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ABSTRACT

The effects of meal size and body size on gastric evacuation rates were parameterised for European seabass Dicentrarchus
labrax (Linnaeus, 1758). A total of three gastric evacuation experiments were performed on small (15.7+0.8 cm) and large
(21.5+0.4) size fish forced-fed with meals of 0.5 and 1.5 g composed of commercial pellets. The stomach contents were
then recovered by serial slaughtering the fish at predetermined post-prandial times. The surface-area dependent function
adequately describes the gastric evacuation in European seabass independently of meal size. A power function of fish length
L was then employed to evaluate the impact of body size, revealing its notable effect on gastric evacuation rates of European

seabass.
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Introduction

Aquaculture is an important food production
sector that has significantly contributed to global food
security by meeting the growing demand for fish (Lem
et al., 2014; Kobayashi et al., 2015). The growth of
aquaculture can also ease the burden on capture fisheries
by fulfilling the high demand for fish, reducing pressure
on wild fish populations and decreasing fishing pressure
(Ye and Beddington, 1996; Babu and Joshi, 2019). To
meet the increasing global demand for fish sustainably,
the aquaculture sector needs to adopt both existing and
new technologies and use them innovatively (Ye and
Beddington, 1996; Aas et al., 2017; Alltech, 2017).

The automatic feeding system is a self-service
technology that dispenses feed across a fish pond or cage
at a predetermined time (Yeoh et al., 2010; Molina and
Espinoza, 2018). Several studies show that feeding fish
at the return of appetite can ensure maximum feed intake
and increase feed efficiency (Lee ef al., 2000; Riche et al.,
2004). The feed intake and the time required for appetite
return are generally regulated by a complex combination
of environmental, nutritional and physiological factors
(Fletcher, 1984; Saravanan ef al.,, 2012; Andersen,
2022). Consequently, knowledge related to feed intake
and time required for the return of appetite in fish under
certain environmental conditions is a prerequisite for the
optimised function of an automatic feeding system. The

time needed for the return of appetite can be determined
by the gastric evacuation rates of a fish (Riche ez al., 2004;
Khan, 2022). Several factors such as temperature, dietary
energy density, meal size and fish size have been reported
to regulate the gastric evacuation rates (Seyhan, 1994;
Khan and Seyhan, 2019; Andersen, 2022). Hence, gastric
evacuation rates modelling needs to be parameterised
under different environmental conditions for a possible
determination of stomach fullness at a post-prandial time
and stomach fullness at the return of appetite (Riche et al.,
2004; Bascinar et al., 2017; Seyhan et al., 2020).

The European seabass Dicentrarchus labrax
(Linnaeus, 1758), is a primarily ocean-dwelling fish that
was one of the first species to be commercially farmed in
Europe (Vazquez and Munoz-Cueto, 2014). It was initially
farmed in coastal lagoons and tidal reservoirs before mass
production techniques were developed in the late 1960s
(Vazquezand Munoz-Cueto,2014). Itis extensively farmed
in the Mediterranean region (FEAP, 2015). Countries with
the most significant farming operations for this species are
Turkiye, Greece, Italy, Spain, Croatia and Egypt (Vazquez
and Munoz-Cueto, 2014; Regnier and Bayramoglu, 2017).
Turkiye’s marine aquaculture industry is dominated by
farming European seabass, which produced 155,151 t in
2021 (TUIK, 2022). This has enabled Turkiye to become
the world’s largest exporter of European seabass, with
an annual export value of 355 million USD in 2020 and
467 million USD in 2021 (WWE, 2021; Sahin, 2022;
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TUIK, 2022).The European seabass is popular for its
plentiful and delightful taste and has earned the title “the
superstar of the seas” (Hickman, 2008).

The primary objective of this study was to examine
the pattern of gastric evacuation in force-fed European
seabass. Additionally, the effects of two potential predictor
variables, fish size and meal size, on the gastric evacuation
rates of European seabass were also parameterised.

Materials and methods
Acquisition of fish

A total of 100 European seabass having different
body sizes were acquired from the commercial fish
farm, DOKABAS (Dogu Karadeniz Kultur Balikciligi
A.S) located in the Yomra, Trabzon, Turkiye. They were
transferred to Surmene Faculty of Marine Sciences in
Trabzon and stocked into two holding tanks to acclimate
them to laboratory conditions under a 12L:12D photoperiod
for the gastric evacuation experiments (Onder et al.,
2016; Khan, 2022). They were fed on commercial pellets
obtained from Skretting (https://www.skretting.com/en-tr);
having 44% protein, 18% lipid and 16% carbohydrate, for
amonth before transfer to experimental units (small tanks)
with a capacity of 0.12 m? (120 1). Each experimental unit
had a single fish for gastric evacuation experiments. Both
holding tanks and experimental units were connected
to a ventilated system with an equal seawater flow. The
experimental units were siphoned daily to collect any
remaining pellets (that were not consumed) and faeces.
Fish behaving normally and appearing healthy were used
in the gastric evacuation experiments.

Gastric evacuation experiments

Experimental fish were starved for a week to ensure
that no food was left in their stomach before the follow-up
experiment. Following Aas et al. (2017), we also intended
to achieve equal feed intake in all fish and hence, they
were fed a known amount of meal using force-feeding
(Table 1). The fish were anesthetised using benzocaine
before force-feeding (Gilderhus, 1990). Each fish was
then forced-fed the experimental meal (pellets) following
the procedure described by Nakatani (1962).

Fish were then sampled (after each ~3 h intervals),
euthenised with an overdose of benzocaine and dissected
to recover the stomach contents (S) into a petridish.
Before dissection, each fish was measured to the nearest
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0.1 cm total length and weighed to the nearest 0.01 g. The
stomach contents were dried in an oven (Ecocell Drying
Oven, MMM Medcenter, Germany) at 60°C until constant
weight (Khan et al., 2016).

Analysis of gastric evacuation data

The general power function was used to determine the
pattern of feed evacuation from the stomach of European
seabass. It was applied to combine data on estimated
stomach contents S, (g) at post-prandial time # (h):

where p is the rate parameter constant (g!*h'), which was
expanded to account for the impact of fish total length
L as:

where, A is the length exponent and o a power parameter
that describes the course of gastric evacuation that would
be exponential if a. = 1, so-called surface-area dependent
function if a = %, square root function if o = % and linear
ifa=0.

Equation (1b) was integrated over time ¢ from the
ingestion of the meal (#=0) to the total emptying of the
meal:

S=8, (1-S,@) p(1-a)t) 104 g, weovssrevnvnsssssseniinissanns 2)

where, ¢ is an error term; similarly, equation (1b) was
integrated.

The estimated value for the shape parameter o from
the gastric evacuation data of European seabass was
close to 2/3; hence, the so-called surface-area dependent
function was used to describe the gastric evacuation of
European seabass independently of meal size:

ds,

E = -pSf“, ............................................................ (3a)

p was expanded as equation (1b) to account for the effect
of body size:
ds,

TP (3b)

This equation (3b) was also integrated over time ¢
from ingestion (# = 0) to complete evacuation of meal:

Table 1. Basic data (mean+95% CI) from gastric evacuation experiments on D. labrax force-fed on commercial pellets

Experiment Temp. (°C) Length (cm) Body mass (g) Meal size (g) No. of observations (7)
1 11 21.94+0.61 111.43+£6.29 1.5 12
2 11 21.17+0.61 98.01£7.92 0.5 14
3 11 15.70+0.73 42.00+4.94 1.5 12
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The parameters of equations (2) and (4) were
estimated by non-linear regression and the iterative
Marquardt method (NLIN procedure) (Andersen, 1998)
using SAS® OnDemand for Academics.

Results

The estimated value of o in the general power
function was 0.67, with a 95% confidence interval of 0.31,
which suggested that the surface-area dependent function
adequately described the process of gastric evacuation
in European seabass (Table 2). Furthermore, the length
exponent A estimated by the general power function was
0.89, with a 95% confidence interval of 0.62, suggesting a
substantial impact of body size on the gastric evacuation
rates of European seabass.

Based on the findings of the general power function,
the surface-area dependent function was then applied to
combined data on all European seabass and meal sizes to
determine the effects of body and meal sizes. The length
exponent A estimated by the surface-area dependent
function was 0.87, with a 95% confidence interval of 0.34 did
not differ significantly from the value provided by the general
power function (Student’s t-test £, = 0.0646; p>0.05).

The length exponent A estimated from the combined
data was fixed at 0.87 in equation (2) to determine the rates
of gastric evacuation p,, for individual gastric evacuation
experiments. The estimated rate parameters from
combined data, as well as individual gastric evacuation
experiments, ranged between 0.00124 to 0.00142 and
did not differ significantly (ANOVA; F w100 — 0.054; p =
0.764), which evinced no effect of meal size on the rate
parameter constants of European seabass (Table 3).

Table 2. Summary statistics for parameter estimation of the general power function

evacuation of meals force-fed to D. labrax [estimate + 95% CI]
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Therefore, the gastric evacuation of European
seabass fed commercial pellets described independently
of meal size and could be summarised by:

ds
o = 0-00129L05 S2 (g ) s )
where L is the total fish length (cm), T is the temperature
(°C) and ¢ is time (h). This summarised model provided a
curve line for each gastric evacuation experiment (Fig. 1).

Discussion

The shape parameter o of the general power function
estimated from combined gastric evacuation data on all
European seabass and meal sizes was 0.67, which suggests
that the so-called surface-area dependent function is an
appropriate gastric evacuation function for European seabass.
This function has also effectively described the course of
gastric evacuation in tilapia Oreochromis niloticus and sprat
Sprattus sprattus (Riche et al, 2004; Bernreuther et al,
2009). These findings, however, are inconsistent with the
results of Santull ez al. (1993), Adamidou et al. (2009) and
Nikolopoulou et al. (2011). The former used a linear function,
whereas the latter studies used an exponential function to
describe the gastric evacuation rate in European seabass.
Contrarily, several studies have shown that the square
root function is the most appropriate model for describing
the pattern of food evacuation from the stomach in both
farmed and wild fish, independently of meal size. This has
been observed in several fish species including pikeperch
Stizostedion lucioperca (Koed, 2001), brook trout Salvelinus
fontinalis (Khan et al., 2016; Seyhan et al., 2020), brown
trout Salmo trutta (Khan and Seyhan, 2021) and rainbow
trout Oncorhynchus mykiss (Khan, 2022). Furthermore,
Andersen and Beyer (2005) have provided a mechanistic
approach to back up the square root function through a
geometric abstraction of the stomach contents together with

ds,

T -pLTLk Sl‘** to combine data on the gastric

Experiment No. o A p,(x10%) Adjusted 2 Observations (n)
1-3 combined 0.67+0.31 0.89+0.62 1.15+0.21 0.880 38
1-3 combined 0.67+0.30 0.89 (fixed) 1.15+0.13 0.880 38

*L: Total fish length (cm); S, : Stomach content mass (g) at post-prandial time 7 (h); a, 6, A and p, . : Parameters to be estimated

Table 3. Summary statistics for parameter estimation of the surface-dependent function % =-p, LSV to combine data on the gastric
evacuation of meals force-fed to D. labrax [Estimate£95% CI]

ExperimentNo. A p,(x107) Adjusted 2 Observations ()

1-3 combined 0.87+0.34 1.29+1.27 0.944 38

1-3 combined 0.87 (fixed) 1.284+00.10 0.944 38

1 0.87 (fixed) 1.24+0.14 0.909 12

2 0.87 (fixed) 1.4240.13 0.926 14

3 0.87 (fixed) 1.29+0.14 0.925 12

*L: Total fish length (cm); S: Stomach content mass (g) at post-prandial time # (h); a, 5, A and p,, : Parameters to be estimated
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Fig. 1. Gastric evacuation of D. labrax, force-fed on commercial pellets, (a) Large fish and (b) Small fish. The curve lines were provided
by S=8," -% 0.00129L°% (g h™"), where S, is the current stomach contents mass (g) and ¢ is time (h)

some underlying assumptions to provide a mechanistic
so-called cylinder model that can predict evacuation of the
contents irrespectively of the composition of the contents and
the prehistory of the food intake. In their abstraction, the meal
is digested by peeling off layers, decreasing the thickness of
the cylinder without affecting its ends, where the layer that is
peeled off the cylinder depends on the resistance of the prey
to the digestive processes and the prey energy density. The
rate of peeling off the mass of the total stomach contents is
always the same length as the stomach. If the stomach content
is significantly heterogeneous in composition (resistance to
digestion or energy density), the mechanistic cylinder model
may need to be expanded, according to Andersen et al. (2016).
Thus, it might be expected that the square root function would
also perform better if European seabass is fed voluntarily
instead of force-feeding.

The estimated length exponent A of European
seabass from the combined data was 0.87, with a 95%
confidence interval of 0.34, which is consistent with the
findings of Dossantos and Jobling (1995) and Temming
and Herrmann (2003) for Atlantic cod, Koed (2001) for
pikeperch. Furthermore, a similar length exponent 4 has
been estimated for rainbow trout (Khan, 2022). Though,
a substantially higher impact of body size on gastric
evacuation rates have been recorded for several fish species
such as whiting Merlangius merlangus; saithe Pollachius
virens; haddock Melanogrammus aeglefinus; Atlantic cod
Gadus morhua and brook trout (Jones, 1974; Andersen,
1999, 2001, 2012), that ranged between 1.30 to 1.44.

This study found a substantial effect of body size on the
gastric evacuation rates of European seabass observed using

the surface-area dependent function. The gastric evacuation
of European seabass can be determined independently
of meal size by dS / dt = -0.00129L°% S?* (g h).
The gastric evacuation rates model developed in this
study can be applied to determine the stomach fullness of
force-fed European seabass at post-prandial times. It
should be noted that several studies have indicated that
force-feeding may impair the process of gastric evacuation
in fish (Windell, 1965; Swenson and Smith, 1973; Behrens
et al., 2011). Thus, the model is specifically designed for
European seabass that is force-fed on commercial pellets.
Force-feeding may also influence the suitability of the
square root function to accurately describe the course
of gastric evacuation in European seabass. Therefore,
future investigations should explore how different feeding
strategies, such as volunteer feeding vs force-feeding of
fish, impact the fitness of the gastric evacuation function
for e.g. the square root function.
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