

Otoliths as taxonomic tool to identify catfishes of the genus *Mystus* (Teleostei: Bagridae) from India

SANGEETHA M. NAIR^{1,6}, SHARDUL S. GANGAN², S. RAUT³, RAJEEV RAGHAVAN⁴, A. PAVAN KUMAR¹, L. K. SINGH⁵ AND A. K. JAISWAR¹

¹ICAR-Central Institute of Fisheries Education, Versova, Mumbai - 400 061, Maharashtra, India

ABSTRACT

To contribute to the clarification of taxonomy of bagrid catfishes belonging to the genus *Mystus*, the lapillus otoliths of five species (*Mystus armatus*, *M. malabaricus*, *M. cavasius*, *M. gulio* and *M. tengara*), using various otolith shape indices such as circularity, ellipticity, rectangularity and form factor were compared. Among the indices studied, rectangularity and form factor bestowed maximum F-ratio of 49.223 and 30.621 respectively, contributing maximum to species discrimination. The F-ratio for circularity, ellipticity, rectangularity, form factor and roundness were found to be 4.154, 28.735, 30.621, 49.223 and 14.58 respectively. The shape indices studied varied significantly among the five species. Cross validation by discriminant analysis of otolith shape data explained 100% variability by the first four functions. The jack-knifed classification matrix identified that the original groups are correctly classified to an extent of 68.6%. The description provided in this article will serve as a baseline database for bagrid otolith of the genus *Mystus*.

Keywords: Freshwater fish, Mystus, Shape indices, Siluriform, Species identification

Introduction

Otoliths are paired calcified structures, which aid in balance as well as hearing ability in fishes (Campana, 1999; Campana and Thorrold, 2001). They are primarily made up of calcium carbonate matrix comprising of calcium, oxygen and carbon (Campana, 1999) and are the first calcified tissues which develop in the embryonic stage of fishes (Radtke and Dean, 1981). Otolith science has wide applications in fish ecomorphology (Volpedo and Echevernia, 2003), paleontology (Nolf and Brzobohaty, 2009), age determination (Ilkyaz et al., 2011), daily and annual growth (Fowler, 1990) and stock delineation (Burke et al., 2008; Aguera and Brophy, 2011; Legua et al., 2013; Avigliano et al., 2017; Ladroit et al., 2017; Song et al., 2018). As otolith size and shape vary between species (Campana and Thorrold, 2001), it can be utilised as a taxonomical character for species identification (Afanasyev et al., 2017) as well as in evolution and phylogeny (Lombarte et al., 2010; Nolf, 2013).

Otoliths act as a natural tag as they can detect changes in habitat conditions (Volk *et al.* 1999), based on the study of trace element composition (Wells *et al.*, 2003). The otolith elemental composition and its accumulation

are highly influenced by the elemental concentration in the surrounding waterbody (Khan et al., 2012). The uptake of elements is subsequently influenced by temperature (Elsdon and Gillanders, 2004, Fowler et al., 1995, Walther *et al.*, 2010), salinity (Fowler *et al.*, 1995), dissolved oxygen and pH (Mayer et al., 1994), water chemistry (Bath et al., 2000), growth rate (Kalish, 1989), diet (Buckel et al., 2004), ontogeny (Walther et al., 2010) and physiology (Kalish, 1989) of the fish. Several studies have been carried out to identify fish species using otoliths in different parts of the world (Mollo, 1981; Martinez and Gonzo, 1988; 1991; Tuset et al., 2008). In India, a country with high level of siluriform diversity, no information is available on description and use of catfish otoliths for species identification, except for a study by Tilak (1963) who described morphology of catfish otolith. The present communication aims to fill this knowledge gap by characterising the morphological variation in otoliths of five species of the genus Mystus Scopoli, 1777.

Materials and methods

Sampling

Samples of five species of *Mystus* were collected from different parts of India during 2015-2018 (Fig. 1). Since,

²Taraporevala Marine Biological Research Station, Bandra (E), Mumbai - 400 051 Maharashtra, India

³Research Centre for Makhana, ICAR-Research Complex for Eastern Region, Darbhanga - 846 004, Bihar, India

⁴Kerala University of Fisheries and Ocean Studies, Panangad, Kochi - 682 506, Kerala, India

⁵ Fisheries Division, Zoological Survey of India, Kolkata - 700 016, West Bengal, India

⁶ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India e-mail: akjaiswar@cife.edu.in

the lapillus is the largest among the three otoliths (lapillus, sagittal and astericus) in catfishes, this was used for taxonomic identification. A total of 152 otoliths of different species, comprising *Mystus gulio* (30) and *M. cavasius* (32) collected from West Bengal; *M. tengara* (30) collected from Assam and Maharashtra and *M. malabaricus* (30) and *M. armatus* (30) collected from Kerala were extracted after recording total length (mm) of each specimen.

Otoliths were collected from the lower side of the brain inside the cranial cavity where the entire structure of internal ear can be observed (Campana, 1999) and were removed by turning ventral side of the fish upwards to allow removal of the lower jaw, gills and the hypobranchial apparatus in order to expose the base of skull. The otic capsule, present on both left and right sides, were broken using a sharp scalpel and the pair of otoliths was removed using fine forceps. The extracted otoliths were cleaned by brushing with a soft bristled brush (Secor and Dean, 1992) and soaked in ultra-pure water to remove all adhering biological residues. To dissolve the remaining biological residues, otoliths were soaked in 3% hydrogen peroxide for 5 min, followed by immersion in 1% nitric acid for 5 min, to remove surface contaminants. Further, to remove the acid, otoliths were flooded with ultra-pure water for 5 min. Finally, the sampled otoliths were dried under a laminar flow-hood. The undamaged and decontaminated otoliths were stored in acid-washed, dry polypropylene vials with reference numbers and sealed, for further examination and analysis.

Measurement of otolith shape indices

Digital images of each otolith were recorded with a DP72 digital camera fitted to an SZX16 stereozoom microscope (Olympus Inc., Tokyo). The microscope magnification was adjusted to the size of the otolith to ensure the highest resolution possible, varying between 3X to 5X. The digitised images were analysed using Sigma Scan Pro Version 5.0.0 image analysis software to measure its Area (Ao), Perimeter (Po), Maximum length (Lo) and Maximum width (Wo). Otolith shape indices including circularity, ellipticity, rectangularity and form factor were calculated following Russ (1990) and Tuset et al. (2003) (Table 1) and were used for canonical discriminant analysis (CDA).

Table 1. Size parameters and size descriptors used for identification of *Mystus* spp. collected in the present study

Size parameter	Shape indices
Area (Ae)	Circularity = $(Pe^2)/Ae$
Perimeter (Pe)	Ellipticity = $(Le-We)/(Le+We)$
Width (We)	Rectangularity = $Ae/(Le*We)$
Length (Le)	Form factor = $(4\pi Ae)/Pe^2$
	Roundness = $(4Ae)/(\pi Le^2)$

Fig. 1. Sampling sites of Mystus spp. collected during the present study

Data analysis

Shape indices could be linked to the fish sizes and therefore, to remove allometric effects of body size in shape analysis, the theoretical equation outlined below were used to scale the data (Lleonart *et al.*, 2000):

$$Y_i^* = Y_i [(X_0/X_i)^b]$$

where Y_i^* is a transformed measurement (it is a theoretical value that would measure Y_i if the standard length was X_0); X_i = Standard length of individual I; X_0 = Specieswise mean of standard length and b = Within group slope regressions of the log Y_i vs log X_i

The transformed variables obtained from the above equation were then used for the analyses. Differences in shape indices between species were tested by one-way analysis of variance (ANOVA) followed by *ad hoc* comparisons (Duncan's multiple range test). Canonical discriminant analysis (CDA) was performed with shape indices, to compare otolith shape among the species (SPSS, 1999).

Results

The otoliths of all five species of the genus Mystus studied are kidney shaped in general (Fig. 2), but the shape indices indicated significant variation in otolith among the species (p<0.05). Results of ANOVA of five otolith shape indices revealed maximum F-ratio of 49.223 and 30.621 in form factor and rectangularity, respectively, contributing maximum to species discrimination (Table 2). The mean values of circularity index of all the studied species were found to be close, except M. tengara. Similarly, the means of ellipticity of M. cavasius and M. armatus were found to be very close. The mean value of rectangularity index of M. cavasius was found to overlap with M. malabaricus and that of M. gulio with M. armatus. The mean values of roundness of M. cavasius indicated closeness with M. gulio and that of M. malabaricus with M. tengara. On the contrary, the mean values of form factor in all the species differed significantly from each other. The overall examination of the various shape indices indicated significant differences between species, however, a slight overlapping of values between M. malabaricus and M. tengara was recorded (Fig. 3). The first four functions of CDA based on shape indices explained 100% variability, where the first two discriminant functions of CDA accounted for 93.31% variance (Table 3). The output of jack-knifed classification validates most of the patterns detected in the CDA analysis, which displayed successful classification of the five species. The classification ranged from 14.28 to 89.47% (Table 4) and the original groups are 68.6% correctly classified. In cross-validation, each case is classified by the functions derived from all cases other than that case and 66.7% of cross-validated grouped cases were found to be correctly classified.

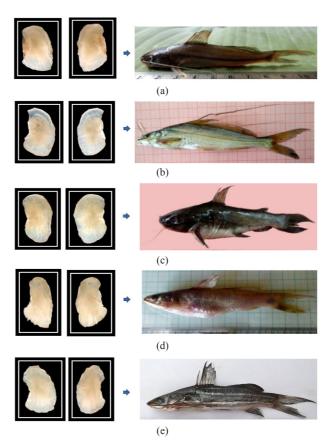


Fig. 2. Left and right otoliths of (a) *M. armatus*; (b) *M. cavasius*; (c) *M. gulio*; (d) *M. malabaricus* and (e) *M. tengara* collected in the present study

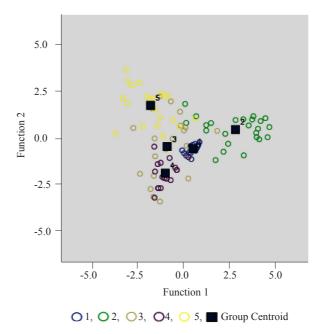


Fig. 3. Scatter plot on canonical discriminant analysis of otolith of (1) *M. cavasius;* (2) *M. gulio;* (3) *M. malabaricus;* (4). *M. tengara* and (5) *M. armatus*

Table 2. Results of ad hoc comparisons of various otolith shape indices between five species of the genus Mystus

Shape indices	Species code	$Mean \pm SD (mm)$	F ratio	p value
CR (Circularity)	M. cavasius	18.046±0.567a	4.154	< 0.05
	M. gulio	18.395±0.688a		
	M. malabaricus	18.348 ± 1.124^{a}		
	M. tengara	19.021±0.438 ^b		
	M. armatus	18.208±0.767a		
EL (Ellipticity)	M. cavasius	0.204±0.006°	28.735	< 0.05
	M. gulio	0.244 ± 0.029^{d}		
	M. malabaricus	0.188 ± 0.029^{b}		
	M. tengara	0.167 ± 0.017^{a}		
	M. armatus	$0.207 \pm 0.026^{\circ}$		
RE (Rectangularity)	M. cavasius	0.720±0.007 ^b	30.621	< 0.05
	M. gulio	$0.771\pm0.032^{\circ}$		
	M. malabaricus	0.720 ± 0.038^{b}		
	M. tengara	0.692 ± 0.010^{a}		
	M. armatus	0.770±0.031°		
FO (Form factor)	M. cavasius	18.379±0.247°	49.223	< 0.05
	M. gulio	22.393 ± 3.309^{d}		
	M. malabaricus	16.558±2.377 ^b		
	M. tengara	18.188±0.399°		
	M. armatus	13.716 ± 1.904^{a}		
RO (Roundness)	M. cavasius	0.606 ± 0.009^{a}	14.580	< 0.05
	M. gulio	0.596 ± 0.025^a		
	M. malabaricus	0.625 ± 0.029^{b}		
	M. tengara	0.629 ± 0.020^{b}		
	M. armatus	$0.644\pm0.024^{\circ}$		

^{a-d}Values bearing different superscripts indicate significant differences between species (p<0.05).

Table 3. Eigen value and proportion of discriminant functions in the canonical discriminant analysis (CDA) for shape indices

Discriminant function	Eigen value	Variability explained (%)	Cumulative variability explained (%)
1	2.960a	62.89	62.89
2	1.431 ^a	30.41	93.31
3	0.313a	6.65	99.97
4	0.001a	0.027	100

^a Means of first four canonical discriminant functions were used in the analysis

Table 4. Jack-knifed classification matrix of the discriminant analysis between five species of the genus Mystus from India

Species	M. cavasius	M. gulio	M. malabaricus	M. tengara	M. armatus	Total
M. cavasius	89.47	0	10.52	0	0	100
M. gulio	29.16	66.66	0	0	4.16	100
M. malabaricus	19.04	0	14.28	38.09	28.57	100
M. tengara	5.88	0	5.88	88.23	0	100
M. armatus	9.52	0	9.52	0	80.95	100

Discussion

The present work represents the first study on otoliths of the genus *Mystus*. Ahmed and Attia (2016) suggested that each species of fish has characteristic otolith shape. The morphological characteristics of fish otoliths vary between different species, from a simple disc in flatfishes to irregular shape as in red fish (Hunt, 1992).

The landmark morphological features of otoliths are used for species identification owing to their large size and inter-specific variation (Nolf, 1985). Information on bagrid otolith is scanty, whereas several reports on sagittal otolith have been published, indicating claviform shape in Loricaridae (Martinenz and Gonzo, 1991), ovoid and flat in *Oreochromius niloticus*, elongated in *Mugil cephalus*

and triangular rosette shape in *Clarias lazera* (Ahmed and Attia, 2016). Tilak (1963) and Mollo (1981) studied the astericus, the lagenar otolith of some taxa of catfishes that was substantiated by Kumar (2014) on the otolith of ariid catfishes who also found lapillus as the largest one among the three otoliths. In the present study, lapillus otolith of five species of *Mystus* were extracted and found to be kidney shaped and helpful in species discrimination (Fig. 2). The left and right otoliths are mirror images of each other (Hunt, 1979).

Shape analysis is the skeleton of otolith study, which is based on the concept that shape varies with geographical location, even within a species (Campana and Casselman, 1993). Thus, the shape indices data perform a key role in discriminating individuals into different stocks of the single species. In the present study, all the shape indices studied viz., circularity, ellipticity, rectangularity, form factor and roundness were found to be efficient in successful differentiation of the five species of the genus Mystus. The higher F-ratio of form factor and rectangularity indicated maximum contribution for species discrimination. The scatter plot based on CDA of otolith indicates variation in the five species and also displays separate cluster formed by different species except the overlap between M. tengara and M. malabaricus. The jack-knifed classification tests validated the observed pattern in CDA.

Factors inducing changes in specific otolith shape indices are not clearly understood (Burke et al., 2008). It should be assumed that the shape of otolith may be alike for fishes dwelling in similar environmental circumstances but might vary with difference in habitat (Parmentier et al., 2001). Among the five shape indices studied, circularity was found to be highest for M. tengara (19.021), but its values for the other four species were more or less similar, ranging from 18.046 to 18.395. Similarly, circularity and form factor were found to be higher for M. gulio when compared with other species. This shows a correlation between form factor and circularity as suggested by Reist (1985) and Stransky (2005). This may be the probable reason for formation of a clear cluster of M. gulio in the scatterplot. But the readings of rectangularity overlapped between M. gulio and M. armatus (0.771 vs 0.770). The value of roundness of M. tengara closely matched with that of M. malabaricus (0.629 vs 0.625). The form factor index ranged between 13.70 and 22.39, for all the *Mystus* species studied and was found to overlap in the case of M. cavasius and M. tengara (18.379 vs 18.188). However, combination of the five shape indices is useful for understanding variation of otolith morphometry in these five species. A significant difference (p<0.05) was observed in the shape indices of the species when ad hoc comparison (Duncan's multiple range test) was applied.

Santificetur et al. (2017) reported different F-values of circularity (14.07) and rectangularity (0.70) for Genidus barbus and circularity (14.26) and rectangularity (0.69) for Genidus genidus as differentiating traits. Similarly, Ladroit et al. (2017) utilised F-value for roundness (117.07), ellipticity (120.286), rectangularity (194.259), form factor (20.256) and circularity (360.67) in stock discrimination of cusk eel. However, F-ratio for roundness (14.58), ellipticity (28.735), form factor (49.223) and circularity (4.154), recorded in the present study were lower than those reported in other species, except rectangularity (30.621) (Ladroit et al., 2017; Santificetur et al., 2017). The difference recorded in otolith morphometric variables among various species (Table 1) may be attributed to the environmental condition, demography (Hoff and Fuiman, 1993; Bostanci et al., 2015), variation in fish growth rate (Campana and Casselman, 1993), food availability and type, niches, river flow, current speed (Vignon and Morat, 2010), biological and behavioural characteristics like swimming activity (Aguirre and Lombarte, 1999) and ontogenetic and genetic factors (Lord et al., 2012; Hussy et al., 2016). Biotic interactions also have an effect on fish metabolism and thus can cause stress, which further influence the shape of otolith (Allemand et al., 2007). The morphology of otolith may not only connect with common ancestry, but also depends on the anatomy relating to sound perception (Nolf, 1985; 1993). In this study, the variation of otolith shape observed within the genus could be attributed to a combination of various factors like habitat, food uptake, environmental conditions and genetics. The otolith microstructure and chemistry in different spatial and temporal scales is also influenced by environmental factors as well as growth (Miyan et al., 2016). Hence, each *Mystus* sp. collected from different parts of India has its own innate data in its spatial and temporal spectrum. Nolf (1985; 1993) opined that there exists different degrees of morphological convergence among evolutionary distant taxa and divergence among closed ones and thus, otolith alone cannot perform well in taxonomy or phylogenic study. Otolith characteristics of significant relevance supplemented by fish morphometry can be utilised for phylogenetic studies (Adams, 1940). The present investigation provides baseline database of otolith shape indices of Mystus species and in combination with other taxonomic tools, it can create a good basis for species and stock identification.

Acknowledgements

Authors express their sincere gratitude to Dr. Gopal Krishna, Director and Dr. B. B. Nayak, Head, Division of FRHPHM, ICAR-CIFE, Mumbai for their support and encouragement. The first author acknowledges ICAR, New Delhi for the fellowship granted during the research period.

References

- Adams, L. A. 1940. Some characteristic otoliths of American Ostariophysi. J. Morphol., 66: 497-527. https://doi.org/10. 1002/jmor.1050660307.
- Afanasyev, P. K., Orlov, A. M. and Rolsky, A. Y. 2017. Otolith shape analysis as a tool for species identification and studying the population structure of different fish species. *Biol. Bull.*, 44: 952-959. DOI:https://doi.org/10.1134/S1062359017080027.
- Aguera, A. and Brophy, D. 2011. Use of sagital otolith shape analysis to discriminate northeast Atlantic and western Mediterranean stocks of Atlantic saury, *Scomberesox saurus saurus* (Walbaum). *Fish. Res.*, 110: 465-471. DOI: 10.1016/j.fishres.2011.06.003.
- Aguirre, H. and Lombarte, A. 1999. Ecomorphological comparison of sagittae of *Mullus barbatus* and *M. surmuletus. J. Fish. Biol.*, 55: 105-114. https://doi.org/10.1111/j.1095-8649.1999.tb00660.x.
- Ahmed, M. S. O. and Attia, A. A. M. 2016. Comparative anatomical studies on the otoliths (ear stones) of some fishes. *Int. J. Fish. Aquat. Stud.*, 4: 506-511.
- Allemand, D., Mayer-Gostan, N., de Pontual, H., Boeuf, G. and Payan, P. 2007. Fish otolith calcification in relation to endolymph chemistry. In: Bauerlein, E. (Ed.), *Handbook of biomineralisation*, vol. 1. Wiley, New York, USA, p. 291-308.
- Avigliano, E., Domanico, A., Sanchez, S. and Velpado, A. V. 2017. Otolith elemental fingerprint and scale and otolith morphometry in *Prochilodus lineatus* provide identification of natal nurseries. *Fish. Res.*, 186: 1-10. http://dx.doi.org/10.1016/j.fishres.2016.07.026.
- Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W. and Lam, J. W. H. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. *Geochi. Cosmochim. Acta*, 64: 1705-1714. https://doi.org/10.1016/ S0016-7037(99)00419-6.
- Bostanci, D., Polat N., Kurucu, G., Yedier, S., Kontaş, S. and Darcın, M. 2015. Using otolith shape and morphometry to identify four *Alburnus* species (*A. chalcoides, A. escherichii, A. mossulensis* and *A. tarichi*) in Turkish inland waters. *J. Appl. Ichthyol.*, 31: 1013-1022. https://doi.org/10.1111/jai.12860.
- Buckel, J. A., Sharack, B. L. and Zdanowicz, V. S. 2004. Effect of diet on otolith composition in *Pomatomus saltatrix*, an estuarine piscivore. *J. Fish Biol.*, 64: 1469-1484. https://doi.org/10.1111/j.0022-1112.2004.00393.x.
- Burke, N., Brophy, D. and King, P. A. 2008. Otolith shape analysis: Its application for discriminating between stocks of Irish Sea and Celtic Sea herring (*Clupea harengus*) in the Irish Sea. *ICES J. Mar. Sci.*, 65: 1670-1675. https://doi.org/10.1093/icesjms/fsn177.
- Campana, S. E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. *Mar. Ecol. Prog. Ser.*, 188: 263-297.

Campana, S. E. and Casselman, J. M. 1993. Stock discrimination using otolith shape analysis. *Can. J. Fish. Aquat. Sci.*, 50: 1062-1083. DOI: 10.1139/f93-123.

6

- Campana, S. E. and Thorrold, S. R. 2001. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? *Can. J. Fish. Aquat. Sci.*, 58: 30-38. DOI: 10.1139/cjfas-58-1-30.
- Elsdon, T. S. and Gillanders, B. M. 2004. Fish otolith chemistry influence by exposure to multiple environmental factors. *J. Exp. Mar. Biol. Ecol.*, 313: 269-284.
- Fowler, A. J. 1990. Validation of annual growth increments in the otoliths of a small, tropical coral reef fish. *Mar. Ecol. Prog. Ser.*, 64: 25-38.
- Fowler, A. J., Campana, S. E., Jones, C. M. and Thorrold, S. R. 1995. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution based ICPMS. *Can. J. Fish. Aquat. Sci.*, 52: 1421-1430.
- Hoff, G. R. and Fuiman, L. A. 1993. Morphometry and composition of red drum otoliths: Changes associated with temperature, somatic growth rate and age. *Comp. Biochem. Physiol. A*, 106: 209-219.
- Hunt, J. J. 1979. Back calculation of length at age from otoliths for silver hake of the Scotia Shelf. *ICNAF Sel. Papers*, 5: 11-17.
- Hunt, J. J. 1992. Morphological characteristics of otoliths for selected fish in the Northwest Atlantic. *J. Northwest Atl. Fish.*, 13: 63-75. https://doi.org/10.2960/J.v13.a5.
- Hussy, K., Mosegaard, H., Albertsen, C. M., Nielsen, E. E., Hemmer-Hansen, J. and Eero, M. 2016. Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. *Fish. Res.*, 174: 210-218. https://doi.org/10.1016/j.fishres.2015.10.010
- Ilkyaz, A. T., Metin, G. and Kinacigil, H. T. 2011. The use of otolith length and weight measurements in age estimations of three Gobiidae species (*Deltentosteus quadrimaculatus*, *Gobius niger* and *Lesueurigobius*. *Turk*. *J. Zool.*, 35: 819-827. DOI: 10.3906/zoo-1001-13.
- Kalish, J. M. 1989. Otolith microchemistry: Validation of the effects of physiology, age and environment on otoliths composition. J. Exp. Mar. Biol. Ecol., 132: 151-178. https: //doi.org/10.1016/0022-0981(89)90126-3.
- Khan, M. A., Miyan, K., Khan, S., Patel, D. K. and Ansari, N. G. 2012. Studies on the elemental profile of otoliths and truss network analysis for stock discrimination of the threatened stinging catfish *Heteropneustes fossilis* (Bloch 1794) from the Ganga River and its tributaries. *Zool. Stud.*, 51: 1195-1206.
- Kumar, R. 2014. A taxonomic study of family Ariidae from Indian waters. Ph. D. thesis, ICAR-Central Institute of Fisheries Education, Mumbai, India, 150 pp.

- Ladroit, Y. O., Maolagain, C. and Horn, P. L. 2017. An investigation of otolith shape analysis as a tool to determine stock structure of ling (*Genypterus blacodes*). *New Zealand Fisheries Assessment Report 2017/24*, 16 pp. http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz.
- Legua, J., Plaza, G., Perez, D. and Arkhipkin, A. 2013. Otolith shape analysis as a tool for stock identification of the southern blue whiting, *Micromesistius australis. Lat. Am. J. Aquat. Res.*, 41: 479-489. DOI: https://doi.org/10.3856/vol41-issue3-fulltext-11.
- Lleonart, J., Salat, J. and Torres, G. J. 2000. Removing allometric effects of body size in morphological analysis. *J. Theor. Biol.*, 205: 85-93. DOI: 10.1006/jtbi.2000.2043.
- Lombarte, A., Palmer, M., Matallanas, J., Gomez-Zurita, J. and Morales-Nin, B. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. *Environ. Biol. Fishes*, 89: 607-618. DOI: 10.1007/s10641-010-9673-2.
- Lord, C., Morat, F., Lecomte-Finiger, R. and Keith, P. 2012. Otolith shape analysis for three *Sicyopterus* (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. *Environ. Biol. Fishes*, 93: 209-222. DOI: 10.1007/s10641-011-9907-y.
- Martínez, V. and Gonzo, G. 1988. Morphology of the otoliths of *Heptapterus mustelinus* (Valenciennes 1840) (Pimelodidae), Their relationship with dimensional parameters. *Magazine of the Association of Natural Sciences of the Coast.* 19: 27-37 (In Spanish).
- Martínez, V. and Monasterios de Gonzo, G. 1991. Identification key of some siluriform fish based on the study of their otoliths. *Rev. Asoc. Cienc. Nat. Litor. St. Tome*, 22: 95-118 (In Spanish).
- Mayer Jr, F. L., Marking, L. L., Bills, T. D. and Howe, G. E. 1994. Physicochemical factors affecting toxicity in freshwater: Hardness, pH and temperature. In: *Bioavailability: Physical, chemical, and biological interactions.* Lewis Publishers. London, UK, p.5-21.
- Miyan, K., Khan, M. A., Patel, D. K., Khan. S. and Ashari, N. G. 2016. Truss morphometry and otolith microchemistry reveal stock discrimination in *Clarias batrachus* (Linnaeus, 1758) inhabiting the Gangetic River system. *Fish. Res.*, 173: 294-302. DOI: 10.1016/j.fishres. 2015.10.024.
- Mollo, S. M. 1981. Otoliths of fish from the Chascomús Lagoon (Province of Buenos Aires). *Limnobios*, 2: 253-63 (In Spanish).
- Nolf, D. 1985. Otolithi piscium. In: Schultze, H. P. (Ed.), *Handbook of palaeontology*, vol. 10. Stuttgart, Fischer Verlag, Germany.
- Nolf, D. 1993. A survey of perciform otoliths and their interest for phylogenetic analysis, with an iconographic synopsis of the Percoidei. *Bull. Mar. Sci.*, 52: 230-239.
- Nolf, D. 2013. The diversity of fish otoliths, past and present. Royal Belgian Institute of Natural Sciences. Brussels, Belgium, 222 pp.

- Nolf, D. and Brzobohaty, R. 2009. Lower badenian fish otoliths of the Styrian and Lavanttal basins, with a revision of Weinfurter's type material. *Annals of the Natural History Museum in Vienna, Series A for Mineralogy and Petrography, Geology and Paleontology, Anthropology and Prehistory*, p.323-355 (In German).
- Parmentier, E., Vandewalle, P. and Lagardere, F. 2001. Morpho-anatomy of the otic region in carapid fishes: Eco-morphological study of their otoliths. *J. Fish Biol.*, 58(4): 1046-1061. https://doiorg/10.1111/j.1095-8649.2001. tb00554.x.
- Radtke, R. L. and Dean, J. M. 1982. Increment formation in the otoliths of embryos, larvae and juveniles of the mummichog, *Fundulus heteroclitus* (Fishes). *Fishery Bulletin of United States, National Marine Fisheries Service*, 80: 201-215.
- Reist, J. D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. *Can. J. Zool.*, 63: 1429-1439.
- Russ, J. C. 1990. Image processing. In: Computer-assisted microscopy, Springer, Boston, USA, p. 33-69.
- Santificetur, C., Giaretta, M. B., Conversani, V. R. M., Brenha-Nunes, M. R., Siliprandi, C. C. and Rossi-Wongtschowski, C. L. D. B. 2017. Atlas of marine bony fish otoliths of Southeastern-Southern Brazil, Part VIII: Siluriformes (Ariidae) and Pleuronectiformes (Achiridae, Paralichthyidae, Cynoglossidae). *Braz. J. Oceanogr.*, 65: 448-494. http://dx.doi.org/10.1590/s1679-875920171431 06503
- Secor, D. H. and Dean, J. M. 1992. Comparison of otolith-based back circulation methods to determine individual growth histories of larval striped bass, *Morone saxatilis. Can. J. Fish. Aquat. Sci.*, 49: 1439-1454. DOI: 10.1139/f92-159.
- Song, J., Zhao, B., Liu, J., Cao, L. and Dou, S. 2018. Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast. *J. Oceanol. Limnol.*, 36: 1870-1879. https://doi.org/10. 1007/s00343-018-7228-0.
- Stransky, C. 2005. Geographic variation of golden redfish (*Sebastes marinus*) and 331 deep-sea redfish (*S. mentella*) in the North Atlantic based on otolith shape analysis. *ICES J. Mar. Sci.*, 62: 1691-1698.
- Tilak, R. 1963. Studies on the comparative morphology of the otoliths of Indian Siluroids. Zool. Anz., 173: 181-201.
- Tuset, V. M., Lombarte, A. and Assis, C. A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Sci. Mar., 72: 7-198. DOI: 10.3989/ scimar.2008.72s17.
- Tuset, V. M., Lozano, I. J., Gonzalez, J. A., Pertusa, J. F. and Garcia-Diaz, M. M. 2003. Shape indices to identify regional differences in otolith morphology of comber, *Serranus cabrilla* (L., 1758). *J. Appl. Ichthyol.*, 19: 88-93. https://doi.org/10.1046/j.1439-0426.2003.00344.x.

Vignon, M. and Morat, F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. *Mar. Ecol. Prog. Ser.*, 411: 231-241. DOI: 10.3354/meps08651.

- Volk, E. C., Schroder, S. L. and Grimm, J. J. 1999. Otolith thermal marking. *Fish. Res.*, 43: 205-219. https://doi.org/10.1016/S0165-7836(99)00073-9.
- Volpedo, A. and Echeverría D. D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. *Fish. Res.*, 600: 551-560. DOI:10.016/S0165-7836(02)00170-4.
- Walther, B. D., Kingsford, M. J., O'Callaghan, M. D. and McCulloch, M. T. 2010. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. *Environ. Biol. Fishes*, 89: 441-451. DOI: 10.1007/s10641-010-9661-6.
- Wells, B. K., Rieman, B. E., Clayton, J. L., Horan, D. L. and Jones, C. M. 2003. Relationships between water, otolith, and scale chemistries of west slope cutthroat trout from the Coeur d'Alene River, Idaho: The potential application of hard-part chemistry to describe movements in freshwater. *Trans. Am. Fish. Soc.*, 132: 409-424. DOI: 10.1577/1548-8659(2003)132<0409:RBWOAS>2.0.CO; 2.

Date of Receipt : 15.06.2020 Date of Acceptance : 27.03.2021