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ABSTRACT
The present work envisages close monitoring of variations in lipid content and fatty acid profile of the marine microalga 
Nannochloropsis salina, by growing it in 4 different culture media. Pure cultures of microalga were collected from the 
marine hatchery complex of the ICAR-Central Marine Fisheries Research Institute, Kochi and cultured in four different 
media viz, f/2 medium (Guillard,1975), Miquel’s medium (Miquel,1892), Walne’s medium (Walne, 1974) and Chu#10 
medium (Chu, et al., 1942). Standard algal culture conditions viz, salinity 33 ppt, pH 8.0, culture room temperature of 25ºC, 
light intensity of 1500 lux with a photoperiod of 12 h and Light:Dark cycle of 12 h were maintained. Lipids extracted were 
subjected to gas chromatography to ascertain their fatty acid profile. Both Miquel’s and f/2 media produced the maximum 
amount of lipid content (40.2 and 40% respectively). Total saturated fatty acids ranged from 39.17% (Miquel’s medium) 
to 84.45% (Chu #10). For monounsaturated fatty acids, the highest value was obtained for Miquel’s medium (42.79%) and 
minimum for Chu#10 (10.55%). Polyunsaturated fatty acids accounted for over 23.5% of the total fatty acids in Walne’s 
medium followed by Miquel’s (18.04%), f/2 (12.76%) and Chu#10 (5%) media. One way analysis of variance of the data 
brought to light that the medium composition can influence the fatty acid pattern of microalgae significantly.
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Introduction  

The fast proliferation of some microalgae used as 
live feed in hatcheries of finfishes and shellfishes offers 
opportunity for consistent production of biomass rich in 
lipid, starch or protein (Atalah et al., 2007; Ganuza et al., 
2008; Hemaiswarya et al., 2011; Velasquez et al., 2016), 
which indirectly helps to impart nourishment to human  
diet (Bold, 1942; Canizares et al., 1994). Nearly all 
microalgal biomass are rich sources of omega-3/ omega-6 
fatty acids and essential amino acids (leucine, isoleucine 
and valine).

Screening and optimisation of culture medium is 
among the foremost preconditions for photoautotrophic 
cultivation of microalgae. The performance of microalgae 
in culture is mostly determined by the quality of the 
medium used (Lam and Lee, 2012; Li et al., 2012; Prathima 
et al., 2012). Manipulation of the nutritional content 
of microalgae can be achieved by altering the media 
composition and culture strategies (Otero et al., 2006; 
Ilavarasi et al., 2011; Lincymol et al., 2012; Naseera et al., 
2013; Neethuand Dhandapani, 2016; Praba et al., 2016). 
The essential fatty acid profile of the algae could even  
be modified using these techniques (Kaladharan et al., 
1999; Martinez-Fernandez et al., 2006; Rivero-Rodriguez 

et al., 2007; Lidiya and Joseph, 2018; Aswathy et al., 
2020). The composition and availability of macro and 
microelements in the media directly affect algal cultures 
and hence they should be provided at optimal levels (Liu 
et al., 2008). Macronutrients viz, N, K, Mg, S and Na are 
non-toxic to algal cells and can be supplemented at higher 
concentrations. Whereas, essential trace elements like 
Fe, Cu, Mn, Zn, Co and Mo are growth-limiting at lower 
levels and toxic at higher doses. These trace elements 
play important roles in metabolic pathways that  influence 
the performance of micralgae in culture (Sunda and 
Huntsman, 1998; Sunda et al., 2005). 

The genus Nannochloropsis was first described 
by Hibberd (Hibberd, 1981) which is widely accepted 
in aquaculture (Roncarati et al., 2004; Bentley et al., 
2008) owing to its rapid growth and nutritional value,  
especially high lipid content (Rodolfi et al., 2003; 
Olofsson et al., 2012). The high content of the omega-3 
fatty acid, eicosapentaenoic acid  (EPA, C20:5 n-3) in 
Nannochloropsis contributes to its significance in the 
aquaculture industry (Watanabe, 1979; Watanabe et al., 
1983; Koven et al., 1990; Seto et al., 1992; Sukenik  
et al., 1993). Different species of Nannochloropsis have 
been found to facilitate relatively high rates of rotifer 
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multiplication which are important live feed for fish larvae 
(Hirayama et al., 1979; Yamasaki et al., 1989; Ahmad, 1991).

As the optimal nutrient concentration varies  
depending on the microalgal strain as well as the 
processing and cultivation parameters, the medium 
should be optimised for each microalgal strain prior to 
mass cultivation. The present investigation  attempted to 
analyse the fatty acid profile of Nannochloropsis salina 
when grown in four different culture media to identify the 
optimal medium that increases unsaturation and thereby 
the nutritional status of the microalga.

Materials and methods

Pure culture of N. salina was obtained from 
ICAR-Central Marine Fisheries Research Institute 
(ICAR-CMFRI), Kochi, India and was maintained in  
standard f/2 medium in order to ensure maximum biomass 
production.  Four different media viz, f/2 medium (Guillard, 
1975); Miquel’s Medium (Miquel, 1892); Walne’s medium 
(Walne, 1974) and Chu#10 medium (Chu, 1942) were  
prepared as per standard published methodologies.

The experiment was  performed following a completely 
randomised design (CRD), with three replications per 
treatment. Six hundred millilitres (20% of the culture 
medium) of N. salina having exponentially growing cells 
with an initial inoculum density of 20-30x104 cells ml-1 
(Pavlo et al., 2016) was transferred to previously 
autoclaved, properly capped and aerated borosilicate 
culture flasks of 4 l capacity (a set of three per treatment) 
under aseptic conditions. For the illumination, fluorescent 
tubes of 1500 lux were employed (Hoff and Snell, 1987).  
A light/dark (L/D) cycle of 12 h of light and 12 h of 
darkness was used for maintaining the stock as well 
as major cultures which was controlled using a timer 
(Barsanti and Gualtieri, 2006). The indoor culture room 
for maintaining the stock cultures was air-conditioned to 
maintain the temperature at 25ºC. Seawater of salinity 
33-34 ‰ was used for microalgal culture (Barsanti and 
Gualtieri, 2006).

The duration of lag phase, log phase and stationary 
phases of the microalga were monitored by counting cells,  
as per Andersen et al. (2005). After ascertaining cell 
density (Hoff and Snell, 1987), the culture was harvested 
during the late exponential phase by centrifugation at 
10000 rpm for 1 min in a refrigerated centrifuge (HIMAC 
CR 22G). The supernatant was discarded and the pellets 
were collected after multiple washing with seawater.  

For analysis of lipid profile of the microalgae  
harvested form differenrt treatments, total lipids were  
extracted following the protocol of Bligh and Dyer (1959). 
About 500 mg to 1 g of wet microalgal sample along with 

a pinch of butylated hydroxy toluene (added to prevent 
oxidation) was homogenised  in 5-10 ml of distilled water 
in a pestle and mortar. The homogenate  was transferred 
to a 250 ml conical flask and mixed with 20-30 ml  
chloroform-methanol (2:1 v/v) mixture and shaken well. 
The mixture was kept overnight at 4ºC in the dark and 
then 20 ml chloroform followed by 20 ml distilled water 
was added. The resulting solution was centrifuged and the 
three layers obtained were separated using a separating 
funnel. The lower chloroform layer was carefully collected 
free of the interface by filtering through sodium sulfate 
using a filter paper and then concentrated in a pre-weighed 
round bottom flask at 40-45°C using a rotary vacuum 
evaporator. The concentrate obtained was allowed to cool 
and the weight (w1) was noted. Total lipid content was  
calculated using the formula: 

Lipid = (w1-w2/w3) x 100 

where w1 =  weight of flask + lipid, w2 = weight of flask and  
w3 = weight of sample taken.

Fatty acids were analysed as fatty acid methyl esters 
(FAMEs). For this 5 ml of 0.5N methanolic alkali was 
added to about 150-250 mg of the extracted lipid and 
reflexed for 5 min in a boiling water bath under  nitrogen 
atmosphere, in order to break the ester bonds leading to 
saponification of lipids. After cooling, 5 ml BF3 methanol 
solution was added slowly, refluxed for another 5 min in 
boiling water bath under nitrogen atmosphere and then 
allowed to cool so that FAMEs were formed (Metcalf  
et al., 1966). Subsequently, about 5-6 ml of saturated NaCl 
was added and mixed well to separate the FAMEs. FAMEs 
were then mixed well with petroleum ether (double the 
volume of the solution) three times. Each time lower 
layer was discarded and the top layer of petroleum ether 
having FAMEs was collected. The process of extraction 
was repeated three more times with distilled water. 
Finally, the lower layer was filtered through anhydrous 
Na2SO4, followed by rotary evaporation. The concentrate 
was then reconstituted in minimum volume of petroleum 
ether and 1 µl of the same was used for injecting in gas 
chromatograph (GC). The area of each component was 
obtained from computer-generated data. FAMEs were 
identified by comparison of retention times with that of 
the known standards (SupelcoTM 37 Component FAME 
Mix, Catalog No. 47885-U) and the results were expressed 
as percentage total fatty acid. 

Statistical analysis

Statistical analyses were carried out with the 
Statistical Program for Social Sciences 13.0 (SPSS Inc, 
Chicago, USA, ver. 22.0). The differences between 
treatments were analysed by one-way ANOVA, taking 
p=0.05 as significant, followed by Tukey’s test.
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Results and discussion 

The lipid content (in percentage) of the harvested  
algal biomass of all the experimental treatments is given 
in Table 1. The highest concentration of lipid was obtained 
from N. salina cultures in Miquel’s as well as in f/2 
media (41.0%, 40.2% respectively) followed by Walne’s 
(32.54%) and Chu#10 medium (26.13%). Analysis using 
one-way ANOVA revealed that there was significant 
difference (p≤0.05) in the total lipid content among 
cultures in different media.

Chiu et al. (2009) reported that under optimal growth 
conditions N. oculata had a lipid content above 50%. 
Bondioli et al. (2012) reported a lipid content of 39.1% in 
Nannochloropsis sp. (F&M-M24 strain) whereas Xu et al. 
(2004) observed 22-31%. Meng et al. (2015) stated a lipid 
content of 28-59% in N. oceanica IMET1, while Mitra  
et al. (2015) observed a lipid content of 22.3 to 38.6% in 
Nannochloropsis gaditana. The above reports regarding 
lipid content in Nannochloropsis spp. were in harmony 
with the results of the current study. However, the present 
results contradict the results obtained by Kaladharan  
et al. (1999) where they got only 11.28% of lipid content 
in N. salina cultures grown in Walne’s medium. This may 
be because of the difference in the analytical procedures 
adopted and variations in culture environments such as 
temperature or photoperiod selected.   

One of the most important microelements in 
microalgal culture media is iron (Fe). It is expected that 
Fe induces lipid accumulation due to down-regulation of 
iron requiring fatty acid desaturase enzymes. A substantial 
hike in lipid radicals in the membranes of Chlorella 
vulgaris has been reported by Estevez et al. (2001), 
when iron was added up to 500 μM. Hence, the highest 
level of Fe (2 g 100 ml-1 stock solution) in the Miquel’s 
medium possibly resulted N. salina cultures having 
high lipid content. Being a constituent of cytochromes,  
Fe plays a key role in nitrogen assimilation and influences 
the synthesis of phycocyanin and chlorophyll. Fe added 
in the form of inorganic salts will tend to precipitate 
and become inaccessible to algae (Becker, 1994). Since 
Miquel’s medium contains Fe in the form of ferric 
chloride, it may shorten nitrogen assimilation thereby 
leading to lipid induction.

The use of Fe as a chelated complex (Fe EDTA) 
is more useful in algal culture (Becker, 1994). Both f/2 
medium and Walne’s medium have Fe source in the form 
of chelated complex which helps in proper uptake of 
macronutrients especially nitrogen, leading to the high 
performance of photosynthetic pathway instead of lipid 
synthetic pathway. The higher lipid content (41.00%) in f/2 
medium than that in Walne’s (32.54%) could be attributed 
to the fact that f/2 contains lesser amount of Fe source 
than Walne’s leading to reduced nitrogen assimilation 
and a substantial hike in lipid production. Omar (2002) 
observed that Botryococcus sudeticus accumulated more 
lipids (30%) when concentration of Zn was low. A close 
examination of the chemical composition of Miquel’s 
medium reveals that it lacks the above trace element 
thereby increasing the lipid content. 

Results of GC analysis of N. salina in four different  
culture media are depicted in Fig. 1a to d. The levels of saturated 
(SFA), monounsaturated (MUFA) and polyunsaturated 
(PUFA) fatty acids recorded in the experimental treatments 
are presented as percentage of total fatty acids (% TFA) 
in Table 2, 3 and 4 respectively. Total SFAs ranged 
from 39.17% (Miquel’s medium) to 84.45% (Chu#10). 
Lauric acid (C12) was found to be the major SFA in 
cultures maintained in all the four media followed by 
palmitic acid (C16:0) which ranged from 5.56% (f/2), 
6.81% (Miquel’s), 7.77% (Walne’s) to 13.12% (Chu#10). 
Myristic acid (C14) levels recorded were almost similar 
in all the four media (2.29 to 3.37%). The presence of 
0.8% stearic acid noted in Miquel’s medium in the present 
study is in agreement to the results of Alicia et al. (2015) in  
N. gaditana where the fatty acid profile evidenced the 
presence of 4.4% myristic acid and 0.8% stearic acid. 
Statistical analysis of the data indicated significnat 
variations in SFA content among the algal cultures grown 
in four different media.

Highest level of MUFAs was obtained for Miquel’s 
medium (42.79%) followed by f/2 medium (20.11%), 
Chu#10 (10.55%) and lowest for Walne’s (9.39%) medium. 
One-way ANOVA revealed significant difference (p≤0.05) 
in MUFA content among the four different treatments. 
The observations of Carrero et al. (2011) and Alicia et al. 
(2015) in N. gaditana regarding MUFA content (above 40 
and 46.5% respectively) are in tune with the findings of 
the current study.

Among the nine classes of MUFAs, oleic acid  
(18:1 n-9) is the major one present in N. salina, which 
attained maximum level in Miquel’s medium (19.90%) 
and minimum in f/2 (1.27%). In Chu#10, both cis and 
trans forms were obtained (0.61 and 2.26% respectively) 
and in Walne’s medium oleic acid content recorded was 
2.06%. The fatty acid profile revealed the presence of 

Rajani S. Ganga et al.

Culture media Lipid Mean+SD
f/2 40 40±2.08
Miquel’s 40.2 40.2±3.40
Waine’s 32.54 32.54±2.35
Chu#10 26.13 26.13±3.56

Table 1. Total lipid content (%) in N. salina recorded in the four  
different culture media

p=0.001
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Table 2. Saturated fatty acids content (%) of N. salina from four different culture media
Sl. No. Fatty acids f/2 medium Miquel’s medium Walne’s medium Chu#10 medium
1 Lauric acid C12 54.29 ±0.01 25.21±0.00 52.09 ±0.01 58.3 ±0.01
2 Tridecanoic acid C13 nd 1.05 ±0.01 3.38 ±0.03 8.95 ±0.10
3 Myristic acid C14 3.36 ±0.08 2.90 ±0.01 2.29 ±0.02 3.37 ±0.01
4 Pentadecanoic acid C15 3.95 ±0.01 2.42 ±0.00 1.57 ±0.02 0.70 ±0.20
5 Palmitic acid C16 5.56 ±0.32 6.81±0.71 7.77 ±0.09 13.12 ±0.21
6 Stearic acid C18 nd 0.78 ±0.02 nd nd
               Total SFA (%) 67.13 ±0.40 39.17 ±0.75 67.10 ±0.15 84.45 ±0.53
p=0.000; nd: Not detected

Table 3.  Monounsaturated fatty acids content (%) of N. salina from four different culture media
Sl. No. Fattyacids f/2 medium Miquel’s medium Walne’s medium Chu#10 medium
1 Oleolauric acid C12:1 n-5 nd nd nd 1.07±0.01
2 Oleomyristic acid C14:1 n-5 1.99±0.03 1.75±0.03 0.96±0.01 2.05±0.01
3 Penta decenoic acid C15:1 n-5 4.281±0.09 17.50±0.01 2.40±0.10 0.56±0.40
4 Palmitoleic acid C16:1 n-7 10.80±0.02 2.37±0.41 3.26±0.20 3.08±0.21
5 Vaccenic acid C18:1 n-7 cis 1.23±0.01 1.26±0.01 0.40±0.02 0.48±0.01
6 Vaccenic acid C18:1 n-7 trans nd nd nd 0.45±0.03
7 Oleic acid C18:1 n-9 cis 1.27±0.70 19.90 ±0.80 2.06±0.05 0.61±0.01
8 Oleic acid C18:1 n-9 trans nd nd nd 2.26±1.50
9 Eicosaenoic acid C20:1 n-9 0.54±0.03 nd 0.33±0.04 nd
               Total MUFA (%) 20.11±0.87 42.79 ±1.25 9.39±0.42 10.55±2.26
 p=0.000; nd: Not detected

Lipid profile of Nannochloropsis salina in different culture media
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Fig. 1. Chromatogram showing fatty acid profile of N. salina in (a) f/2 medium, (b) Miquel's medium, (c) Walne's medium and  
(d) Chu#10 medium
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Table 4.  Polyunsaturated fatty acids content (%) of N. salina from four different culture media
Sl. No. Fatty acids f/2 medium Miquel’s medium Walne’s medium Chu#10 medium
1 Linoleic acid C18:2 n-6 cis 1.13 ±0.01 11.99 ±0.03 1.54 ±0.01 0.78 ±0.01
2 Linoleic acid C18:2 n-6 trans nd nd nd 1.15 ±0.00
3 α linolenic acid C18:3 n-3 nd 1.05 ±0.00 0.36 ±0.02 nd
4 Gamma linolenic acid C18:3 n-6 nd nd 0.24 ±0.01 0.43 ±0.03
5 Dihomogamma linolenic acid C20:3 n-6 nd nd nd 0.46 ±0.00
6 Arachidonic acid C20:4 n-6 1.20 ±0.02 nd 0.14 ±0.01 1.14 ±0.01
7 Eicosapentaenoic acid C20:5 n-3 10.43 ±0.80 5.00 ±0.60 21.22 ±0.09 1.04 ±0.02
              Total PUFA (%) 12.76±0.83 18.04±0.63 23.50±0.11 5.00±0.06
p= 0.000; nd: Not detected

oleomyristic acid at 0.96% in Walne’s medium, followed 
by 1.75% in Miquel’s, 2% in f/2 and 2.05% in Chu#10.  
This finding is in agreement with that of Alicia et al. (2015)  
in N. gaditana.

Polyunsaturated fatty acids (PUFAs) accounted for 
over 23.50% of the total fatty acids in Walne’s medium 
followed  by Miquel’s (18.04%), f/2 (12.76%) and Chu#10 
(5%). The total PUFA content  of N. salina from Walne’s 
medium is in agreement with that reported by Carrero  
et al. (2011) (above 20%) and Alicia et al. (2015) (23.8%) 
in N. gaditana. In the present study, significant difference 
(p≤0.05) in the PUFA content among N. salina cultures in 
different media was evident. 

A close examination of the chemical combination 
of Walne’s and Miquel’s media revealed that they have 
sufficient amount of macronutrients like N, P, K and Ca. 
Usually, under conditions of nitrogen sufficiency, microalgae 
synthesise membrane glycerolipids which reside in the 
plasma membrane and endoplasmic membrane systems 
(Piorreck and Pohl, 1984). These membrane lipids 
are constituted mainly of long-chain unsaturated fatty 
acids, which play a structural role in the cell (Hu et al., 
2008). Thus, PUFA is accumulated more in the  
growth phase during which cell division actively 
progressed (Hu et al., 2008). The presence of a large 
amount of PUFA in N. salina cultures grown in 
Walne’s as well as in Miquel’s media further affirms the  
above mentioned findings. 

The nitrogen source in f/2 medium is sodium nitrate, 
in Chu#10 medium it is calcium nitrate while in Walne’s 
and Miquel’s it is potassium nitrate. N. salina cultures in 
Chu#10 medium had least content of total lipid, MUFA, 
PUFA and EPA. This is because the calcium nitrate in this 
medium is actually responsible for protein biosynthesis 
and thereby it accounts for algal growth and not for lipid 
synthesis (Ilavarasi et al., 2011). Another fact is that the 
PO4 source (K2HPO4) enhances  algal growth and not lipid 
synthesis (Turpin, 1986). 

The present experiment revealed 6 classes of PUFAs 
in N. salina, among which C18:2 n-6 was highest in 

Miquel’s medium (11.99%) compared to the other three 
media. The arachidonic acid content was more or less equal 
in f/2 (1.2%) and in Chu#10 (1.14%) media. DGLA (C20:3 
n-6) was recorded only in Chu#10 medium. Hoffmann  
et al. (2010) observed that N. salina contains 2.5 to 4.5% 
PUFA content as well as 1.1-3.5% EPA content.

The content of palmitoleic acid (C16:1 n-7) of  
N. salina cultures grown in Walne’s and Chu#10 
media in the present study is similar to that reported in  
N. limnetica cultures (Krienitz and Wirth, 2006). Similarly, 
Volkman et al. (1993) reported 2.18% palmitoleic 
acid (C16:1 n-7) and 0.63% oleic acid (C18:1 n-9) in  
N. oculata CS 216 which is almost equivalent to 2.37 and 
0.61% observed from N. salina cultures grown in Miquel’s 
and Chu#10 media respectively, during the present study. 
Cultures in Walne’s medium produced the maximum 
amount of EPA (21.22%) and minimum was recorded with 
Chu#10 (1.04%) medium. N. salina grown in f/2 medium 
had 10.43% EPA content while it was 5% for Miquel’s 
medium.

Camacho-Rodriguez et al. (2014) found that culture 
media with low levels of zinc would be having lesser EPA 
content in N. gaditana. This finding is in tune with the 
present result because both Miquel’s and Chu#10 media 
are lacking the said trace element and recorded low values 
of EPA (5 and 1.04% respectively). A higher quantity of 
Zn accounts for increased EPA content in Walne’s medium 
cultures (21.22%) than those in f/2 medium (10.43%). 
They also reported that biotin was important for EPA 
production while thiamine and cyanocobalamin were not. 
Another reason for the higher content of EPA in f/2 medium 
cultures could be attributed to presence of biotin. Chen  
et al. (2013) also showed that trace elements are important 
for the growth and EPA production in N. oceanica CY2.  
A close perusal of the chemical composition of f/2 medium 
and Walne’s medium indicates that both have a good 
balance of micronutrients. Many of these micronutrients 
are lacking in Miquel’s and Chu#10 media. Therefore, 
the optimum balance of micronutrients in f/2 and Walne’s 
media could be one of the reasons for the higher EPA 
content in N. salina grown in these media.

Rajani S. Ganga et al.
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Different authors have reported the value of EPA 
content in different experimental setups and in different 
species of Nannochloropsis which are in tune with the 
results of the current study. Zou et al. (2000) reported 2.3-
5.7% EPA content in Nannochloropsis spp. Chaturvedi 
and Fujita (2006) observed 2.4% EPA content in 
Nannochloropsis oculata ST-6 (wild type) having a PUFA 
content of 3%. Meng et al. (2015) obtained an EPA value 
as 2.7-5.2% for Nannochloropsis oceanica IMET1 where 
total lipid content was 28-59%. Krienitz  and Wirth (2006) 
estimated an EPA value of 0.22-5.6 for Nannochloropsis 
limnetica SAG18.99 where total PUFA was 0.84-12.25%. 
Molino et al. (2019) and Mitra et al. (2015) reported an 
EPA value of 4.4 to 11% in N. gaditana cultures. In their 
experiment, N. gaditana cultures displayed 1.6-3.5% 
linoleic acid (18:2 n-6), 0.3-1.1% ALA (18:3 n-3) and  
0.4 -3.4% AA (20:4 n-6). The findings of the present study 
are in agreement with these reports (Table 4).

There are reports regarding negative impacts of high 
concentrations of Zn on mocroalgal cell division, total 
chlorophyll content and ATPase activity (Omar, 2002). In 
addition, a high concentration of Zn was found to increase 
lipid peroxides in microalgae like Pavlova viridis (Li and 
Zhu, 2006), resulting in lipid depravity. The effects of 
molybdenum (Mo) on microalgal lipid production are still 
unclear and require further investigation. However, it is 
known that Mo is essential for the assimilation of nitrate 
(Raven, 1988) and for the conservation of homeostasis, 
while certain enzymes carry Mo cofactors conserved in 
eukaryotes. It was documented that Manganese (Mn) 
limitation suppresses photosynthetic activities in algae 
(Constantopoulos, 1970) and thereby enhances lipid 
synthesis. The present findings regarding lipid production 
is in agreement with the above results since Miquel’s 
medium is lacking in the above trace elements. 

The main goal of this work was to describe the lipid 
classes of N. salina and their composition in terms of 
esterified fatty acids when grown in different standard 
microalgal culture media. Since Walne’s medium enriches 
polyunsaturated fatty acid content, cultures from this 
medium are suitable for optimised larval rearing in  
aquaculture. As N. salina is rich in neutral lipids, it can be 
used as a potential source of biofuel, which can become a 
promising industry in the future for which Chu#10 medium 
can be used. A detailed understanding of biochemical 
parameters and fatty acid expression patterns in different 
algal species can help to estimate their dietary potential 
and can open up possibilities for the manipulation of 
culture conditions. 
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