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ABSTRACT

The study attempts to model and predict the FDI inflows in India through use of time series data for FDI
inflow in India from 1980 to 2019. The Autoregressive integrated moving average (ARIMA) model developed
by Box and Jenkins (1976) was used to develop the model. UBJ identification included the determination of
appropriate AR (autoregressive) and MA (moving-average) polynomials orders i.e. values   of p and q. Orders
were determined from the autocorrelation functions and partial autocorrelation functions of the stationary
series. FDI data were found to be non stationary and a single order differencing was sufficient to obtain the
appropriate stationary series. The study determined a low AIC value and subsequently introduced the ARIMA
model (1,1,0) as a suitable FDI predictor model in India. The promised FDI inflows for the years 2016-17 to
2018-19 were within the scope of confidence and the percentage deviation of predictable and observable
values   ensures that our predicted prices close to real prices.
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INTRODUCTION

Foreign Direct Investment (FDI) is an investment
that involves long-term relationships, interests and the
influence of a single investor (foreign investors / parent
business) in a foreign-based business other than a foreign
investor and plays an important role in developed and
developing countries. India after liberating and growing
the global economy in 1991, witnessed a significant
increase in FDI flows. It has played a key role in the
development process over the past two decades. To a
large extent, FDI is a non-performing source of
additional foreign investment. At a minimum, FDI is
expected to improve outreach, technology, skills levels,
employment and linkages with other sectors and regions
of the economy. Maggon (2012) reviewed FDI’s
economic policy policies and suggested possible
improvements to the current policy framework. Thabani

Nyoni (2018) used ARIMA to predict FDI entry in
number in Zimbabwe. Anupama and Rupashree (2019)
applied ARIMA model in R to software to forecast FDI
inflow in INDIA. Mohammed Ershad Hussain, Mahfuzul
Haque (2016) analyzed about Foreign Direct
Investment, Trade, and Economic Growth of Bangladesh.
Verma (2015) described Regression, ARIMA and
ARIMAX analyses on GDP, inflation, exchange rate,
export, import, energy generation and trade balance to
estimate the foreign direct investment (FDI) in India.
Time series data (TS) refers to the dynamics that occur
over time. The TS movement of the chronological data
can be solved by the tendency, periodic (say, seasonal),
rotation and irregularities. One or two of these items may
cover the rest of the series. The basic assumption in any
TS analysis is that some aspects of the previous pattern
will continue to remain in the future. The most widely
used method of modeling and predicting TS data is the
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Box-Jenkins’s Autoregressive integrated moving average
(ARIMA) methodology.

METHODOLOGY

Data for the 39-year Foreign Direct Investment
(FDI) period series from 1980-81 to 2018-19 were
collected from various issues of RBI bulletins. The
statistical analysis was performed to improve the
relevant relationship by the Autoregressive integrated
moving average (ARIMA) of the FDI forecast in India.
Data from 1980-2016 were used for model development
and data for the next three years were used to assess
model validity.

The univariate ARIMA approach was first
popularized by Box and Jenkins and the models
developed through this approach are referred to as
univariate Box-Jenkins (UBJ) models. The ARIMA
model building process is executed in four steps;
Identification of the autoregressive integrated moving
average model where the order is (p,d,q); Estimation of
the coefficients; A test is constructed on the residuals
projected and the model is subjected to a set of
Diagnostic Testing and Forecasting the future from given
set of data. The general functional form of ARIMA
(p,d,q) model is :

p(B)d yt = c + q (B)at                                      ... (1)

where, y = Variable under forecasting, B = Lag operator,
a = Error term (Y- Ŷ , where Ŷ  is the estimated value
of Y), t = time subscript, p (B) = non-seasonal AR i.e.
the autoregressive operator, represented as a polynomial
in the back shift operator, d = non-seasonal difference

q(B) = non-seasonal MA i.e. the moving-average
operator, represented as a polynomial in the back shift
operator ’s and ’s are the parameters to be estimated

Here the order of the AR model and MA model can
be expressed through p and q respectively. The number
of time series differences is expressed through d where
d, p and q are all sets of integers, show the projected
residual for each period of time. For ideal circumstances,
the model should be impartially distributed as random
normal set of observations.

Initial stage in making an autoregressive integrated
moving average model in equation (1) is to find the
stationarity of the time series data of observations. To
obtain the stationarity, at the primary step the ACF or
the Auto Correlation Function and the PACF or the
Partial Auto Correlation Function of the given time series
data sets are to be drawn, if the series are not stationary
then proper differenced order is required to make the
series under consideration stationary. Using Correlogram
analysis, the p and q of the model is to be fitted, this is
based on iterative process. To test for the Goodness of
Fit, the BIC alternatively speaking the Bayesian
Information criteria is examined here. For autoregressive
model, AR (p) the Auto Correlation Function is tailing
off at the level p but the Partial Auto Correlation
Function cuts off. For moving average model, MA (q),
the Auto Correlation Function cuts off whereas the
Partial Auto Correlation Function is tailing off in the
order of q. Moreover for Autoregressive Moving
Average, ARMA (p, q) neither of the Auto Correlation
Function or the Partial Auto Correlation Function is tailing
off. The standard model developed in the equation (1)
needs to be assessed through iterative method until the
sum of the squares of the residual in its least is obtained.
The appropriateness of the constructed model can be
tested through analytical diagnostic examination. This
contains the process of scrutinizing the residuals from
the model thus fitted to inspect if there exists the
indication of non-randomness. Here from the residuals
correlogram is calculated, it is found out to what extent
there is significant difference from zero among the
coefficients. To test for the randomness of the model‘s
residuals the Ljung Box Statistic (Ljung and Box, 1978)
is utilized. The formulation for the Ljung Box-statisticis

 ܳ = ܰ(ܰ + 2)∑ ݇ߩ
^2

ܰ−݇ 
ܭ
݇=1                                    ... (2)

Here N indicates the number of the observations,
the autocorrelation order of lag is denoted by . The
statistics Q approximately follows a chi-square
distribution with (K-m) degree of freedom, where m is
number of parameters estimated in ARIMA model. If Q
is large it says that the residual autocorrelations as a set
are significantly different from zero and random shocks
of estimated model are probably auto-correlated, then
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reformulate the model. Finally the ARIMA model is used
to forecast results, with upper and lower limits, these limits
give us the confidence interval. RMSE or the root mean
square is used to identify the measurement errors, this
helps us to identify the robustness of the model.

RMSE= ට1
ܰ
∑ ൫ݐݕ − ൯^ݐݕ

2ܰ
1=ݐ                                ... (3)

Equation (3) shows the expression of the RMSE or
the root mean square. Where yt is actual observation
and ݐݕ^  is estimated observation.

RESULTS AND DISCUSSION

The analysis was performed on the data of the time
series from 1980-81 to 2018-19 of FDI. The ARIMA
method was used to estimate FDI in India. UBJ
identification includes the determination of appropriate
AR and MA polynomials orders i.e. values   of p and q.
Orders are determined from the autocorrelation functions
and partial autocorrelation functions of the stationary
series. FDI data were found to be non stationary and a
single order differencing was sufficient to obtain the
appropriate stationary series. The estimated acf is shown
in Table 1. After experimenting with different lags of the
moving average and autoregressive processes, ARIMA
(1,1,0) was introduced to estimate FDI in India. The
Marquardt algorithm (1963) was used to minimize the
sum of squared residuals. Log Likelihood, Akaike’s
Information Criterion, AIC (1969), Schwarz’s Bayesian
Criterion, SBC (1978) and residual variance decided the
criteria to estimate AR and MA coefficients in the model.
Parameter estimates of the fitted models are given in
Table 2.

The fitted model ARIMA (1,1,0) may be elaborated as:

(1-1B) (1-B) Yt = at

Yt - (1 + 1) BYt + 1B
2 Yt = at

Yt=(1 + 1)Yt-1-1Yt-2 + at

The ARIMA (1,1,0) fitted model indicates the
presence of lagged values of dependent variable i.e.
autoregressive component. The residual acf along with
the associated ‘t’ tests and Chi-squared test suggested

Table 1: Autocorrelations : FDI
Lag Auto- Std. Box-Ljung Statistic

correlation error (a) Value df Sig.(b)
1 .899 .160 33.998 1 .000
2 .796 .259 61.412 2 .000
3 .689 .316 82.501 3 .000
4 .594 .352 98.613 4 .000
5 .518 .377 111.212 5 .000
6 .462 .395 121.567 6 .000
7 .417 .408 130.264 7 .000
8 .327 .419 135.775 8 .000
9 .257 .426 139.295 9 .000
10 .167 .430 140.838 10 .000
11 .073 .431 141.143 11 .000
12 -.026 .432 141.182 12 .000
13 -.093 .432 141.710 13 .000
14 -.122 .432 142.660 14 .000
15 -.146 .433 144.081 15 .000
16 -.166 .434 145.994 16 .000

Table 2: Parameter estimates of ARIMA model
Estimates Std. error t Approx sig.

Non-Seasonal Lags AR1 .083 .183 .453 .654
Constant 1603.759 883.74 1.815 .079
Melard’s algorithm was used for estimation.

Table 3: Diagnostic checking of residuals autocorrelations: FDI
Model Number of Model Fit statistics

Predictors R-squared RMSE MAPE Normalized Ljung-Box Q Sig.
BIC Statistics

FDI (1,1,0)  0 .926 4797.53 1000.89 17.15 7.09 .982
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Table 5: Percent deviation between Actual & fitted values
India’s FDI from 2016-17 to 2018-19. (Value in Million
USD)
Year FDI Actual FDI Forecast Relative

(Y) (F) Deviations
2016-17 60220 57893.8 -3.86
2017-18 60974 59558.3 -2.32
2018-19 64375 61167.1 -4.98

Table 4: FDI estimates along with upper and lower
confidence limits based on ARIMA model
Models FDI (1,1,0) (million US $)

2016-17 2017-18 2018-19
Forecast 57893.8 59558.3 61167.1
UCL 67654.4 73946.2 79060.6
LCL 48133.3 45170.5 43273.6
UCL & LCL - Upper and lower confidence limits (95%)

Figure 1:

by Ljung and Box (1978) were used for the checking
of random shocks to be white noise (Table 3). The
observed and forecasted values of FDI along with lower
and upper confidence limits and are shown in Table 4.

                                              Forecasted yield – Actual yield
Percent deviation (RD %) =                                                     X 100
                                                         Actual yield

ARIMA model could be used successfully for
modelling as well as forecasting of yearly FDI of India.
It has been found that there is a significant increasing
trend in FDI of India. The forecast values of FDI during
2016-17 to 2018-19 are close to the actual valuesas
percent deviation of the forecasted and observed figures

is in acceptable limits shown in Table 5. The level of
accuracy achieved by ARIMA (1,1,0) was found
adequate for estimating FDI and residuals were white
noise. Three-step ahead (out-of-model development
period i.e. 2016-17, 2017-18 and 2018-19) forecasted
values of FDI along with their estimated and observed
values over the years are shown in Figure 1.
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