Performance of Groundnut (*Arachis hypogaea* L.) Productivity Through Cluster Front Line Demonstration in Farmer's Field

P. Ayyadurai^{1*}, P.S. Shanmugam², M. Sangeetha³ and M.A. Vennila³

ABSTRACT

The cluster front line demonstration (CFLD) of groundnut were conducted during kharif season of 2017 and 2018 in 150 farmers holdings of Dharmapuri district, Tamil Nadu to demonstrate the production potential and monitoring returns of best management practices (BMPs). The higher pod yield and drought tolerant variety (TCGS 1043, TMV 14), seed treatment with biofertilizers and bio-fungicides, integrated nutrient management, integrated pest and disease management were demonstrated. The BMPs demonstrated registered mean yield of 18.2 q/ha, which was 31 percent higher than that obtained with farmer's practice. The incidence of insect pest and disease were lowest in the BMPs compare to FPs. The additional cost of Rs. 4276 to Rs. 6138 gave additional net return ranged from Rs. 11226 to Rs. 17718 per hectare with increased benefit: cost ratio of 1:2.63 to 1:2.89. Data on technology index increased from 21.6 per cent (2017) to 32.8 percent (2018), exhibited response of technology demonstration in this region.

Keywords: Best Management Practices (BMPs), CFLD, Economics, Extension gap, Farmers Practice (FP), Groundnut, Technology gap

INTRODUCTION

India is the largest producer of oilseeds in the world and oilseed sector occupies an important position in the country's economy (Undhad *et al.*, 2019), where it provides 36 to 54 per cent of oil, 10 to 20 per cent of carbohydrates and 16 to 36 per cent of proteins (Bhauso *et al.*, 2014; Lenka *et al.*, 2018). As per FAOSTAT, 2013 estimates India accounts for 12 to 15 per cent of global oilseeds area, 6 to 7 per cent of vegetable oil production and 9 to 10 per cent of total edible oil consumption. Groundnut or peanut (*Arachis hypogaea* L.), is known as "King of Oilseeds", and it is the sixth most important oilseed crop of the world, fourth most important source of edible oil and third most important

source of vegetable protein (Ayyadurai *et al.*, 2018). It is mainly grown to produce oil for human and animal consumption. It is also called as "Wonder nut" and "Poor men's cashew nut" (Meena *et al.*, 2018). The crop has multi-faceted benefits *viz.*, fixation of biological nitrogen in the soil, haulm used for fodder in livestock and oilcake used for animal feed (Nautiyal *et al.*, 2011). As a predominant oilseed crop groundnut was cultivated in 24.7 million hectares with the production and productivity of 40.4 million tones and 1.63 t/ha, respectively around the world. In India the area under groundnut cultivation is being carried out 5.53 million hectares with production of 7.40 million tones and productivity of 13.4q/ha (Anonymous, 2016). In Tamil Nadu it has been grown in 0.35 million hectares annually, producing 0.88 tones

Department of Crop Management, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Vazhavachanur, Thiruvannamalai-606753, Tamil Nadu

²Department of Pulses, Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu

³ICAR-Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Dharmapuri-636809, Tamil Nadu

^{*}Corresponding author email id: ayyadurai@tnau.ac.in

with average productivity of 2509 kg/ha. As far as the groundnut cultivation in Dharmapuri district of Tamil Nadu is concerned, it is grown on 0.15 lakh hectare annually producing 0.19 lakh tones with the average productivity of 16.29 g/ha. In Dharmapuri district average productivity of groundnut is very low (16.29 q/ ha) compare to state average productivity (25.09 q/ha). This is because of low adoption of improved best management practices and lack of knowledge on high vielding and drought tolerant varieties. Major abiotic stress viz., low moisture content, terminal drought and biotic stresses are also responsible for low yield. Among the biotic stress, the Spodoptera litura is a major pest occurring for 42 per cent pod damage in the crop (Naidu et al., 2016). Among the biotic stresses cutworm (Spodoptera litura Fabricius), aphid (Aphis craccivora Koch), leafhopper (Empoasca kerri Pruthi), thrips (Scirtothrips dorsalis Distant & Frankliniella schultzei Trybom) and leaf miner (Aproaerema modicella Dev.) are the major insect pests causes considerable yield loss in groundnut (Naidu et al., 2016; Reddy, 2001; Gadad et al., 2015; Gocher and Ahmad, 2019).

The demonstration of BMPs including high yielding drought tolerant varieties through CFLD will increase the production in unit area. Keeping this point in view, we attempted to demonstrate improved production technologies with the objective to increase productivity and gain confidence among farmer groups. There is positive indication of yield improvement due to industrious efforts of KVK scientists.

METHODOLOGY

The Cluster Front Line Demonstration was conducted in 75 farmers' fields / year (One acre / farmer) during 2017 and 2018 in different blocks of Dharmapuri district. The best management practices (BMPs) demonstrated *viz.*, high yielding drought tolerant variety (TCGS 1043, TMV 14), seed treatment with biofertilizers (*Rhiziobium & Phosphobacteria* each @ 125 ml/ha of seeds) and bio-fungicides (*Trichoderma viride* @ 4 g/kg seed & *Pseudomonas fluorescens* @ 10 g/kg seed), integrated nutrient management (25:50:75

kg NPK/ha + 80 kg Sulphur as gypsum on 45 DAS) and spraying of groundnut rich @ 5 kg /ha in 500 lt. of water at 35 & 45 days after sowing and integrated pest and disease management. During April-May the summer ploughing was done. Crop was sown between second fort night of June to first fortnight of July with spacing and seed rate of 30×10 cm and 110 kg/ha respectively in all the locations. The seed drill sowing was demonstrated wherever possible to assure optimum plant population maintenance. The integrated nutrient management technologies viz., basal application of entire dose of nitrogen (urea 42% N), phosphorus (single super phosphate 16% P₂O₅) and potash (muriate of potash 60% K₂O), application of gypsum @ 400 kg/ha at 45 days after sowing and spraying of Tamil Nadu Agricultural University crop booster Groundnut rich @ 5 kg / ha in 500 lt. of water was done at 35 DAS and 45 DAS were demonstrated across all the CFLD fields. The integrated pest and disease management strategies demonstrated were installation of yellow sticky traps @ 25/ha to attract sucking pests, pheromone traps to monitor leaf miner Aproaerema modicella (Deventer) (Lepidoptera: Gelechiidae) @ 12/ha, soil application of Trichoderma viride & Pseudomonas fluorescens each @ 2.5 kg/ha to manage wilt, prophylactic spraying of Pseudomonas fluorescens @ 5 g/lt. to manage leaf spot diseases and need based insecticide spraying were the major components of integrated pest management.

The farmers practice consists of use of old seed variety (Co 7, TMV 3, JL 24 or local), sowing during second fortnight of July to first fortnight of August, with higher seed rate 150 kg/ha, imbalance use of fertilizers and plant protection measures. The seed treatment with bio-fungicides and bio-fertilizers, optimum plant population maintenance and integrated nutrient management practices were not followed in the farmers practice.

Before conducting CFLD, the farmers list was prepared to form groups and skill training was imparted to the selected farmers on the best management practices, benefits of drought tolerant varieties during dry spells, need of balanced application of fertilizers and integrated pest and disease management practices. All

other procedure like site selection, farmer selection, layout of demonstration, farmers participation etc. were followed as suggested by Choudhary (1999) and Dubey *et al.* (2017). In total 150 farmers were associated with this cluster front line demonstrations implemented during 2017 and 2018. The total area covered through this CFLD was 60 hectares. In the demonstrations one control plot was maintained and the farmers were allowed to practice their regular cultivation practice.

The sucking pest population was counted on three leaves per plant from the randomly selected ten plants by visual count method at fortnight intervals. The leaf miner and tikka leaf disease were recorded by counting total number of plants and number of plants infested from randomly selected quadrants (1x1m size) at four places in each field. The collected data were converted in to percentage for mean comparison (Reddy, 2001). The yield data were collected from the demonstration and farmers practice plot. From the collected data technology gap, extension gap and technology index were a workout (Samui *et al.*, 2000) as follows:

Technology gap = Potential yield - Demonstrated yield

Extension gap = Demonstrated yield - Yield under existing practice

Technology index = (Potential yield - Demonstrated yield) \times 100 / Potential yield

RESULTS AND DISCUSSION

The gap between best management practices (BMPs) and existing farmers practice under groundnut CFLD found that in case of variety, seed rate, seed treatment, sowing method and foliar spray full gap was observed. The partial gap was observed in land preparation, fertilizer dose and plant protection.

The yield of groundnut obtained both the years under best management practices (BMP) as well as farmer's practice (FP) are presented in Table 1. The productivity of groundnut ranged from 16.8 to 19.6 g/ha with mean yield of 18.2 q/ha under BMPs. In the FPs the yield was ranged between 12.2 to 13.5 q/ha with a mean of 12.9 q/ha. The best management practices recorded higher productivity during both years in the farmer's field. The higher yield of groundnut under BMPs might be due to the use of latest drought tolerant high yielding variety, integrated nutrient management and pest management. Tomar et al. (1999) revealed that the adoption of improved technologies in chickpea (Cicer arietinum Linn.) recorded mean yield of 19.65 q/ha which was 71.88 per cent higher than that obtained with farmers practices of 11.44 q/ha. In chickpea the improved technologies recorded mean yield of 14.12 q/ha, which was 30 percent higher than that obtained with farmer's practices of 10.79 q/ha (Dubey et al., 2017). The integrated crop management practices comprising introduction of drought tolerant short duration variety, seed treatment, integrated nutrient management and plant protection measures recorded higher pod vield of 1450 kg/ha in demonstration and the lower yield of 1240 kg/ha practice (Sangeetha et al., 2016). In the present demonstrations also the best management practices recorded higher yield than the farmers practice which corroborate with the above findings.

Incidence of sucking pests, leaf miner and tikka leaf disease are presented in Figure 1-4 for the 2017 and 2018 crop period. The aphid, leaf hopper and thrip population per plant ranged between 1.26–2.96, 0.82–1.2 and 0.4–0.82 in best management practice and 5.42–7.82, 3.20–5.12 and 1.20–1.96 in farmers practice during *kharif* 2017 (Figure 1). During *kharif* 2018 the population of aphid, leaf hopper and thrips population /

Table 1: Productivity, extension gap, technology gap and technology index of groundnut as grown under CFLD and existing package of practices

Year	Area	Potential yield	Yield q ha ⁻¹		% increase	Extension	Technology	Technology
	(ha)	(q ha ⁻¹)	BMPs	FP	over FP	gap (q ha ⁻¹)	gap (q ha ⁻¹)	index (%)
2017	30	25.0	19.6	12.2	37.8	7.4	5.4	21.6
2018	30	25.0	16.8	13.5	24.4	3.3	8.5	32.8
Total/Mean	60	25.0	18.2	12.9	31.1	5.4	7.0	27.2

plant ranged between 1.67–2.33, 0.67–1.67 and 0.67 in best management practice and 6.33-7.33, 3.00-7.67 and 1.33–2.67 in farmers practice (Figure 2). Leaf miner incidence was lowest in best management practice during both the year of study compare to farmers practice (Figure 3). The tikka leaf disease was ranged between 9.77–14.55 and 10.65–13.29 respectively during 2017 and 218 respectively in BMPs, whereas it was ranged between 18.67-34.43 and 24.96-28.67 in farmers practice (Figure 4). Jasrotia et al. (2020) revealed that the synthesized integrated pest management (IPM) Modules significantly reduced insect-pest incidence on groundnut and enhanced the yield over farmers' practices. They recorded lowest thrips (0.46 to 1.09) thrips/plant) and leaf hoppers (0.47 to 4.0 leafhoppers/ plant) in IPM module. In the present investigation also

plant protection.

The input and output prices of commodities prevailed during both the years of demonstration were taken for calculating cost of cultivation, net return and benefit cost ratio (Table 2). The net return from the BMPs was Rs. 29,981 to 37,640 while the net return from farmers practice was Rs. 18,755 to 19,922. The additional cost of Rs. 4,276 to 6,138 incurred towards adoption of best

management practices gave additional net return, it was

ranged Rs. 11,226 to 17,718 per hectare. The benefit:

cost ratio was ranged from 1:2.63 to 1:2.89. Sangeetha

the BMP practices recorded lowest insect pest and

disease incidence. The adoption of integrated pest and

disease management strategies in the BMP apart from

reducing pest and diseases reduces the cost involved in

10 ⊠BMP ■FP Mean population/3 leaves Leaf Thrips Aphid Leaf Thrips Aphid Aphid Leaf Thrips hopper hopper hopper 15 DAS 30 DAS 45 DAS Sucking pest incidence

Figure 1: Incidence of Sucking pests in best management and farmers practice during *kharif* 2017

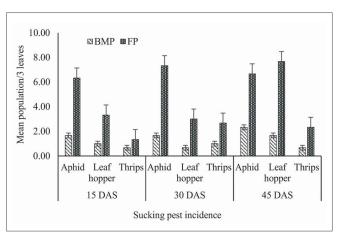


Figure 2: Incidence of Sucking pests in best management and farmers practice during *kharif* 2018

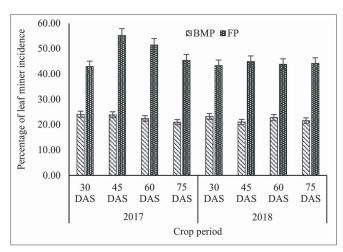


Figure 3: Incidence of leaf miner in best management and farmers practice during *kharif* 2017 & 2018

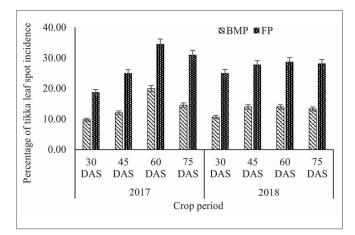


Figure 4: Incidence of tikka leaf spot in best management and farmers practice during *kharif* 2017 & 2018

Year	Cost of cultivation (Rs./ha)		Gross Return (Rs./ha)		Net Return (Rs./ha)		Additional Additional cost Net Return		BCR
	BMPs	FP	BMPs	FP	BMPs	FP	(Rs./ha)	(Rs./ha)	
2017	29560	35698	67200	55620	37640	19922	6138	17718	2.89
2018	30264	34540	61245	53295	29981	18755	4276	11226	2.63

Table 2: Economic analysis of best management practices and farmer practices

et al. (2016) recorded higher net return of Rs 26,063/ha and benefit: cost ratio of 1.81 in demonstration plots compared to farmers' practice in groundnut. Similar result has been exported by earlier by Tomar (2010) and Dubey et al. (2017) in chickpea. In the present demonstration also the best management practices gave higher return and benefit cost ratio across the locations.

The extension gap showed an increase trend. The extension gap ranging between 3.3 to 7.4 q/ha during both the years of study emphasizes the need to educate the farmers through various means for adoption of BMPs to reverse the trend wide extension gap. The trends of technology gap (ranging between 5.4 to 8.5 q/ ha) reflected to the farmer's cooperation in carrying out such demonstration with encouraging results in both the years. The difference in soil fertility and weather conditions may be the cause for technology gap. Sagar and Chandra (2004) revealed that in their study on front line demonstration of sesame varieties showed highest extension gap which requires immediate attention from the extension agencies. The technology index showed the feasibility of the evolved technology at the farmer's field. The lower value of technology index more is the feasibility of the technology demonstrated. In the present investigation the technology index was 21.6 per cent during 2017 to 32.8 per cent during 2018 which exhibits the feasibility of demonstrated technology in this region. The results confirm the findings of crop technology demonstration on oilseed and pulses crops by Yadav et al. (2004); Lathwal (2010) and Dubey et al. (2017).

CONCLUSION

The demonstration of best management practices through cluster front line demonstration reduced the technology gap and resulted in increased returns. The adoption of integrated nutrient and pest management tactics apart from contributing yield reduces the input cost. The active involvement of extension functionaries in delivering best management practices will reduce the extension gap.

Paper received on : December 03, 2020 Accepted on : December 20, 2020

REFERENCES

Anonymous (2016). Directorate of economics and statistics, Krishi Bhavan, New Delhi.

Ayyadurai, P., Vennila, M.A., Sangeetha, M. and Shanmugam, P.S. (2018). Demonstration of integrated crop management in groundnut through cluster front line demonstration. In: Proceedings of ISWS Golden Jubilee International Conference on "Weeds and Society: Challenges and Opportunities", ICAR-DWR, Jabalpur, Indian Society of Weed Science, India, 364p.

Bhauso, T.D., Radhakrishnan, T. and Kumar, A. (2014). Overexpression of bacterial *mtlD* gene in peanut improves drought tolerance through accumulation of mannitol, *e Scientific World Journal*.

Choudhary, B.N. (1999). Krishi Vigyan Kendra- A guide for KVK managers, Division of Agriculture Extension, ICAR; pp 73-78.

Dubey, S., Raghav, R.S. and Singh, P. (2017). Enhancement of productivity for chickpea (*Cicer arietinum* L.) through front line demonstration in farmer's fields, *Legume Research*, **40**(2), 335-337.

FAOSTAT. Food and Agricultural Organization Statistics Database. (2013). (FAOSTAT). Available online: http://faostat3.fao.org/home/E (accessed on 29 January 2016).

Gadad, H., Hegde, M. and Balikai, R.A. (2015). Surveillance of groundnut thrips and influence of weather parameters on thrips incidence, *Journal of Experimental Zoololgy India*, **18**(2), 947-950.

Gocher, S. and Ahmad, S. (2019). Seasonal incidence of major sucking insect pests of groundnut in relation to weather

parameters of semi-arid region of India, *International Journal* of Current Microbiology and Applied Science, **8**(8), 1106-1111.

Jasrotia, P., Jadon, K.S., Singh, S.K., Nataraja, M.V., Harish, G., Dutta, R., Padvi, R.D. and Savaliya, S.D. (2020). Development and validation of IPM modules against major sucking insect-pests of groundnut, *Legume Research*, **43**(4), 592-597.

Kant, K., Kanaujia, K.R. and Kanaujia, S. (2007). Role of plant density and abiotic factors on population dynamic of *Helicoverpa armigera* (Hubner) in chickpea. *Annals of Plant Protection Science*, **15**, 303-306.

Lathwal, O.P. (2010). Evaluation of crop demonstration on black gram in irrigated agro-ecosystem. *Annals of Agricultural Research*, **31**, 24-27.

Lenka, S., Swain, S.K. and Pradhan K.C. (2018). Efficacy of herbicides on weed control in *rabi* groundnut under east and south eastern coastal plains of Odisha. In: Proceedings of ISWS Golden Jubilee International Conference on "*Weeds and Society: Challenges and Opportunities*", ICAR-DWR, Jabalpur, Indian Society of Weed Science, India, 335p.

Meena, B.L., Jena, T., Meena, P., Meena, M.L. and Meena, N. (2018). Weed management in groundnut. In: Proceedings of ISWS Golden Jubilee International Conference on "Weeds and Society: Challenges and Opportunities", ICAR-DWR, Jabalpur, Indian Society of Weed Science, India, 99p.

Naidu, G.K., Motagi, B.N. and Gowda, M.V.C. (2016). Potential sources of resistance to multiple biotic stresses in groundnut (*Arachis hypogaea* L.). In: Proceedings of National Conference on "*Harmony with nature context of resource conservation and climate change*", Department of Zoology, Botany, Biotechnology and Geology, Vinoba Bhave University, Hazaribag (Jharkhand), pp 509-515.

Nautiyal, P.C., Zala, P.V., Tomar, R.K., Sodayadiya, P. and Tavethia, B. (2011). Evaluation of water use efficiency newly

developed varieties of groundnut in on-farm trials in two different rainfall areas in Gujarat, India, *SAT e Journal / e Journal*, icrisat.org. **9**, 1-6.

Reddy, L. (2001). Management of leaf miner *Aproaerema* modicella in groundnut, *Journal of Research ANGRAU*, **29**(1), 56-58.

Sagar, R.L. and Chandra, G. (2004). Frontline demonstration on sesame in West Bengal, *Agricultural Extension Review*, **16**, 7-10.

Samui, S.K., Moitra, S., Ray, D., Mandal, A.K. and Saha, D. (2000). Evaluation of frontline demonstration on groundnut, *Journal of the Indian Society Costal Agricultural Research*, **18**, 180-183.

Sangeetha, M., Shanmugam, P.S. and Tamilselvan, N. (2016). Yield improvement in groundnut through frontline demonstration under rainfed condition, *International Journal of Farm Science*, **6**(4), 279-282.

Tomar, R.K.S. (2010). Maximization of productivity for chickpea (*Cicer arietinum* L.) through improved technologies in farmer's field, *Indian Journal of Natural Products and Resources*, **1**, 515-517.

Tomar, R.K.S., Sharma, P. and Yadav, L.N. (1999). Comparison of yield and economic of integrated chickpea under improved and local management practices, *International Chickpea Pigeon pea News Letter*, **6**, 22-23.

Undhad, S.V., Prajapati, V.S., Sharma, P.S., Jadav, N.B. and Parmar, A.R. (2019). Role of cluster demonstration in enhancement of groundnut production, *Journal of Pharma Phytochemistry*, **8**, 1862-1863.

Yadav, D.B., Kamboj, B.K. and Garg, R.B. (2004). Increasing the productivity and profitability of Sunflower through front line demonstration in irrigated agro-ecosystem Haryana, *Haryana Journal of Agronomy*, **20**, 33-35.