RESEARCH ARTICLE

Prevalence of *Enterococcus faecalis* and *Pseudomonas aeruginosa* from mastitis milk and their antimicrobial resistance

Aishvarya Borkar¹ Mudit Chandra¹ (⋈), Deepti Narang¹, D.K. Gupta², A. K. Arora¹

Received: 08 September 2023 / Accepted: 25 February 2024 / Published online: 23 April 2025 © Indian Dairy Association (India) 2025

Abstract: Mastitis an inflammatory condition of mammary glands is a multi-factorial disease of dairy animals. It is characterized by physical, chemical and bacteriological changes in the milk. In the present study prevalence of Enterococcus faecalis (E. faecalis) and Pseudomonas aeruginosa (P. aeruginosa) were studied along with their antibiotic resistance pattern. One hundred and ten milk samples were screened from mastitis cattle and buffaloes in and around Ludhiana from December 2020 till June 2021. The prevalence of E. faecalis and P. aeruginosa was 7.05% and 4.70% respectively. The isolates of *E. faecalis* were resistant to penicillin G (100%), vancomycin, erythromycin, and tetracycline (83.33%) and sensitive to nalidixic acid (100%), streptomycin (83.33%), oxacillin, gentamicin, ciprofloxacin and ceftriaxone (66.66%) whereas isolates of *P. aeruginosa* were resistant to ampicillin, ciprofloxacin, ceftriaxone, penicillin G, streptomycin, amikacin, vancomycin (100%), tetracycline and teicoplanin (75%) and sensitive to cefuroxime, gentamicin, and oxacillin (100%). In E. faecalis, vanA, vanB (50%), tetL (83.33%) and mrsA/B (100%) antibiotic genes were amplified whereas in P. aeruginosa, aadA, DHAM (100%), sull, sullI (100%), gyrA, gyrB (100%) and tetC (50%) antibiotic genes were amplified. Thus, it is concluded that there is an evolving prevalence of environmental pathogens such as E. faecalis and P. aeruginosa in mastitis which is alarming and thus necessary action and plans should be followed for controlling the antibiotic resistance in these pathogens as these are of zoonotic significance.

¹Department of Veterinary Microbiology, ²Department of Clinical Veterinary Medicine, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana-141004

 (\boxtimes) drmuditchandra@rediffmail.com

Keywords: Mastitis, Prevalence, Antibiotic Resistance, Enterococcus faecalis, Pseudomonas aeruginosa

Introduction

Mastitis is a multifactorial complex disease characterized by inflammation of the parenchyma of the mammary gland, as demonstrated by physical, chemical, and bacteriological changes in milk, as well as pathological abnormalities in glandular tissues (Constable et al. 2017). It has mainly two forms clinical and subclinical. In most dairy herds, subclinical mastitis is 3 to 40 times more frequent than the clinical mastitis and overall it generates the biggest losses to the farmers (Bachaya et al. 2011, Singh et al. 2018). Enterococcus spp. and Pseudomonas aeruginosa are one of the important environmental pathogens causing mastitis. Enterococcus spp. is an environmental causative agent of mastitis and seen in the gut flora of healthy humans and animals. Enterococcus spp. coexisted since long but has been highlighted in recent years causing diseases like bacteraemia, endocarditis, meningitis, urinary tract infections, soft tissue infections and bovine mastitis. There are many species of Enterococcus such as E. fecalis, E. faecium, E. durans, E. avium, and E. gallinarum. Among these species E. faecalis (80%) and E. faecium (10%-15%) are the most commonly found bacteria that cause mastitis (Różańska et al. 2019). Enterococci are important because of their ability to harbour antimicrobial resistance genes (Klare et al. 2003). Enterococcus spp. are known to as indicator organisms for antimicrobial resistance development (Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP, 2003) as they provide accurate information on the animals prior antibiotic treatment (Centre for Disease Control and Prevention) (CDC, 2002).

Pseudomonas aeruginosa (P. aeruginosa) is a gram negative bacterium, ubiquitous, and has a wide host range with metabolic versatility. They multiply rapidly in various environmental conditions and milk being one of them. P. aeruginosa has been associated with sub-clinical mastitis. The isolates of P. aeruginosa are strong biofilm producer which decreases the potency of antibiotics and leads to chronic mastitis (Melchior et al. 2006). In human and veterinary medicine,

antibiotic resistance is a global problem and it generally occurs due to extensive use of antibiotics. Bovine mastitis is the single most common cause for antimicrobial use in lactating cattle worldwide and there is a variety of antimicrobials that are used to prevent for the cure of mastitis. The antimicrobial therapy for enterococci infections is complicated because of the inherent resistance exhibited. P. aeruginosa too poses a serious therapeutic challenge for treatment because of its ability to develop resistance to multiple classes of antibacterial agents quickly (Lambert, 2002). Thus, identification of the mastitis-causing pathogens along with their antibiotic resistance assumes great importance for the effective control of mastitis. Therefore, the present study was planned with an objective to isolate and identify Enterococcus spp. and Pseudomonas spp. from mastitis milk along with their antimicrobial resistance pattern for the purpose of gaining a better understanding of the importance of this infection in dairy animals.

Material and methods

Sample collection

A total of 110 milk samples were collected from mastitis animals from Teaching Veterinary Clinical Complex (TVCC) GADVASU (66), Haibowal dairies (25), Noor Mahal farm (7), and from an organized dairy farm (12) at Ludhiana. All the samples were tested by SLS test for initial screening and all those positive were transferred immediately to laboratory on ice for the isolation of bacteria.

Isolation and identification of bacteria

The milk samples brought to the laboratory were thoroughly mixed and inoculated on basal media like Brain Heart Infusion (BHI) Agar and Nutrient Agar. These plates were incubated at 37°C for 12-24 h to observe the bacterial growth. The bacteria from both the media were further inoculated on bile esculin agar, enterococcus agar base and cetrimide agar. Enterococccus isolates on bile esculin agar produced brown colonies with black discolouration due to hydrolysis of esculin and they tolereated 6.5% NaCl concentration. Pseudomonas isolates produced pyocyanin and pyoverdin on cetrimide agar. Further, they were subjected to biochemical tests like indole test, methyl red test, voges proskauer's test, citrate utilization, oxidase test, catalase tests, urease, nitrate reduction, esculin hydrolysis, 6.5% NaCl tolerance, triple sugar iron test, fermentation of various sugars viz. glucose, lactose, sucrose, sorbitol and maltose for confirmation. All the isolates were confirmed by MALDI-TOF (Bruker daltonics, GmBH).

Confirmation of E. faecalis strains

These isolates when grow on bile esculin gives brown coloured colonies with black discolouration due to hydrolysis of esculin and they can tolerate bile salts. They have ability to grow on 6.5% NaCl concentration (Table 1).

Confirmation of P. aeruginosa strains

These isolates produce pigments such as pyocyanin and pyoverdin which was examined using the "fluorescent technique," which involved growing the isolates on cetrimide and then exposing them to UV light illumination (Table 2).

Antibiotic Sensitivity Testing

All the isolates were tested for antibiotic sensitivity using Bauer et al. (1966) disc's diffusion method using twenty one antibiotics viz., amikacin (30 mcg), amoxycillin (10 mcg), ampicillin (10 mcg), ampicillin/sulbactam (10/10 mcg), cefoperazone (75 mcg), ceftriaxone (30 mcg), cefuroxime (30 mcg), cephalothin (30 mcg), ciprofloxacin (5 mcg), co-trimoxazole (25 mcg), enrofloxacin (10 mcg), erythromycin (15 mcg), gentamicin (10 mcg), nalidixic acid (30 mcg), oxacillin (1 mcg), penicillin G (10 mcg), sparfloxacin (5 mcg), streptomycin (10 mcg), teicoplanin (30 mcg), tetracycline (30 mcg) and vancomycin (30 mcg). In brief, the individual bacterium were grown overnight (10-12 h) in BHI broth at 37°C and was spread uniformly on Muller Hinton Agar with the help of sterilized cotton swab. Antibiotic discs were placed equidistantly under sterile conditions and the plates were then incubated for 12-24 h at 37°C. The zones of sensitivity was measured and were classified as sensitive, intermediate or resistant on the basis of zone of inhibition as per the standard guidelines of CLSI Standards (CLSI, 2018) (Table 3).

DNA Extraction

The DNA of *Enterococcus* spp. and *P. aeruginosa* isolates was extracted using NucleoSpin® Microbial DNA kit as per the manufacturer's instructions.

Polymerase Chain Reaction

PCRs were carried out for Enterococcus spp. and Pseudomonas spp. using genus specific primers (Table 4). A 25 µl PCR reaction mixture was formulated using 12.5 µl of master mix (2X Go Taq Green Master mix, (Promega, WI USA), 0.5 µl of 20 pmol/ul of each forward and reverse primers (IDT, USA), 1.0 µl of template DNA and finally the reaction volume was made up to 25 µl using NFW (NEB Labs, USA). PCR was performed using thermocycler (Veriti, Applied Biosystem, USA) with the following conditions; an initial denaturation at 94°C for 2 minutes, 30 cycles of denaturation at 94°C for 1 minute, annealing at 54°C for 1 minute and extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes for Enterococcus spp. and initial denaturation at 94°C for 5 minutes; 35 cycles of denaturation at 94°C for 45 seconds, annealing at 60°C for 1 minute and extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes for P. aeruginosa.

Detection of antibiotic resistance genes in E. faecalis

All the *E. faecalis* isolates were tested for the presence of *vanA*, vanB, vanC1, tetL, tetk and msrA/B (Table 5). A 25µl reaction mixture was formulated by using $12.5\mu l$ (2X Go Taq Green Master Mix) (Promega, WI USA), 1µl of 20 pmol/ul of each forward and reverse primers for each of the antibiotic resistant genes (IDT, USA), 2µl of template DNA and 8.5µl of nuclease free water. PCR was performed using thermocycler (Veriti, Applied Biosystem, USA). For vanA and vanB genes, initial denaturation at 94°C for 3 minutes, 30 cycles of denaturation at 94°C for 1 minute, annealing at 54°C for 1 minute and extension at 72°C for 1 minute followed by a final extension at 72°C for 7 minutes. For vanC1 gene, an initial denaturation at 94°C for 5 minutes, 30 cycles of denaturation at 94°C for 1 minute, annealing at 50°C for 1 minute and extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes. For tetK, tetL genes, an initial denaturation at 94°C for 5 minutes, 35 cycles of denaturation at 94°C for 60 seconds, annealing at 50°C for 60 seconds and extension at 72°C for 1 minute 30 seconds followed by a final extension 72°C for 5 minutes. For msrA/B gene, an initial denaturation at 94C for 3 minutes, 35 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 120 seconds and extension at 72°C for 1 minute 30 seconds followed by a final extension at 72°C for 10 minutes.

Detection of antibiotic resistance genes in P. aeruginosa

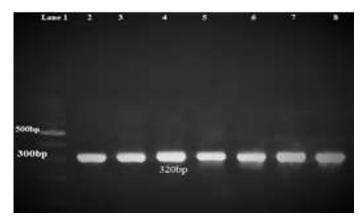
All the P. aeruginosa isolates were tested for the presence of blaTEM, blaSHV, sulI, sulII, aadA, DHAM, MOXM, tetA, tetB, tetC, oxa-1, blaCTX-M, gyrA and gyrB (Table 6). A 25µl reaction mixture by adding 12.5µl master mix (2X Go Green Taq Master Mix) (Promega, WI USA), 1µl of 20 pmol/ul of each forward and reverse primers for each of the antibiotic resistant genes (IDT, USA), 2µl of template DNA and 8.5µl of nuclease free water. PCR was performed on a thermocycler (Veriti, Applied Biosystem, USA). For blaTEM, blaSHV, Sul1, SulII and tetC genes an initial denaturation at 94°C for 5minutes, 30 cycles 94°C for 30 seconds, annealing at 50°C for 30 seconds and extension at 72°C for 1.5 minutes followed by a final extension at 72°C for 10 minutes. For tetA, tetB, DHAM, MOXM and aadA an initial denaturation at 95°C for 5minutes, 30 cycles of denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes. For blaCTX-M, an initial denaturation at 94°C for 2 minutes, 35 cycles of denaturation at 95°C for 20 seconds, annealing at 51°C for 30 seconds, extension at 72°C for 30 seconds followed by a final extension at 72°C for 3 minutes. For oxa-1, an initial denaturation at 96°C for 5 minutes, 35 cycles of denaturation at 96°C for 1 minute, annealing at 60°C for 1 minute, extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes. For gyrA, an initial denaturation at 94°C for 5 minutes, 30 cycles of denaturation at 94°C for 45 seconds, annealing for 57°C for 45 seconds, extension at 72°C for 45 seconds, followed by a final

extension at 72°C for 5 minutes. For gyrB, an initial denaturation at 94°C for 5 minutes, 30 cycles of denaturation at 94°C for 45 seconds, annealing for 40°C for 45 seconds, extension at 72°C for 45 seconds followed by a final extension at 72°C for 5 minutes.

Gel Electrophoresis and documentation

The PCR products were run on 1.5% agarose along with 100bp DNA molecular weight marker (New England Biolabs, USA) at 80V/cm and visualized using a gel documentation system (AlphaImager, Alpha Innotech, USA).

Results and Discussion


Prevalence

Out of 110 milk samples screened using SLS test, 108 (98.1%) milk samples showed positive reaction. Out of 108 SLS positive samples 85 yielded bacterial growth (78.7%). Out of these six (7.05%) were E. faecalis and four (4.70%) were P. aeruginosa. These organisms were identified on the basis of cultural characters, gram's staining, biochemical tests and MALDI-ToF. E. faecalis prevalence was found to be 7.05% which was in accordance with the study conducted by Ali et al. (2011) where they reported prevalence of E. faecalis from dairy buffaloes to be 3.17%. In another study Yang et al. (2019) observed E. faecalis prevalence of 4.5% from subclinical bovine mastitis and 6.36% from clinical mastitis (Awandkar et al. 2022). These findings were similar to the present study findings where a prevalence of less than 10% was observed. Since, E. faecalis, a major environmental mastitis-causing pathogen (Elhadidy and Elsayyad, 2013) has the ability to produce biofilm which causes inherent resistance for many antibiotics, thus its prevalence as well as antibiotic resistance profile needs to be examined on the regular basis.

P. aeruginosa prevalence was found to be 4.70 % which was in tandem with the findings of Sekhri et al. (2021) where they observed *P. aeruginosa* prevalence as 5.15%. Various studies too indicated prevalence of *P. aeruginosa* between 1-5% (Sharma and Sindhu, 2007, Banerjee et al, 2017, Yadav et al, 2020, Awandkar et al, 2022) similar to the findings of the present study.

Antibiotic sensitivity test

E. faecalis isolates showed sensitivity towards nalidixic acid (100%), streptomycin (83.33%), cepalothin, ciprofloxacin, cotrimaxazole, ceftriaxone, cefuroxime, gentamicin, oxacillin and vancomycin (66.66%) and resistance against penicillin G (100%), erythromycin, tetracycline (83.33%) and ampicillin/salbactam, ampicillin (66.66%). Similar results were observed by Frazzon et al. (2010) and Yang et al. (2019) where they reported that the isolates of Enterococcus spp. showed higher resistance against tetracycline (87.7%) and erythromycin (79.0%) which was similar to the present study findings as high resistance was observed against penicillin G (100%), erythromycin and tetracycline

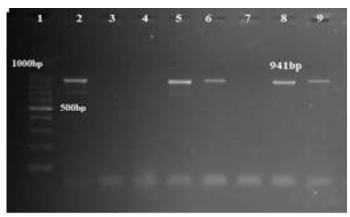
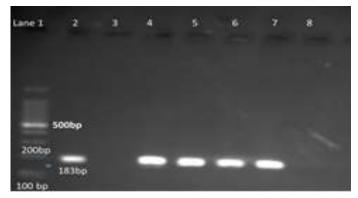


Fig. 1: Detection of *Enterococcus* spp. by PCR Lane 1: 100bp DNA ladder; Lane 2-8: Positive samples


(83.33%). Similarly, Nam et al. (2010) observed that *Enterococcus* spp. isolates were sensitive to ampicillin, gentamicin and vancomycin, and resistant to ampicillin, tetracycline (69.5%), penicillin (64.7%), erythromycin (57.1%) and cephalothin (44.7%). Hamzah and Kadim (2018) results indicated resistance to vancomycin, penicillin, ofloxacin, ciprofloxacin, nitrofurantoin, tetracycline and amikacin whereas Gao et al. (2019) observed high resistance against penicillin, ceftiofur, tylosin, lincomycin, and oxytetracycline antibiotics in *Enterococcus* spp. which was similar to the findings of this study (Table 3).

P. aeruginosa isolates showed sensitivity towards cefuroxime, gentamicin, oxacillin (100%), amikacin, cefaperazone, erythromycin (25%) and resistance against ampicillin, ciprofloxacin, cephalothin, co-trimoxazole, ceftriaxone, nalidixic acid, penicillin G, streptomycin (100%), ampicillin/salbactam, amikacin, vancomycin, sparfloxacin, tetracycline, teicoplanin (75%) and amoxicillin, erythromycin (50%). Enterococcus faecalis isolates showed sensitivity towards nalidixic acid (100%), streptomycin (83.33%), cepalothin, ciprofloxacin, co-trimoxazole, ceftriaxone, cefuroxime, gentamicin, oxacillin and vancomycin (66.66%) and resistance against penicillin G (100%), erythromycin, tetracycline (83.33%) and ampicillin/salbactam, ampicillin (66.66%). The above results were similar to a study by Swetha et al. (2017) where they observed that isolates of P. aeruginosa from milk were resistant to ampicillin, penicillin, and oxacillin (100%) but sensitive to vancomycin (5.3%) and tetracycline (10.5%) indicating an alarming situation. Similarly Sekhri et al. (2021) studied antibiotic resistance of P. aeruginosa isolated from milk and observed that resistance to chloramphenicol, tetracycline, amoxicillin, erythromycin, cephalexin, teicoplanin (100%), azithromycin, doxycycline, ofloxacin, co-trimoxazole, vancomycin (80%), gatifloxacin, sparfloxacin (60%) and ciprofloxacin (50%), which was similar as findings of the present study (Table 3).

Polymerase chain reaction

Fig. 2: Detection of *Enterococcus faecalis* by PCR Lane 1: 100bp DNA ladder; Lane 2, 5, 6, 8 & 9 Positive; Lane 3-4 & 7 Negative

Fig. 3: Detection of *Pseudomonas aeruginosa* by PCR Lane 1: Ladder; Lane 2, 4-7 Positive; Lane 3: Negative

On the basis of polymerase chain reaction using genus specific primers all the six isolates were identified as *Enterococcus* spp. producing a product size of 320bp (Fig.1). On the basis of species specific primer, all the isolates were *E. faecalis* producing a product size of 941bp (Fig. 2). Using genus specific primers all the six isolates were identified as *Enterococcus* spp. which was similar to El-Tawab et al. (2019), Devriese et al. (1996) and Jahan et al. (2013) where they used genus specific primers to confirm enterococci. Upon further analysis using species specific primers all the isolates were identified as *E. faecalis*. In various studies viz., Kariyama et al. (2000), Foka and Ateba (2019), Dutka-Malen (1995) and Mannu et al. (2003) used species specific primers for the confirmation of *E. faecalis* from mastitis milk. Similarly, Jahan et al. (2013) *E. faecalis* and *E. faecium* from meat and fermented meat products using species specific primer.

On the basis of polymerase chain reaction all the four isolates were *P. aeruginosa* producing a product size of 183bp (Fig. 3). In an earlier study Sekhri et al. (2021) used same species-specific primers for the confirmation of *P. aeruginosa* isolates. Similar to our study confirmation of *P. aeruginosa* using PCR has been

achieved by various earlier workers too (Iwasaki et al. 2019; Jangir et al. 2021; Schauer et al. 2021).

Detection of antibiotic resistance genes in E. faecalis

All the six *E. faecalis* isolates were tested for the presence of vanA, vanB, vanC1, tetL, tetk and msrA/B antibiotic resistant genes. It was revealed that one (16.66%) isolate was positive for vanA gene, three (50%) isolates were positive for vanB gene,

Table 1 Results of morphological, cultural and biochemical tests for Enterococcus faecalis identification

S. No.	Morphological & cultural characteristics	Interpretation	
1	Growth on Bile Azide Esculin Agar	Small, round smooth dark brown colonies with black	
		discoloration	
2	Gram staining	Gram positive cocci (pairs or in chains)	
3	Growth on Enterococcus Agar Base (1%TCC)	Maroon pin pointed coloured colonies	
4	Growth on Blood Agar	Alpha or beta haemolytic	
5	Sulphide Indole Medium Test	Non-Motile	
	Biochemical Tests	Interpretation	
1	Catalase	Negative	
2	Oxidase	Negative	
3	Indole	Negative	
4	Methyl Red	Negative	
5	Voges –Proskauer	Positive	
6	Citrate Utilization	Negative	
7	Urease	Negative	
8	Nitrate reduction test	Positive	
9	H ₂ S production	Negative	
10	Esculin hydrolysis	Positive	
11	Gas Production	Positive	
12	6.5% NaCl (Salt tolerance) Positive		
13	Fermentation of sugar		
	a. Glucose	Positive	
	b. Lactose	Positive	
	c. Arabinose	Negative	
	d. Sucrose	Positive	
	e. Sorbitol	Positive	
	f. Maltose	Positive	

Table 2 Results of morphological, cultural and biochemical tests performed for Pseudomonas aeruginosa identification

S. No.	Morphological & cultural characteristics	Interpretation	
1	Growth on BHI	Large round, opaque colonies with green	
		discoloration.	
2.	Growth on MLA	Pale colourless round colonies	
3.	Gram's Staining	Gram Negative rods	
4.	Growth on Cetrimide Agar	Cream medium sized flat, irregular edged colonies	
		giving green pigmentation	
5.	Sulphide Indole Medium Test	Motile	
	Biochemical Tests	Interpretation	
1	Catalase	Positive	
2	Oxidase	Positive	
3	Indole	Negative	
4	Methyl Red	Negative	
5	Voges-Proskauer	Negative	
6	Citrate Utilization	Positive	
7	Urease	Negative	
8	Nitrate reduction test	Positive	
9	ONPG	Negative	

10	H ₂ S production	Negative	
11	Arginine utilization	Positive	
12	Triple sugar iron	K/K	
13	Fermentation of sugar a. Glucose b. Lactose c. Arabinose d. Sucrose e. Sorbitol f. Maltose	Positive Negative Negative Negative Negative Negative Negative	

Table 3 Zone of antibiotic Resistance (Mean ± Standard Deviation) in mm in *Enterococcus faecalis* and *Pseudomonas aeruginosa* isolates

S. No.	Antibiotics	Mean ± SD in Enterococcus faecalis	Mean \pm SD in <i>Pseudomonas</i>
		isolates (6)	aeruginosa isolates (4)
1	Co-trimoxazole	17.2 ±8.5	5.3±6.1
2	Nalidixic Acid	11.2±10.2	7.0 ± 9.5
3	Erythromycin	13.7±7.8	20.8±7.6
4	Tetracycline	14.5±2.4	14.8±2.5
5	Cephalothin	27.3±4.7	6.8 ± 7.9
6	Streptomycin	10.2±5.1	19.3±7.0
7	Cefuroxime	24.0±4.7	4.3 ± 8.5
8	Ceftriaxone	21.8±3.9	19.0±5.5
9	Teicoplanin	14.0 ± 2.4	0.0 ± 0.0
10	Enrofloxacin	23.8±4.7	30.0±3.6
11	Cefoperazone	20.7 ± 6.6	17.5±4.2
12	Amikacin	16.3±1.2	18.0±8.1
13	Sparfloxacin	19.3±5.2	20.5±0.6
14	Ampicillin/sulbactam	28.2±3.5	0.0 ± 0.0
15	Ciprofloxacin	19.8±4.0	30.8±1.5
16	Amoxicillin	0.0 ± 0.0	0.0 ± 0.0
17	Ampicillin	17.7±1.5	5.0 ± 10.0
18	Oxacillin	14.8±7.5	0.0 ± 0.0
19	Penicillin G	16.0±15.9	$0.0 {\pm} 0.0$
20	Vancomycin	15.2±1.2	0.0 ± 0.0
21	Gentamicin	20.5±4.1	13.8±1.9

none of the isolates were positive for *vanCI* and *tetK*, five (83.3%) isolates were positive for *tetL* and all six (100%) isolates were positive for *msr A/B* gene. In an earlier study Erbas et al. (2016) observed one enterococci having *vanA* gene which was similar to the findings of the present study. Five (83.3%) isolates were positive for *tetL* was similar to the findings of a study by Jahan et al. (2013) where they stated that tetracycline efflux pumps *tetk* and *tetL* were positively amplified in 11 isolates. However, Huys et al. (2004) detected no *tetK* gene in their isolates, but Hummel et al. (2007) observed *tetL* in 94% and *tetK* in 56% isolates. In another study Stovcik et al. (2008) observed 63% isolates having *tetM* and 21% isolates having *tetL* genes whereas Frazzon (2010) observed 38% isolates having *tetM* and 9% having *tetL* and both *tetM* and *tetL* in 13% isolates, respectively. All the six (100%) isolates were positive for *msr A/B* gene which too is in tandem

with the findings of Valenzuela, (2013) where they observed its presence in 66.66% isolates.

Upon comparison between phenotypic and genotypic resistance it was observed that for vancomycin phenotypically 66.66% isolates exhibited resistance while 50% isolates had *vanA*, *vanB* gene but none of the isolates had *vanC1* gene. For tetracycline, 83.33% isolates exhibited both phenotypic as well as genotypic resistance. For macrolide 83.33% isolates had phenotypic resistance while 100% isolates exhibited resistance genotypically.

Detection of antibiotic resistance genes in P. aeruginosa

All the four *P. aeruginosa* isolates were tested for the presence of *blaTEM*, *blaSHV*, *sulI*, *sulII*, *aadA*, *DHAM*, *MOXM*, *tetA*, *tetB*, *tetC*, *oxa-1*, *blaCTX-M*, *gyrA* and *gyrB* antibiotic resistant genes. It was revealed that three (75%) isolates were positive for *sulI*

Table 4 Primers used for the amplification of different organisms

S. No.	Organism	5' to 3'	Amplicon Size (bp)	Annealing Temp (°C)	Reference
1	Enterococcus rrs (16S rRNA)	F: GGATTAGATACCCTGGTAGTCC	320	54	Devriese et al. (1996)
		R: CGTTGCGGGACTTAACCCAAC			
2	E. faecalis	F: ACGATTCAAAGCTAACTG R: ATCAAGTACAGTTAGTCT	941	54	Dutka-Malen et al. (1994)
3	E. faecium	F: TTGAGGCAGACCAGATTGACG R: TATGACAGCGACTCCGATTCC	658	54	Cheng et al. (1997)
4	P. aeruginosa	F: CTGGCCTTGACATGCTGAGA R:TCACCGGCAGTCTCCTTAGA	183	60	Sekhri et al. (2020)

Table 5 Sequence of primers used for the detection of antibiotic resistance genes in Enterococcus faecalis

S. No.	Antibiotics	Genes	Primers 5'-3'	Product (bp)	References
1.	Vancomycin	vanA	F:GCGAAAACGACAATTGC R:GTACAATGCGGCCGTTA	732	Dutka-Malen, (1995)
		vanB	F:ACGGAATGGGAAGCCGA R:TGCACCCGATTTCGTTC	647	Depardieu, (2004)
		vanC1	F:GGTATCAAGGAAACCTC R:CTTCCGCCATCATAGCT	822	Dutka-Malen, (1995)
2.	Tetracycline	TetK	F:TATTTTGGCTTTGTATTCTTTCAT R:GCTATACCTGTTCCCTCTGATAA	1159	Trzcinski et al. (2000)
		TetL	F:ATAAATTGTTTCGGTCGGTAAT R:AACCAGCCAACTAATGACAATGAT	1077	Trzcinski et al. (2000)
3	Macrolide	MsrA/B	F:R:GCAAATGCTGTAGGTAAGACAACT R:ATCATGTGATGTAAACAAAAT	400	Wondrack et al. (1996)

gene, one (25%) isolate was positive for *sulII* gene, two (50%) isolates were positive for *tetC* gene and all the 4 (100%) isolates were positive for *aadA*, *DHAM*, *gyrA* and *gyrB* gene. None of the isolates were positive for *blaTEM*, *blaSHV*, *blaCTX-M*, *oxa-1*, *tetA*, *MOXM* and *tetB* genes. All the four *Pseudomonas* aeruginosa isolates were tested for the presence of *blaTEM*, *blaSHV*, *sulI*, *sulII*, *aadA*, *DHAM*, *MOXM*, *tetA*, *tetB*, *tetC*, *oxa-1*, *blaCTX-M*, *gyrA* and *gyrB* antibiotic resistant genes.

It was revealed that three (75%) isolates were positive for *sull* gene, one (25%) isolate was positive for *sull* gene, two (50%) isolates were positive for *tetC* gene and all the 4 (100%) isolates were positive for *aadA*, *DHAM*, *gyrA* and *gyrB* gene. However, none of the isolates were positive for *blaTEM*, *blaSHV*, *blaCTX-M*, *oxa-1*, *tetA*, *MOXM* and *tetB* genes.

In a study Das et al. (2017) observed 6 (12%) isolates possessed blaTEM resistance genes in *P. aeruginosa* and but didn't find any isolate carrying blaSHV genes similar to present study. Similarly, Meng et al. (2020) reported four isolates having sul1 gene among 44 isolates whereas in the present study three (75%) isolates were positive for sulI gene, one (25%) isolate was positive for sulII gene.

Upon comparison between phenotypic and genotypic resistance it was observed that for ampicillin/sulbactam, 75% isolates exhibited phenotypic resistance while 100% isolates exhibited genotypic resistance. For sulphonamides, aminoglycosides and fluroquinolones 100% isolates exhibited both phenotypic as well as genotypic resistance. For tetracycline, 75% isolates exhibited phenotypic resistance while 50% exhibited genotypic resistance.

Conclusions

From the present study, we can conclude that there is prevalence of environmental pathogens like *E. faecalis* 7.05% and *P. aeruginosa* 4.70% in mastitis. On the basis of antibiotic sensitivity test, these isolates showed multidrug resistance towards many commonly used antibiotics. Phenotypic and genotypic resistance when compared revealed that there is partial correlation between these.

Acknowledgement

The authors are also grateful to the ICAR Niche area of Excellence on Antibiotic Resistance: Animal Human Interface

Table 6 Sequence of primers used for the detection of antibiotic resistance genes in Pseudomonas aeruginosa

S No.	Antibiotics	Genes	Primers 5'-3'	References
1.	Beta lactam	BlaTEM	F: GAGTATTCAACATTTTCGT	Maynard et al. (2004)
			R: ACCAATGCTTAATCAGTGA	
		blaSHV	F:TCGCCTGTGTATTATCTCCC	
			R:CGCAGATAAATCACCACAATG	
		blaCTX-M	F:TTTGCGATGTGCAGTACCAGTAA	Edelstein (2003)
			R:CGATATCGTTGGTGGTGCCATA	
		OXA-1	F:ACACAATACATATCAACTTCGC	Oliver et al. (2002)
			R:AGTGTGTGTTTAGAATGGTGATC	
2.	Tetracycline	TetA	F:CGATCTTCCAAGCGTTTGTT	Faldynova et al. (2013)
			R:CCAGAAGAA CGAAGCCAGTC	
		TetB	F:TACAGGGATTATTGGTGAGC	
		-	R:ACATGAAGGTCATCGATAGC	
		TetC	F:ACTTGGAGCCACTATCGAC	Maynard et al. (2004)
_	~	~ 17	R:CTACAATCCATGCCAACCC	
3.	Sulphonamide	SulI	F:TTCGGCATTCTGAATCTCAC	Shehata et al. (2016)
		~ 177	R:ATGATCTAACCCTCGGTCTC	1 (2004)
		SulII	F:CGGCATCGTCAAACATAACC	Maynard et al. (2004)
		1.60171.6	R:GTGTGCGGATGAAGTCAG	1 (2000)
4.	Ampicillin	MOXM	F:GCTGCTCAAGGAGCACAGGAT	Van et al. (2008)
		DILLIL	R:CACATTGACATAGGTGTGGTGC	
		DHAM	F:AACTTTCACAGGTGTGCTGGGT	
_	Ct.	1.4	R:CCGTACGCATACGCTTTACCCTCAC	
5.	Streptomycin	aadA	F:TGATTTGCTGGTTACGGTGAC	
6	Elyana avimal	~~ u 4	R:CGCTATGTTCTCTTGCTTTTG	Vuo et al. (2008)
6.	Fluoroquinolone	gyrA	F:GGATAGCGGTTAGATGAGC	Yue et al. (2008)
		συμ D	R:CGTTAATCACTTCCGTCAG F:CAGCAGATGAACGAACTGCT	
		gyrB		
			R: AACCAAGTGCGGTGATAAGC	

for providing necessary scientific reagents and chemicals required during research work. The authors are also thankful to the Director Research, GADVASU for providing the necessary laboratory facilities.

References

- Ali MA, Ahmad MD, Muhammad K, Anjum AA (2011) Prevalence of sub clinical mastitis in dairy buffaloes of Punjab, Pakistan J Anim Plant Sci 21(3): 477-480.
- Awandkar SP, Kulkarni MB, Khode NV (2022) Bacteria from bovine clinical mastitis showed multiple drug resistance, Vet Res Commun 46(1): 147-158.
- Bachaya HA, Raza MA, Murtaza S, Akbar IUR (2011) Subclinical bovine mastitis in Muzaffargarh district of Punjab (Pakistan), J Anim Plant Sci 21(1): 16-19.
- Banerjee S, Batabyal K, Joardar SN, Isore DP, Dey S, Samanta I, Samanta TK, Murmu S (2017) Detection and characterization of pathogenic *Pseudomonas aeruginosa* from bovine subclinical mastitis in West Bengal, India, Vet World 10(7): 738-42.
- Bauer AW, Kirby WM, Sherirs JC, Turck M (1966) Antibiotic susceptibility testing by standardized single disk method, Am J Clinic Path 45: 433-96.

- CDC (2002) Staphylococcus aureus resistant to vancomycin United States, MMWR https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5126a1.htm.
- Cheng S, Mccleskey FK, Gress MJ, Petroziello JM, Liu R, Namdari H, Beninga K, Salmen A, DelVecchio VG (1997) A PCR assay for identification of *Enterococcus faecium*, J Clin Microbiol 35(5): 1248-1250.
- CLSI (2018) Performance Standards for Antimicrobial Susceptibility testing, M100, 28th Edition.
- Constable PD, Hinchcliff KW, Done SH, Grunberg W (2017) Diseases of mammary gland, in: Veterinary Medicine, 11th Edn. Elseveir Ltd. St. Louis, Missouri, pp 1904- 2001
- Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP) (2003) Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Foods and Humans in Denmark, DANMAP, Soborg, Denmark.
- Das A, Guha C, Biswas U, Jana PS, Chatterjee A, Samanta I (2017) Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal, Vet World 10(5): 517.
- Devriese LA, Ieven M, Goossens H, Vandamme P, Pot B, Hommez J, Haesebrouck F (1996) Presence of vancomycin resistant enterococci in farm and pet animals, Antimicrob Agents Chemo 40(10): 2285-2287.

- Depardieu F, Perichon B, Courvalin P (2004) Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR, J Clin Microbiol 42(12): 5857-60.
- Dutka Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR, J Clin Microbiol 33(1): 24-27
- Elhadidy M, Elsayyad A (2013) Uncommitted role of enterococcal surface protein, Esp, and origin of isolates on biofilm production by *Enterococcus faecalis* isolated from bovine mastitis, L Microbiol Immunol Infect 46(2): 80-84.
- El-Tawab A, Awad A, Elhofy FI, Mahmoud MA, Amin EK (2019) Genotyping and resistance genes of *Enterococcus faecalis* isolated from different food sources in Egypt, Benha Vet Med J 37(1): 149-153
- Erbas G, Parin U, Turkyilmaz S, Ucan N, Ozturk M, Kaya O (2016) Distribution of antibiotic resistance genes in *Enterococcus* spp. isolated from mastitis bovine milk, Acta Vet Beograd 66: 336-346.
- Faldynova M, Videnska P, Havlickova H, Sisak F, Juricova H, Babak V, Steinhauser L, Rychlik I (2013) Prevalence of antibiotic resistance genes in faecal samples from cattle, pigs and poultry, Vet Med 58(6): 298-304.
- Foka FET, Ateba CN (2019) Detection of virulence genes in multidrug resistant enterococci isolated from feedlots dairy and beef cattle: Implications for human health and food safety, BioMed Res Int, https://doi.org/10.1155/2019/5921840.
- Frazzon AG, Gama BA, Hermes V, <u>Bierhals</u> CG, Pereira RI, <u>Guedes</u> AG, <u>Azevedo</u> PA, <u>Frazzon</u> J (2010) Prevalence of antimicrobial resistance and molecular characterization of tetracycline resistance mediated by tet(M) and tet(L) genes in Enterococcus spp. isolated from food in Southern Brazil, World J Microbiol Biotechnol 26: 365-70.
- Gao X, Fan C, Zhang Z, Li S, Xu C, Zhao Y, Han L, Zhang D, Liu M (2019) Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution, Microb Pathog 129(4): 82-87.
- Hamzah AM, Kadim HK (2018) Isolation and identification of Enterococcus faecalis from cow milk samples and vaginal swab from human, J Entomol Zool Stud 6: 218-222.
- Huys G, D'Haene K, Swings J (2002) Inûuence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method, Lett Appl Microbiol 34: 402-406.
- Hummel A, Holzapfel WH, Franz CMAP (2007) Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food, Syst Appl Microbiol 30(1): 1-7.
- Iwasaki M, Qi G, Endo Y, Pan Z, Yamashiro T, Andriamanohiarisoamanana FJ, Umetsu K (2019) Quantity changes in *Pseudomonas* species in dairy manure during anaerobic digestion at mesophilic and thermophilic temperatures, J Mater Cycles Waste Manag 21(3): 423-432
- Jahan M, Krause DO, Holley RA (2013) Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method, Int J Food Microbiol 163(2-3): 89-95.
- Jangir K, Mir IA, Saleem T (2021) Virulence characterization of exo-S, exo-U and algD genes and antibiogram atudy of *Pseudomonas aeruginosa* isolated from goat mastitis milk in India, Isr J Vet Med 76(3): 108-115.
- Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H (2000) Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci, J Clin Microbiol 38(8): 3092-3095.

- Klare I, Konstabel C, Badstübner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in *Enterococcus faecium*, Int J Food Microbiol 88(2-3): 269-290.
- Lambert PA (2002) Mechanisms of antibiotic resistance in *Pseudomonas aeruginosa*, J R Soc Med 95(41): 22-26.
- Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Duprè I, Sechi LA (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between *Enterococcus faecium* strains of dairy, animal and clinical origin, Int J Food Microbiol 88(2-3): 291-304.
- Maynard C, Bekal S, Sanschagrin F, Levesque CR, Brousseau R, Masson L, Larivie're S, Harel J (2004) Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal *Escherichia coli* isolates of animal and human origin, J Clin Microbiol 42(12): 5444-52.
- Melchior MB, Vaarkamp H, Fink-Gremmels J (2006) Biofilms: a role in recurrent mastitis infections, Vet J 171(3): 398-407.
- Meng H Liu L, Lan T, Dong L, Hu H, Zhao S, Zhang Y, Zheng N, Wang J (2020) Antibiotic resistance patterns of *Pseudomonas* spp. isolated from raw milk revealed by whole genome sequencing, Front Microbiol 11: 1005.
- Nam HM, Lim SM, Moon JS, Kang HM, Kim JM, Jang KC, Kang MI, Joo YS, Jung SC (2010) Antimicrobial resistance of enterococci isolated from mastitic bovine milk samples in Korea, Zoonoses Public Health 5(7-8): e59-e64.
- Różańska H, Lewtak-Piłat A, Kubajka M, Weiner M (2019) Occurrence of enterococci in mastitic cow's milk and their antimicrobial resistance, J Vet Res 63(1): 93.
- Schauer B, Wald R, Urbantke V, Loncaric I, Baumgartner M (2021) Tracing mastitis pathogens epidemiological investigations of a *Pseudomonas aeruginosa* mastitis outbreak in an Austrian dairy herd, Anim 11(2): 279.
- Sekhri I, Chandra M, Kaur G, Narang D, Gupta DK, Arora AK (2021) Prevalence of *Pseudomonas aeruginosa* and other microorganisms from mastitis milk and their antimicrobial resistance pattern, Ind J Anim Res 55(6): 716-721.
- Sharma A, Sindhu N (2007) Occurrence of clinical and subclinical mastitis in buffaloes in the state of Haryana (India), Ital J Anim Sci 6(2): 965-967.
- Singh K, Chandra M, Kaur G, Narang D, Gupta DK (2018) Prevalence and antibiotic resistance pattern among the mastitis causing microorganisms, Open J Vet Med 8(04): 54.
- Stovcik V, Javorsky P, Pristas P (2008) Antibiotic resistance patterns and resistance genes in enterococci isolated from sheep gastrointestinal tract in Slovakia, Bull Vet Inst Puławy 52 (1): 53-57.
- Swetha CS, Babu AJ, Rao KV, Bharathy S, Supriya RA, Rao TM (2017) A study on the antimicrobial resistant patterns of *Pseudomonas aeruginosa* isolated from raw milk samples in and around Tirupati, Andhra Pradesh, Asian J Dairy Food Res 36(2): 100-105.
- Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG (2000) Expression of resistance to tetracyclines in strains of methicillin-resistant *Staphylococcus aureus*, *J Antimicrob Chemother* 45(6): 763-770.
- Wondrack L, Massa M, Yang BV, Sutcliffe J (1996) Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides, Antimicrob Agents Chemother 40(4): 992-998.
- Yadav R, Chhabra R, Shrinet G, Singh M (2020) Isolation of *Pseudomonas* aeruginosa from bovine mastitic milk sample along with antibiogram study, J Anim Res 10(2): 269-273.
- Yang F, Zhang S, Shang X, Wang X, Yan Z, Li H, Li J (2019) Antimicrobial resistance and virulence genes of *Enterococcus faecalis* isolated from subclinical bovine mastitis cases in China, J Dairy Sci 102(1): 140-144.