calves (15) of about 10–15 months of age and mean body wt. 234±12.48 kg were used for the experiment. Proper health management and sanitation conditions were maintained and provision of both open and close enclosures throughout the experimental period of 9 months. Animals were randomly divided into 3

groups of 5 each following randomized block design. All animals were supplied with available green fodder (3–4 kg DM/d), wheat straw *ad lib*. and a conventional concentrate mixture (45% wheat bran, 17% deoiled soybean meal, 17% crushed maize, 18% crushed barley, 2% mineral mixture, 1% common salt) to meet out their nutrients requirement (ICAR 2013). In groups T₁ and T₂, MMS-I and MMS-II in form of laddoo (small ball shape) was given @ 44 g/100 kg body weight or 200 g/100 kgW^{0.75} respectively as serving by hand. MMS-I and II consisted (%) of molasses (49 and 49), ground fenugreek seed (24.50 and 12.25), DMSC (24.50 and 36.75) and mineral mixture (2 and 2),

respectively. Each animal received weighed amount of feed (concentrate mixture, green fodder and wheat straw) once daily at 9–11 AM. All animals had free access to clean drinking water throughout the day. Feed samples were analyzed for dry matter and crude protein following standard procedures (AOAC 2005).

Collection and analysis of blood: Blood from all animals was collected before feeding and watering at 0, 90,180 and 270 days of experimental period by puncturing the jugular vein with the help of a clean sterilized needle into two separate test tubes. The first test tube contained sodium EDTA and second one without anticoagulant was used. By

Table 1. Chemical composition (% on DM basis) of different feed ingredients

Particular	CM	GF	WS	MMS- I	MMS- II	FS	DMSC
Dry matter (%)	88.55	23.84	92.76	83.57	84.47	88.61	90.03
OM	94.09	89.10	92.13	86.22	84.60	96.45	78.48
CP	17.73	9.18	3.49	21.94	22.25	29.53	32.65
EE	2.44	2.90	1.04	1.33	1.19	3.28	0.43
NDF	38.18	63.77	78.26	29.22	30.20	37.26	41.99
ADF	13.03	46.97	56.11	16.07	17.54	15.80	32.35
Hemicellulose	25.15	16.80	22.15	13.15	12.66	21.46	9.64
Cellulose	7.17	39.46	47.43	10.03	9.92	13.34	24.89
Lignin	5.86	7.50	8.68	6.04	7.62	2.47	7.46

CM, Concentrate mixture; GF, green fodder; WS, wheat straw; MMS, molasses based multi-nutrients herbal supplement; FS, fenugreek seed and DMSC, Deoiled mahua seed cake.

Table 2. Haematological parameters in male buffalo calves

Treatment		Period	(days)		Mean±SE	SEM	T	P	T*P
	0	90	180	270					
Hb (g/dl)									
C	13.04±0.13	13.22±0.32	13.26±0.34	13.29±0.32	13.20±0.14	0.09	0.22	0.17	0.99
T_1	13.12±0.25	13.62±0.36	13.76±0.29	13.82±0.16	13.58±0.14				
T_2	13.08±0.36	13.44±0.49	13.60±0.28	13.72±0.25	13.46±0.17				
Mean	13.08±0.14	13.43±0.22	13.54±0.17	13.61±0.15					
<i>PCV</i> (%)									
C	33.79 ± 3.95	34.01±2.33	34.13±2.99	34.19±1.27	34.03±1.29	0.83	0.68	0.76	1.00
T_1	33.90±2.58	35.28±3.90	36.36±2.39	37.67 ± 2.55	35.80±1.38				
T_2	33.82 ± 3.95	34.24±3.27	35.91±1.95	36.72±1.76	35.17±1.35				
Mean	33.84±1.90	34.51±1.73	35.47±1.35	36.19±1.10					
RBC (10 ¹² /L	.)								
C	6.27±0.33	6.36±0.25	6.46±0.46	6.79±0.22	6.47 ± 0.16	0.10	0.30	0.02	0.99
T_1	6.36±0.45	6.71±0.53	6.82 ± 0.27	7.50 ± 0.26	6.85 ± 0.20				
T_2	6.32 ± 0.40	6.61±0.39	6.70 ± 0.14	7.39 ± 0.35	6.76±0.18				
Mean	$6.32^{B} \pm 0.21$	$6.56^{B} \pm 0.22$	$6.66^{AB} \pm 0.17$	$7.23^{A}\pm0.17$					
WBC (10 ⁹ /L))								
C	13.42±0.30	13.58±0.39	13.62±0.32	13.76±0.40	13.59±0.17	0.11	0.57	0.37	1.00
T_1	13.50±0.38	13.82±0.35	14.02±0.44	14.14±0.30	13.87±0.18				
T_2	13.46±0.34	13.68±0.36	13.86±0.34	14.04±0.46	13.76±0.18				
Mean	13.46±0.18	13.69±0.20	13.83±0.20	13.98±0.21					
Platelets (10) ⁹ /L)								
C	226.40±22.43	227.40±8.60	228.20±7.68	228.80±13.82	227.70±6.60	3.45	0.95	0.98	1.00
T_1	227.20±4.85	229.80±12.38	231.20±5.41	233.20±10.70	230.35±4.14				
T_2	227.80±5.07	228.40±15.38	230.20±3.73	231.40±17.08	229.45±5.48				
Mean	227.13±7.26	228.53±6.65	229.87±3.14	231.13±7.56					

A,BMean with different superscripts within a row differ significantly (P<0.05).

centrifuging the second test tube samples at 2,000 rpm for 20 min, serum was separated carefully so that no hemolysis occurred and was stored at -20°C for further analysis. Whole blood was analyzed using BC-2800 Vet Auto Haematological Analyzer. The haematological parameters determined by analyzer were haemoglobin, PCV, RBC, WBC and platelets immediately within one hour of blood collection. Serum samples were analyzed for glucose, uric acid, total cholesterol, triglyceride, HDL and LDL (Trinder 1969), total protein (Doumas 1975), albumin and determination of globulin is by difference between total protein and albumin (Doumas *et al.* 1971), creatinine (Bowers 1980) and urea (Wynbenga *et al.* 1971) using

commercial kits (Coral Clinical Systems, India). Superoxide dismutase (SOD) (Marklund 1980), catalase (CAT) (Wheeler *et al.* 1990) and glutathione reductase (GR) (Inoue *et al.* 1987) were determined by using Cayman's Assay kits. Trioiodothyronine (T₃), thyroxine (T₄), cortisol and testosterone were determined by using RIA kits supplied by Immunotech, France.

Statistical analysis: Data pertaining to hematobiochemical, serum lipid, antioxidants and hormonal profile was subjected to general linear model (GLM)-univariate or multivariate analysis to separate the effect of treatment, day of sampling and their interaction. Treatment means were separated by Duncan's, multiple range test and the

Table 3. Serum biochemical parameters in male buffalo calves

Treatment		Period	(days)		Mean±SE	SEM	T	P	T*P
	0	90	180	270					
Glucose (mg/a	<u></u>								
C	42.45±1.60	42.57±9.72	43.39±2.19	43.78±1.67	$43.05^{b}\pm2.35$	1.26	0.03	0.20	0.94
T_1	44.23±3.51	50.35±4.73	53.47±2.69	55.91±4.34	50.99a±2.05				
T_2	44.16±3.40	49.66±4.66	51.99±3.62	53.01±4.01	49.71a±1.98				
Mean	43.61±1.60	47.52±3.75	49.62±1.95	50.90±2.34					
Protein (g/dl)									
C	7.49 ± 0.23	7.51±0.15	7.53 ± 0.21	7.54 ± 0.22	7.52 ± 0.10	0.07	0.40	0.31	0.95
T_1	7.47 ± 0.35	7.60 ± 0.25	7.82 ± 0.20	8.04 ± 0.08	7.73 ± 0.12				
T_2	7.48±0.25	7.59 ± 0.30	7.73 ± 0.23	7.89 ± 0.15	7.67±0.11				
Mean	7.48 ± 0.15	7.57 ± 0.13	7.69 ± 0.12	7.82 ± 0.10					
Albumin (g/dl)									
C	3.81±0.08	3.82±0.08	3.80 ± 0.08	3.82 ± 0.07	3.81a±0.04	0.02	< 0.01	< 0.01	0.13
T_1	3.80±0.07	3.53±0.10	3.49±0.12	3.35±0.06	$3.54^{b} \pm 0.06$				
T_2^1	3.80±0.07	3.59±0.08	3.52±0.08	3.39 ± 0.05	$3.57^{b} \pm 0.05$				
Mean	$3.80^{A} \pm 0.04$	$3.64^{B} \pm 0.06$	$3.60^{B} \pm 0.06$	$3.52^{B} \pm 0.07$					
Globulin (g/dl									
C	3.68±0.30	3.70 ± 0.10	3.72±0.21	3.72 ± 0.22	$3.71^{b} \pm 0.10$	0.07	0.02	0.03	0.64
T_1	3.67±0.42	4.07±0.34	4.33±0.15	4.68±0.12	4.19 ^a ±0.16				
T_2	3.68±0.30	4.01±0.29	4.22±0.23	4.50±0.19	4.10 ^a ±0.14				
Mean	$3.68^{B} \pm 0.18$	$3.93^{AB} \pm 0.15$	$4.09^{AB} \pm 0.13$	4.30 ^A ±0.15					
A/G ratio									
C	1.07±0.12	1.03±0.03	1.04 ± 0.07	1.04±0.07	1.05a±0.04	0.02	0.01	< 0.01	0.46
T_1	1.11±0.16	0.90 ± 0.09	0.81 ± 0.04	0.72 ± 0.03	$0.88^{b} \pm 0.05$				
T_2	1.07±0.10	0.91±0.07	0.84±0.06	0.76±0.04	$0.90^{b} \pm 0.04$				
Mean	1.08 ^A ±0.07	$0.95^{AB} \pm 0.04$	$0.90^{B} \pm 0.04$	$0.84^{B} \pm 0.05$					
Uric acid (mg/									
C	2.03±0.25	1.54±0.14	2.25±0.19	1.99±0.14	1.95±0.10	0.06	0.65	0.12	0.56
T_1	2.21±0.13	1.89±0.20	2.04±0.21	1.69±0.23	1.96±0.10				
T_2	2.00±0.25	1.65±0.25	1.77±0.10	1.92±0.32	1.84±0.12				
Mean	2.08±0.12	1.70±0.11	2.02±0.11	1.87±0.13					
Creatinine (m)									
C	0.71±0.23	0.55 ± 0.07	1.07±0.16	1.05±0.15	0.84 ± 0.09	0.05	0.95	< 0.01	0.85
T_1	0.56±0.16	0.76±0.22	0.88±0.18	1.03±0.10	0.81±0.09				
T_2	0.51±0.06	0.75±0.10	0.92±0.21	1.11±0.16	0.82±0.08				
Mean	$0.59^{B} \pm 0.09$	$0.69^{B} \pm 0.08$	$0.96^{A} \pm 0.10$	1.06 ^A ±0.07	3.0220.00				
Urea (mg/dl)		2.02 =0.00		=					
C (<i>mg/ati</i>)	29.32±0.60	30.35±1.33	31.17±0.82	32.22±1.08	30.77±0.52	0.38	0.17	0.01	0.99
T_1	30.33±2.19	31.93±0.88	33.36±1.05	33.78±0.86	32.35±0.70				/
T_2	29.61±2.55	31.51±0.85	33.81±0.94	33.99±0.97	32.23±0.70				
Mean	29.76 ^B ±1.06	31.27 ^{AB} ±0.58	32.78 ^A ±0.59	33.33 ^A ±0.56	32.23±0.00				

 $^{^{}a,b}$ Mean values with different superscripts within a column differ significantly (P<0.01) (P<0.05). A,B Mean values with different superscripts within a row differ significantly (P<0.01) (P<0.05).

Table 4. Serum lipid profile in male buffalo calves

Treatment		Period (days)		Mean±SE	SEM	T	P	T*P
	0	90	180	270					
Cholesterol (mg/d	(1)								
C	60.76±4.41	73.95±2.97	78.89±0.89	73.40±4.31	71.75±2.21	0.97	0.37	< 0.01	0.33
T_1	64.99±3.52	71.85 ± 2.43	76.24±2.50	70.12±2.65	70.80±1.59				
T_2	67.02±4.00	72.04±5.11	71.11±3.65	63.59±1.04	68.44±1.89				
Mean	$64.26^{\circ}\pm 2.25$	72.61 ^{AB} ±1.99	75.42 ^A ±1.64	69.04 ^{BC} ±1.93					
Triglyceride (mg/c	dl)								
C	34.84±3.74	27.45±3.24	30.52±1.61	39.78±1.72	33.15±1.65	0.74	0.11	< 0.01	0.06
T_1	36.27±1.19	28.70±3.19	31.71±2.77	28.45±1.25	31.28±1.27				
T_2	36.59±3.99	26.13±1.63	27.45 ± 2.78	26.70±1.08	29.22±1.55				
Mean	35.90 ^A ±1.74	$27.43^{B} \pm 1.52$	29.89 ^B ±1.39	$31.64^{B}\pm1.71$					
HDL (mg/dl)									
C	36.93±3.80	43.37±1.29	44.60±1.45	38.13±2.10	40.76±1.33	0.74	0.32	< 0.01	0.98
T_1	37.78±2.32	44.16±1.79	45.25±0.79	41.78±2.97	42.24±1.17				
T_2	39.13±2.17	47.07±4.12	47.99±1.02	39.93±3.97	43.53±1.69				
Mean	37.95 ^B ±1.55	44.87 ^A ±1.50	45.95 ^A ±0.72	39.95 ^B ±1.71					
LDL (mg/dl)									
C	16.86±1.91	25.10±3.24	28.19±1.78	29.31±4.59	24.86a±1.81	0.78	0.02	0.18	0.15
T_1	19.96±2.43	21.95±2.16	24.65±2.49	22.65±1.49	22.30ab±1.07				
T_2	20.57±2.00	19.74±2.50	17.64±2.91	18.33±3.52	19.07 ^b ±1.31				
Mean	19.13±1.22	22.26±1.54	23.49±1.75	23.43±2.20					

 $^{^{}a,b}$ Mean values with different superscripts within a column differ significantly (P<0.01) (P<0.05). A,B,C Mean values with different superscripts within a row differ significantly (P<0.01) (P<0.05).

Table 5. Serum antioxidant status of male buffalo calves in different groups

Parameter		Day	/S		Mean	SEM	T	P	T*P
	0	90	180	270					
SOD (U/l)									
C	23.41±2.81	21.25±1.77	21.86±1.17	22.08±2.64	$22.15^{b}\pm1.03$	0.74	< 0.01	0.04	0.36
T1	25.66±4.25	29.46±1.83	32.62±2.66	34.28±2.66	30.50a±1.56				
T2	22.01±3.05	26.16±1.76	30.02±1.70	31.92 ± 2.80	27.53a±1.41				
Mean	$23.69^{B} \pm 1.88$	$25.62^{AB} \pm 1.31$	28.17 ^A ±1.61	29.42 ^A ±2.02					
Catalase (na	mol/min/ml)								
C	30.15±3.50	30.96±7.14	32.17±4.37	34.94±1.57	$32.05^{b}\pm2.15$	1.25	0.02	0.00	0.27
T1	30.93 ± 2.31	33.35 ± 3.12	44.10±5.16	53.44±2.14	40.46a±2.59				
T2	29.12±3.17	32.82±1.57	42.37±4.17	53.14±7.90	39.36a±3.07				
Mean	$30.07^{C} \pm 1.63$	$32.38^{C} \pm 2.47$	$39.55^{B} \pm 2.83$	47.17 ^A ±3.46					
Glutathione	reductase (nmo	l/min/ml)							
C	55.52±2.19	56.03±1.80	56.54±2.19	57.05±5.84	56.29b±1.58	0.91	0.05	< 0.01	0.55
T1	55.01±2.50	59.09±3.16	62.14±3.08	68.77±2.55	61.25a±1.74				
T2	54.50±3.47	59.60±2.36	61.64±4.06	67.75±2.62	60.87a±1.83				
Mean	$55.01^{B}\pm1.49$	$58.24^{B} \pm 1.40$	$60.11^{AB} \pm 1.84$	$64.52^{A}\pm2.55$					

^{a,b}Mean values with different superscripts within a column differ significantly (P<0.01)(P<0.05). ^{A,B,C}Mean values with different superscripts within a row differ significantly (P<0.01) (P<0.05).

differences were considered to be significant (P<0.05). All data analyses were performed using statistical package of SPSS (20.0).

RESULTS AND DISCUSSION

The chemical composition of the different feed ingredients is shown in Table 1. The overall means for Hb (g/dl), PCV (%), RBC, WBC and platelets count were similar among the groups (Table 2). However, significant

period effects (P<0.05) were evident with regards to RBC. The values were within normal physiological range throughout the experimental period (Abd Ellah *et al.* 2013). Saponins having the haemolytic properties (Hassan *et al.* 2007) and they may lower the Hb level in the blood of the animal but levels of Hb observed in the present study were within the normal physiological range (Abd Ellah *et al.* 2013), which was also reported previously (Hb, 9–15 g/dl and PCV, 27–45%) in crossbred calves (Radostits *et al.*

2007, Ojha *et al.* 2012) and in male buffaloes (Inamdar *et al.* 2015).

There was significantly (P<0.05) higher level with respect to serum glucose (mg/dl) among the supplemented groups (Table 3). This is in agreement to the findings of Elalamy *et al.* (2001) and Abo El Nor *et al.* (2007) who reported significantly increased (P<0.05) blood glucose in buffaloes. Conversely, Ojha *et al.* (2012) in male crossbred calves, Inamdar *et al.* (2015) in male buffaloes and Ankita (2016) in buffalo heifers did not find any change in serum glucose levels.

There was non-significant difference with respect to serum total protein, uric acid, creatinine and urea level among different groups but serum creatinine and urea level varied significantly periodically. The values obtained were within the normal range. Albumin (g/dl) level was significantly lower (P<0.05) among supplemented groups (T₁ and T₂) than control but in case of globulin, levels were significantly increased (P<0.05) among supplemented group with respect to control. The A/G ratio depends upon albumin and globulin concentration and levels significantly decreased (P<0.01) among supplemented groups and it was also varied periodically (Table 3). Higher globulin production can be considered as an improvement in the immune status of animals (Matanovic et al. 2007, Kumari 2017). This is in well agreement to the findings of Hassan and Abdel-Raheem (2013) in buffalo calves. Ojha et al. (2012) in male crossbred calves and Inamdar et al. (2015) in male buffaloes did not get any difference in total protein, albumin, globulin, A/G ratio, uric acid, creatinine and urea level.

There were nonsignificant differences with respect to total cholesterol, triglyceride and HDL levels among the 3 groups but varied significantly periodically. LDL (lowdensity lipoprotein), sometimes called 'bad' cholesterol, makes up most of body's cholesterol. High levels of LDL cholesterol raise your risk for heart disease and stroke. But in present study, LDL (mg/dl) was found significantly lower (P<0.05) in supplemented groups $(T_1 \text{ and } T_2)$ than control group (Table 4). The finding was well corroborated with the results of Abo El Nor et al. (2007) in lactating buffalo and Kumar (2015) in kids. Fenugreek seeds contain compounds known as steroidal saponins that inhibit both cholesterol absorption in the intestine and cholesterol production by the liver. Hence, it is possible that fenugreek lowers serum lipids because it contains saponins that are transformed in the gastrointestinal tract into sapogenins. Thus, saponins reduced the more harmful LDL-cholesterol selectively in the serum of rats, gerbils and human subjects (Potter et al. 1993).

In the present study, the mean value of SOD, catalase and glutathione reductase was found significantly higher in T_1 and T_2 groups (Table 5). The present finding was well correlated with the result of Ankita (2016) and Patil (2017) in buffalo heifers and lactating Murrah buffaloes respectively. Beneficial effects on serum antioxidant status were related to a direct saponin antioxidant activity.

There was non-significant differences with respect to T_3 (nM/L) levels among the groups but varied significantly periodically. T_4 (nM/L) significantly higher (P<0.01) in T_1 than control and T_2 groups. Cortisol (nM/L) level was significantly lower (P<0.05) and testosterone (ng/mL) level

Table 6. Serum hormone profile of male buffalo calves

Parameter		Period	(days)		Mean±SE	SEM	T	P	T*P
	0	90	180	270					
T ₃ (nM/L)									
C	2.07 ± 0.10	2.30 ± 0.11	2.14 ± 0.09	1.68 ± 0.04	2.05 ± 0.07	0.04	0.47	< 0.01	0.09
T_1	2.11±0.19	2.20 ± 0.19	1.97±0.17	2.06 ± 0.06	2.09 ± 0.08				
T_2	2.32 ± 0.08	2.07 ± 0.17	1.68±0.10	1.80 ± 0.20	1.97±0.09				
Mean	$2.17^{A} \pm 0.08$	$2.19^{A}\pm0.09$	$1.93^{B} \pm 0.08$	$1.84^{\mathrm{B}} \pm 0.08$					
T_4 (nM/L)									
C	51.73±2.74	43.65±6.80	36.85±3.07	34.75±3.63	$41.74^{b}\pm2.52$	1.39	0.01	< 0.01	0.07
T_1	56.79±3.61	48.31±6.62	42.73±5.03	59.76±2.52	51.90a±2.66				
T_2	41.95±6.47	44.58±4.70	33.38±4.33	54.71±5.49	$43.65^{b}\pm2.30$				
Mean	$50.16^{A} \pm 2.94$	$45.52^{AB} \pm 3.31$	$37.65^{B} \pm 2.48$	49.74 ^A ±3.61					
Cortisol (nl	M/L)								
C	88.03±14.83	84.16±18.81	91.32±6.04	97.47±6.37	90.24a±5.96	3.20	< 0.05	0.36	0.47
T_1	85.69±12.34	79.33±9.17	72.96±13.30	50.16±5.23	$72.03^{b} \pm 5.71$				
T_2	87.32±13.83	74.91±7.39	69.01±9.98	64.59±6.30	$73.96^{b} \pm 4.91$				
Mean	87.01±7.33	79.47±6.92	77.76±6.05	70.74±6.18					
Testosterone	e (ng/mL)								
C	0.03±0.01	0.05 ± 0.006	0.08 ± 0.02	0.09 ± 0.006	$0.06^{b} \pm 0.007$	0.01	< 0.01	< 0.01	0.82
T_1	0.03 ± 0.006	0.13 ± 0.04	0.15 ± 0.03	0.16 ± 0.03	$0.12^{a}\pm0.02$				
T_2	0.06 ± 0.04	0.14 ± 0.04	0.16 ± 0.03	0.18 ± 0.04	$0.14^{a}\pm0.02$				
Mean	$0.04^{B}\pm0.01$	$0.11^{A}\pm0.02$	$0.13^{A}\pm0.02$	$0.14^{A}\pm0.02$					

 $^{^{}a,b}$ Mean values with different superscripts within a column differ significantly (P<0.01) (P<0.05). A,B Mean values with different superscripts within a row differ significantly (P<0.01) (P<0.05).

significantly higher (P<0.05) in both supplemented groups (Table 6). Effect of fenugreek might also be attributed to its estrogenic constituent, indirectly increasing thyroid hormone T₄ (Sauvaire et al. 1991) or impaired peripheral conversion of thyroid hormones resulting in a significant decrease in serum T3 with a concomitant increase in T4 levels (Tahiliant and Kar 2000). Choubey et al. (2015) also reported reduced (P<0.05) serum cortisol in Jamunapari goats. The linear decline in serum cortisol level in the present study could be supposed to have an ameliorative effect against the various types of stresses. The declining levels of serum cortisol by MMS supplementation could be due to the strong anti-oxidative principles (saponins, phenolics and flavonoids) of the constituent herbs feed ingredients in the formulations. In present study, the testosterone levels in three respective groups after 9 months experimental feeding were 0.09±0.006, 0.16±0.03 and 0.18±0.04 ng/ml, respectively. However, Ahmad et al. (1989) observed that mean serum testosterone concentrations remained low from birth to 12 months of age (0.3±0.1 ng/ml) while a marked rise in testosterone was observed at 14 months of age (2.7±0.9 ng/ml). It has been theorized that the anabolic potential of the Fenugreek seed may be due to its ability to block enzymes which breakdown testosterone. Those enzymes are aromatase and $5-\alpha$ reductase. If that is true, it would mean it's not triggering more testosterone to be produced, but rather promoting preservation of that which your body is already making. Wilborn et al. (2010) reported that Fenugreek seed appears to act as an aromatase inhibitor, which may help to keep men's estrogen levels low, thereby freeing up more testosterone and also block 5-α-reductase, which coverts testosterone into dihydro-testosterone (DHT) so blocking it, may sustain testosterone-levels.

Based on the results it may be deduced that supplementation of molasses based multi-nutrient herbal supplements in the diet of buffalo calves improved level of serum glucose, globulin, antioxidants, T_4 and testosterone and lowered level of low density lipoprotein (LDL) and cortisol resulting into an improvement in the health status.

ACKNOWLEDGEMENTS

The authors are grateful to the Director, ICAR-IVRI, Izatnagar and the Director General, UPCAR, Lucknow for providing all necessary facilities and funds, respectively to carry out the work smoothly.

REFERENCES

- Abd Ellah Mahmoud R, Hamed Maha I, Ibrahim Derar R and Rateb Hassan Z. 2013. Reference values for hematological and serum biochemical constituents in buffalo's heifers. XX International Congress of Mediterranean Federation of Health and Production of Ruminants, 19–22 February 2013, Assiut University, Egypt.
- Abo El-Nor and SAH. 2007. Effect of some medicinal plants seeds in the rations on the productive performance of lactating

- buffaloes. *International Journal of Dairy Science* **2**: 348–55. Ahmad N, Shahab M, Khurshid S and Arslan M. 1989. Pubertal development in the male buffalo: Longitudinal analysis of body growth, testicular size and serum profiles of testosterone and oestradiol. *Animal Reproduction Science* **19**: 161–70.
- Ankita, Verma A K, Singh P, Das A and Gaur G K. 2016. Effect of replacement of concentrate mixture with a multi-nutrient liquid supplement on performance of bufflao heifers. *Indian Journal of Animal Sciences* **86**(9): 1036–40.
- Ankita. 2016. Performance of buffalo heifers fed multi-nutrient liquid supplement. PhD Thesis, Deemed University, Indian Veterinary Research Institute, Izatnagar, India.
- AOAC. 2005. *Official Methods of Analysis*. Association of Official Analytical Chemists. 18th ed. USA.
- Bowers L D. 1980. Kinetic serum creatinine assays I. The role of various factors in determining specificity. *Clinica Chemica* 26: 551–54.
- Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M and Petit P. 2000. 4-Hydroxyisoleucine: Effects of synthetic and natural analogues on insulin secretion. *European Journal of Pharmacolology* 390: 339–45.
- Choubey M, Pattanaik A K, Baliyan S, Dutta N, Jadhav S E and Sharma K. 2015. Dietary supplementation of a novel phytogenic feed additive: effects on nutrient metabolism, antioxidant status and immune response of goats. *Animal Production Science*, http://dx.doi.org/10.1071/AN14770.
- Doumas B T, Watson W A and Biggs H G. 1971. Albumin standards and the measurement of serum albumin with bromcresol green. *Clinica Chemica Acta* 31: 87–96.
- Doumas B T. 1975. Standards for total serum protein assays-a collaborative study. *Clinica Chemica* **21**: 1159–66.
- El-Alamy H A, Khattab H M, El-Nor S A H, Salam F A F and Abdou M M A. 2001. *Milk production response to supplementing rations with some medicinal herbs of lactating buffaloes*. 8th Conference for Dairy Science and Technology, Research Papers II, 675–686 pp. held at the International-Agriculture-Centre, Cairo, Egypt.
- Hassan E H and Abdel-Raheem S M. 2013. Response of growing buffalo calves to dietary supplementation of caraway and garlic as natural additives. World Applied Sciences Journal 22(3): 408–14.
- Hassan S M, Gutierrez O, Haq A U, Byrd J A, Bailey C A and Cartwright A L. 2007. Saponin-rich extracts from quillaja, yucca, soybean, and guar differ in antimicrobial and hemolytic activities. *Poultry Science* **86**: 121.
- ICAR. 2013. *Nutrient Requirements of Animals- Cattle and Buffalo*. 3rd edn. Directorate of Knowledge Management in Agriculture, ICAR, New Delhi.
- Inamdar A I, Chaudhary L C, Agarwal N and Kamra D N. 2015.
 Effect of Madhuca longifolia and Terminalia chebula on methane production and nutrient utilization in buffaloes.
 Animal Feed Science and Technology 201: 38–45.
- Inoue M, Saito Y, Hirata E, Morino Y and Nagase S. 1987. Regulation of redox status of plasma proteins by metabolism and transport of glutathione and related compounds. *Journal of Protein Chemistry* 6: 207–25.
- Kumar D. 2015. 'Studies on dietary supplementation of amla and fenugreek on the performance and carcass characteristics of kids.' PhD Thesis, Deemed University, Indian Veterinary Research Institute, Izatnagar, India.
- Kumari P. 2017. 'Evaluation of multi-nutrient herbal supplement in growing male buffalo (*Bubalas bubalis*) calves.' PhD Thesis, Deemed University, Indian Veterinary Research Institute,

- Izatnagar, India.
- Marklund S. 1980. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. *Acta Physiologica Scandinavica Supplementum* **492**: 19–23.
- Matanovic K, Severin K, Martinkovic F, Šimpraga M, Janicki Z and Barišic J. 2007. Hematological and biochemical changes in organically farmed sheep naturally infected with *Fasciola hepatica*. *Parasitology Research* **101**: 1657–61.
- Ojha B K, Singh P, Verma A K and Patil A K. 2012. Effect of supplementation of deoiled mahua seed cake and guar meal on the nutrient utilization and growth performance in crossbred calves. *Indian Journal of Animal Nutrition* **29**(3): 222–25.
- Patil A K. 2017. 'Effect of chromium supplementation on performance of lactating murrah buffaloes (*Bubalus bubalis*) fed molasses based multi-nutrients supplement.' PhD Thesis, Deemed University, Indian Veterinary Research Institute, Izatnagar, India.
- Potter S M, Jimenez-Flores R, Pollack J, Lone T A and Berber-Jimenez M D. 1993. Protein saponin interaction and its influence on blood lipids. *Journal of Agricultural and Food Chemistry* 41: 1287–91.
- Radostits O M, Gay C C, Blood D C and Hinchcliff K W. 2007. Veterinary Medicine- A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th ed. Saunders, Philadelphia, USA.
- Ranjhan S K, Sawhney P C and Jayal M M. 1973. Application of Life Saving Research in Animal Feeding. Farm Information Unit, Directorate of Extension, Ministry of Agriculture, New Delhi, India.
- Rayyan S, Fossen T and Andersen M. 2010. Flavone C-glycosides from seeds of fenugreek, *Trigonella foenum-graecum L. Journal of Agricultural and Food Chemistry* **58**(12): 7211–17
- Sauvaire Y, Ribes G, Baccou J C and Loubatieres-Mariani M M. 1991. Implication of steroid saponins and sapogenins in the hypocholesterolemic effect of fenugreek. *Lipids* 26: 191–97.
- Singh A and Singh I S. 1991. Chemical evaluation of mahua (*Madhuca indica*) seed. *Food Chemistry* **40**: 221–28.
- Singh N, Akbar M A and Kumari R. 1993. Effect of some commonly used galactogogues on different blood biochemical constituents of lactating buffaloes. *Indian Journal of Animal*

- Sciences 70: 441-44.
- Singh V and Garg A N. 2006. Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. *Food Chemistry* **94**: 81–89.
- Sowmya P and Rajyalakshmi P. 1999. Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. *Plant Foods for Human Nutrition* **53**: 359–65.
- SPSS. 2012. Statistical Packages for Social Sciences, Version 20, SPSS Inc., Illinois, USA.
- Tahiliant P and Kar A. 2000. Role of *Moringa oleifera* leaf extract in the regulation of thyroid hormone status in adult male and female rats. *Pharmacological Research* **41**: 319–23.
- Trinder P. 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. *Annals of Clinical Biochemistry* **6**: 24–27.
- Verma A K, Mehra U R, Dass R S, Varshney V P and Kumar H. 1995. Performance of crossbred heifers during revival period after long term scarcity feeding. *Journal of Applied Animal Research* 8: 63–70.
- Wanapat M, Cherdthong A, Phesatcha K and Kang S. 2015. Dietary sources and their effects on animal production and environmental sustainability. *Animal Nutrition* 1: 96–103
- Wheeler C, Salzman J A, Elsayed N, Omaye S and Korte D. 1990. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. *Analytical Biochemistry* **184**: 193–99.
- WHO. 2004. WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems. World Health Organization, Geneva, Switzerland.
- Wilborn C, Taylor L, Poole C, Foster C, Willoughby D and Kreider R. 2010. Effects of a purported aromatase and 5 α-reductase inhibitor on hormone profiles in college-age men. *International Journal of Sport Nutrition* **20**(6): 457.
- Wynbenga D R, Di Giorgio J and Pileggi V J. 1971. Manual and automated methods for urea nitrogen measurement in whole serum. *Clinica Chemica* 17: 891–95.
- Xue W L, Li X S, Zhang J, Liu Y H, Wang Z L and Zhang R J. 2007. Effect of *Trigonella foenum graecum* extract on blood glucose, lipid and hemorheological properties in streptozotocin induced diabetic rats. *Asia Pacific Journal of Clinical Nutrition* 16(1): 422–26.