

Variations in lipid profile of the marine microalga *Nannochloropsis salina* in four different culture media

RAJANI S. GANGA, R. ANANDAN* AND ANEYKUTTY JOSEPH

Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Fine Arts Avenue Cochin University of Science and Technology, Kochi - 682 016, Kerala, India *ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri, P.O., Kochi - 682 029, Kerala, India e-mail: aneykuttyj@gmail.com

ABSTRACT

The present work envisages close monitoring of variations in lipid content and fatty acid profile of the marine microalga *Nannochloropsis salina*, by growing it in 4 different culture media. Pure cultures of microalga were collected from the marine hatchery complex of the ICAR-Central Marine Fisheries Research Institute, Kochi and cultured in four different media *viz*, f/2 medium (Guillard,1975), Miquel's medium (Miquel,1892), Walne's medium (Walne, 1974) and Chu#10 medium (Chu, *et al.*, 1942). Standard algal culture conditions *viz*, salinity 33 ppt, pH 8.0, culture room temperature of 25°C, light intensity of 1500 lux with a photoperiod of 12 h and Light:Dark cycle of 12 h were maintained. Lipids extracted were subjected to gas chromatography to ascertain their fatty acid profile. Both Miquel's and f/2 media produced the maximum amount of lipid content (40.2 and 40% respectively). Total saturated fatty acids ranged from 39.17% (Miquel's medium) to 84.45% (Chu #10). For monounsaturated fatty acids, the highest value was obtained for Miquel's medium (42.79%) and minimum for Chu#10 (10.55%). Polyunsaturated fatty acids accounted for over 23.5% of the total fatty acids in Walne's medium followed by Miquel's (18.04%), f/2 (12.76%) and Chu#10 (5%) media. One way analysis of variance of the data brought to light that the medium composition can influence the fatty acid pattern of microalgae significantly.

Keywords: Fish culture, Live feed, Micronutrients, Omega-3, Omega-6

Introduction

The fast proliferation of some microalgae used as live feed in hatcheries of finfishes and shellfishes offers opportunity for consistent production of biomass rich in lipid, starch or protein (Atalah *et al.*, 2007; Ganuza *et al.*, 2008; Hemaiswarya *et al.*, 2011; Velasquez *et al.*, 2016), which indirectly helps to impart nourishment to human diet (Bold, 1942; Canizares *et al.*, 1994). Nearly all microalgal biomass are rich sources of omega-3/ omega-6 fatty acids and essential amino acids (leucine, isoleucine and valine).

Screening and optimisation of culture medium is among the foremost preconditions for photoautotrophic cultivation of microalgae. The performance of microalgae in culture is mostly determined by the quality of the medium used (Lam and Lee, 2012; Li et al., 2012; Prathima et al., 2012). Manipulation of the nutritional content of microalgae can be achieved by altering the media composition and culture strategies (Otero et al., 2006; Ilavarasi et al., 2011; Lincymol et al., 2012; Naseera et al., 2013; Neethuand Dhandapani, 2016; Praba et al., 2016). The essential fatty acid profile of the algae could even be modified using these techniques (Kaladharan et al., 1999; Martinez-Fernandez et al., 2006; Rivero-Rodriguez

et al., 2007; Lidiya and Joseph, 2018; Aswathy et al., 2020). The composition and availability of macro and microelements in the media directly affect algal cultures and hence they should be provided at optimal levels (Liu et al., 2008). Macronutrients viz, N, K, Mg, S and Na are non-toxic to algal cells and can be supplemented at higher concentrations. Whereas, essential trace elements like Fe, Cu, Mn, Zn, Co and Mo are growth-limiting at lower levels and toxic at higher doses. These trace elements play important roles in metabolic pathways that influence the performance of micralgae in culture (Sunda and Huntsman, 1998; Sunda et al., 2005).

The genus *Nannochloropsis* was first described by Hibberd (Hibberd, 1981) which is widely accepted in aquaculture (Roncarati *et al.*, 2004; Bentley *et al.*, 2008) owing to its rapid growth and nutritional value, especially high lipid content (Rodolfi *et al.*, 2003; Olofsson *et al.*, 2012). The high content of the omega-3 fatty acid, eicosapentaenoic acid (EPA, C20:5 n-3) in *Nannochloropsis* contributes to its significance in the aquaculture industry (Watanabe, 1979; Watanabe *et al.*, 1983; Koven *et al.*, 1990; Seto *et al.*, 1992; Sukenik *et al.*, 1993). Different species of *Nannochloropsis* have been found to facilitate relatively high rates of rotifer

multiplication which are important live feed for fish larvae (Hirayama *et al.*, 1979; Yamasaki *et al.*, 1989; Ahmad, 1991).

As the optimal nutrient concentration varies depending on the microalgal strain as well as the processing and cultivation parameters, the medium should be optimised for each microalgal strain prior to mass cultivation. The present investigation attempted to analyse the fatty acid profile of *Nannochloropsis salina* when grown in four different culture media to identify the optimal medium that increases unsaturation and thereby the nutritional status of the microalga.

Materials and methods

Pure culture of *N. salina* was obtained from ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Kochi, India and was maintained in standard f/2 medium in order to ensure maximum biomass production. Four different media *viz*, f/2 medium (Guillard, 1975); Miquel's Medium (Miquel, 1892); Walne's medium (Walne, 1974) and Chu#10 medium (Chu, 1942) were prepared as per standard published methodologies.

The experiment was performed following a completely randomised design (CRD), with three replications per treatment. Six hundred millilitres (20% of the culture medium) of N. salina having exponentially growing cells with an initial inoculum density of 20-30x10⁴ cells ml⁻¹ (Pavlo et al., 2016) was transferred to previously autoclaved, properly capped and aerated borosilicate culture flasks of 4 l capacity (a set of three per treatment) under aseptic conditions. For the illumination, fluorescent tubes of 1500 lux were employed (Hoff and Snell, 1987). A light/dark (L/D) cycle of 12 h of light and 12 h of darkness was used for maintaining the stock as well as major cultures which was controlled using a timer (Barsanti and Gualtieri, 2006). The indoor culture room for maintaining the stock cultures was air-conditioned to maintain the temperature at 25°C. Seawater of salinity 33-34 ‰ was used for microalgal culture (Barsanti and Gualtieri, 2006).

The duration of lag phase, log phase and stationary phases of the microalga were monitored by counting cells, as per Andersen *et al.* (2005). After ascertaining cell density (Hoff and Snell, 1987), the culture was harvested during the late exponential phase by centrifugation at 10000 rpm for 1 min in a refrigerated centrifuge (HIMAC CR 22G). The supernatant was discarded and the pellets were collected after multiple washing with seawater.

For analysis of lipid profile of the microalgae harvested form different treatments, total lipids were extracted following the protocol of Bligh and Dyer (1959). About 500 mg to 1 g of wet microalgal sample along with

a pinch of butylated hydroxy toluene (added to prevent oxidation) was homogenised in 5-10 ml of distilled water in a pestle and mortar. The homogenate was transferred to a 250 ml conical flask and mixed with 20-30 ml chloroform-methanol (2:1 v/v) mixture and shaken well. The mixture was kept overnight at 4°C in the dark and then 20 ml chloroform followed by 20 ml distilled water was added. The resulting solution was centrifuged and the three layers obtained were separated using a separating funnel. The lower chloroform layer was carefully collected free of the interface by filtering through sodium sulfate using a filter paper and then concentrated in a pre-weighed round bottom flask at 40-45°C using a rotary vacuum evaporator. The concentrate obtained was allowed to cool and the weight (w,) was noted. Total lipid content was calculated using the formula:

Lipid =
$$(w_1 - w_2/w_3) \times 100$$

where w_1 = weight of flask + lipid, w_2 = weight of flask and w_3 = weight of sample taken.

Fatty acids were analysed as fatty acid methyl esters (FAMEs). For this 5 ml of 0.5N methanolic alkali was added to about 150-250 mg of the extracted lipid and reflexed for 5 min in a boiling water bath under nitrogen atmosphere, in order to break the ester bonds leading to saponification of lipids. After cooling, 5 ml BF, methanol solution was added slowly, refluxed for another 5 min in boiling water bath under nitrogen atmosphere and then allowed to cool so that FAMEs were formed (Metcalf et al., 1966). Subsequently, about 5-6 ml of saturated NaCl was added and mixed well to separate the FAMEs. FAMEs were then mixed well with petroleum ether (double the volume of the solution) three times. Each time lower layer was discarded and the top layer of petroleum ether having FAMEs was collected. The process of extraction was repeated three more times with distilled water. Finally, the lower layer was filtered through anhydrous Na₂SO₄, followed by rotary evaporation. The concentrate was then reconstituted in minimum volume of petroleum ether and 1 µl of the same was used for injecting in gas chromatograph (GC). The area of each component was obtained from computer-generated data. FAMEs were identified by comparison of retention times with that of the known standards (SupelcoTM 37 Component FAME Mix, Catalog No. 47885-U) and the results were expressed as percentage total fatty acid.

Statistical analysis

Statistical analyses were carried out with the Statistical Program for Social Sciences 13.0 (SPSS Inc, Chicago, USA, ver. 22.0). The differences between treatments were analysed by one-way ANOVA, taking p=0.05 as significant, followed by Tukey's test.

Rajani S. Ganga et al. 84

Results and discussion

The lipid content (in percentage) of the harvested algal biomass of all the experimental treatments is given in Table 1. The highest concentration of lipid was obtained from *N. salina* cultures in Miquel's as well as in f/2 media (41.0%, 40.2% respectively) followed by Walne's (32.54%) and Chu#10 medium (26.13%). Analysis using one-way ANOVA revealed that there was significant difference (p≤0.05) in the total lipid content among cultures in different media.

Chiu et al. (2009) reported that under optimal growth conditions N. oculata had a lipid content above 50%. Bondioli et al. (2012) reported a lipid content of 39.1% in Nannochloropsis sp. (F&M-M24 strain) whereas Xu et al. (2004) observed 22-31%. Meng et al. (2015) stated a lipid content of 28-59% in N. oceanica IMET1, while Mitra et al. (2015) observed a lipid content of 22.3 to 38.6% in Nannochloropsis gaditana. The above reports regarding lipid content in Nannochloropsis spp. were in harmony with the results of the current study. However, the present results contradict the results obtained by Kaladharan et al. (1999) where they got only 11.28% of lipid content in N. salina cultures grown in Walne's medium. This may be because of the difference in the analytical procedures adopted and variations in culture environments such as temperature or photoperiod selected.

One of the most important microelements in microalgal culture media is iron (Fe). It is expected that Fe induces lipid accumulation due to down-regulation of iron requiring fatty acid desaturase enzymes. A substantial hike in lipid radicals in the membranes of Chlorella vulgaris has been reported by Estevez et al. (2001), when iron was added up to 500 µM. Hence, the highest level of Fe (2 g 100 ml⁻¹ stock solution) in the Miguel's medium possibly resulted N. salina cultures having high lipid content. Being a constituent of cytochromes, Fe plays a key role in nitrogen assimilation and influences the synthesis of phycocyanin and chlorophyll. Fe added in the form of inorganic salts will tend to precipitate and become inaccessible to algae (Becker, 1994). Since Miquel's medium contains Fe in the form of ferric chloride, it may shorten nitrogen assimilation thereby leading to lipid induction.

Table 1. Total lipid content (%) in *N. salina* recorded in the four different culture media

Culture media	Lipid	Mean <u>+</u> SD
f/2	40	40±2.08
Miquel's	40.2	40.2 ± 3.40
Waine's	32.54	32.54 ± 2.35
Chu#10	26.13	26.13 ± 3.56
p=0.001		

The use of Fe as a chelated complex (Fe EDTA) is more useful in algal culture (Becker, 1994). Both f/2 medium and Walne's medium have Fe source in the form of chelated complex which helps in proper uptake of macronutrients especially nitrogen, leading to the high performance of photosynthetic pathway instead of lipid synthetic pathway. The higher lipid content (41.00%) in f/2 medium than that in Walne's (32.54%) could be attributed to the fact that f/2 contains lesser amount of Fe source than Walne's leading to reduced nitrogen assimilation and a substantial hike in lipid production. Omar (2002) observed that Botryococcus sudeticus accumulated more lipids (30%) when concentration of Zn was low. A close examination of the chemical composition of Miguel's medium reveals that it lacks the above trace element thereby increasing the lipid content.

Results of GC analysis of N. salina in four different culture media are depicted in Fig. 1a to d. The levels of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids recorded in the experimental treatments are presented as percentage of total fatty acids (% TFA) in Table 2, 3 and 4 respectively. Total SFAs ranged from 39.17% (Miquel's medium) to 84.45% (Chu#10). Lauric acid (C12) was found to be the major SFA in cultures maintained in all the four media followed by palmitic acid (C16:0) which ranged from 5.56% (f/2), 6.81% (Miquel's), 7.77% (Walne's) to 13.12% (Chu#10). Myristic acid (C14) levels recorded were almost similar in all the four media (2.29 to 3.37%). The presence of 0.8% stearic acid noted in Miquel's medium in the present study is in agreement to the results of Alicia et al. (2015) in N. gaditana where the fatty acid profile evidenced the presence of 4.4% myristic acid and 0.8% stearic acid. Statistical analysis of the data indicated significant variations in SFA content among the algal cultures grown in four different media.

Highest level of MUFAs was obtained for Miquel's medium (42.79%) followed by f/2 medium (20.11%), Chu#10 (10.55%) and lowest for Walne's (9.39%) medium. One-way ANOVA revealed significant difference (p≤0.05) in MUFA content among the four different treatments. The observations of Carrero *et al.* (2011) and Alicia *et al.* (2015) in *N. gaditana* regarding MUFA content (above 40 and 46.5% respectively) are in tune with the findings of the current study.

Among the nine classes of MUFAs, oleic acid (18:1 n-9) is the major one present in *N. salina*, which attained maximum level in Miquel's medium (19.90%) and minimum in f/2 (1.27%). In Chu#10, both *cis* and *trans* forms were obtained (0.61 and 2.26% respectively) and in Walne's medium oleic acid content recorded was 2.06%. The fatty acid profile revealed the presence of

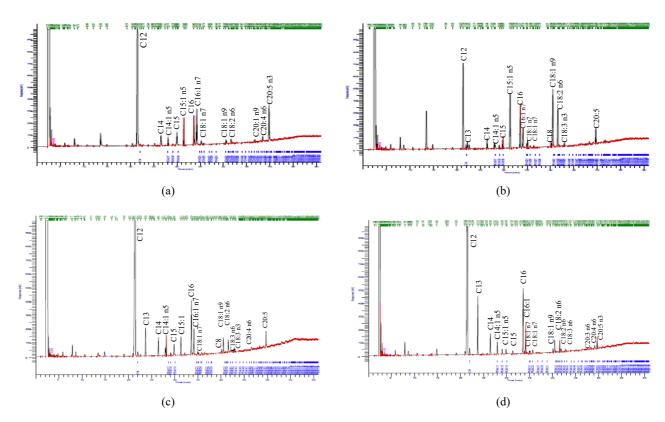


Fig. 1. Chromatogram showing fatty acid profile of N. salina in (a) f/2 medium, (b) Miquel's medium, (c) Walne's medium and (d) Chu#10 medium

Table 2. Saturated fatty acids content (%) of N. salina from four different culture media

Sl. No.	Fatty acids		f/2 medium	Miquel's medium	Walne's medium	Chu#10 medium
1	Lauric acid	C12	54.29 ±0.01	25.21±0.00	52.09 ±0.01	58.3 ±0.01
2	Tridecanoic acid	C13	nd	1.05 ± 0.01	3.38 ± 0.03	8.95 ± 0.10
3	Myristic acid	C14	$3.36 \pm \hspace{-0.03cm} \pm \hspace{-0.03cm} 0.08$	2.90 ± 0.01	2.29 ± 0.02	3.37 ± 0.01
4	Pentadecanoic acid	C15	3.95 ± 0.01	2.42 ± 0.00	1.57 ± 0.02	0.70 ± 0.20
5	Palmitic acid	C16	5.56 ± 0.32	6.81 ± 0.71	7.77 ± 0.09	13.12 ± 0.21
6	Stearic acid	C18	nd	0.78 ± 0.02	nd	nd
	Total SFA (%)		67.13 ± 0.40	39.17 ± 0.75	67.10 ± 0.15	84.45 ± 0.53

p=0.000; nd: Not detected

Table 3. Monounsaturated fatty acids content (%) of N. salina from four different culture media

Sl. No.	Fattyacids		f/2 medium	Miquel's medium	Walne's medium	Chu#10 medium
1	Oleolauric acid	C12:1 n-5	nd	nd	nd	1.07±0.01
2	Oleomyristic acid	C14:1 n-5	1.99 ± 0.03	1.75 ± 0.03	0.96 ± 0.01	2.05 ± 0.01
3	Penta decenoic acid	C15:1 n-5	4.281 ± 0.09	17.50 ± 0.01	2.40 ± 0.10	0.56 ± 0.40
4	Palmitoleic acid	C16:1 n-7	10.80 ± 0.02	2.37 ± 0.41	3.26 ± 0.20	3.08 ± 0.21
5	Vaccenic acid	C18:1 n-7 cis	1.23 ± 0.01	1.26 ± 0.01	0.40 ± 0.02	0.48 ± 0.01
6	Vaccenic acid	C18:1 n-7 trans	nd	nd	nd	0.45 ± 0.03
7	Oleic acid	C18:1 n-9 cis	1.27 ± 0.70	19.90 ± 0.80	2.06 ± 0.05	0.61 ± 0.01
8	Oleic acid	C18:1 n-9 trans	nd	nd	nd	2.26±1.50
9	Eicosaenoic acid	C20:1 n-9	0.54 ± 0.03	nd	0.33 ± 0.04	nd
	Total MUFA (%)		20.11 ± 0.87	42.79 ± 1.25	9.39 ± 0.42	10.55 ± 2.26

p=0.000; nd: Not detected

Rajani S. Ganga et al.	86
------------------------	----

Table 4	Polyunsaturated	fatty acids	content (%) of N	salina from	four differ	ent culture media	a
Table 4.	1 Orvunsaturateu	iauv acius	COHICHI UZO	J OI /V.	sauna nom	TOUL UITIER	oni cunture meana	1

C1 NI	F. 4 '1		C/O 1'	N. 4. 1. 1.	337.1 2 11	C1 //10 1'
SI. No.	Fatty acids		f/2 medium	Miquel's medium	Walne's medium	Chu#10 medium
1	Linoleic acid	C18:2 n-6 cis	1.13 ± 0.01	11.99 ± 0.03	1.54 ± 0.01	0.78 ± 0.01
2	Linoleic acid	C18:2 n-6 trans	nd	nd	nd	1.15 ± 0.00
3	α linolenic acid	C18:3 n-3	nd	1.05 ± 0.00	0.36 ± 0.02	nd
4	Gamma linolenic acid	C18:3 n-6	nd	nd	0.24 ± 0.01	0.43 ± 0.03
5	Dihomogamma linolenic acid	C20:3 n-6	nd	nd	nd	0.46 ± 0.00
6	Arachidonic acid	C20:4 n-6	1.20 ± 0.02	nd	0.14 ± 0.01	$1.14 \pm \hspace{-0.05cm} \pm \hspace{-0.05cm} 0.01$
7	Eicosapentaenoic acid	C20:5 n-3	10.43 ± 0.80	5.00 ± 0.60	21.22 ± 0.09	1.04 ± 0.02
	Total PUFA (%)		12.76 ± 0.83	18.04 ± 0.63	23.50±0.11	5.00 ± 0.06

p= 0.000; nd: Not detected

oleomyristic acid at 0.96% in Walne's medium, followed by 1.75% in Miquel's, 2% in f/2 and 2.05% in Chu#10. This finding is in agreement with that of Alicia *et al.* (2015) in *N. gaditana*.

Polyunsaturated fatty acids (PUFAs) accounted for over 23.50% of the total fatty acids in Walne's medium followed by Miquel's (18.04%), f/2 (12.76%) and Chu#10 (5%). The total PUFA content of N. salina from Walne's medium is in agreement with that reported by Carrero et al. (2011) (above 20%) and Alicia et al. (2015) (23.8%) in N. gaditana. In the present study, significant difference (p \leq 0.05) in the PUFA content among N. salina cultures in different media was evident.

A close examination of the chemical combination of Walne's and Miquel's media revealed that they have sufficient amount of macronutrients like N, P, K and Ca. Usually, under conditions of nitrogen sufficiency, microalgae synthesise membrane glycerolipids which reside in the plasma membrane and endoplasmic membrane systems (Piorreck and Pohl, 1984). These membrane lipids are constituted mainly of long-chain unsaturated fatty acids, which play a structural role in the cell (Hu *et al.*, 2008). Thus, PUFA is accumulated more in the growth phase during which cell division actively progressed (Hu *et al.*, 2008). The presence of a large amount of PUFA in *N. salina* cultures grown in Walne's as well as in Miquel's media further affirms the above mentioned findings.

The nitrogen source in f/2 medium is sodium nitrate, in Chu#10 medium it is calcium nitrate while in Walne's and Miquel's it is potassium nitrate. *N. salina* cultures in Chu#10 medium had least content of total lipid, MUFA, PUFA and EPA. This is because the calcium nitrate in this medium is actually responsible for protein biosynthesis and thereby it accounts for algal growth and not for lipid synthesis (Ilavarasi *et al.*, 2011). Another fact is that the PO₄ source (K₂HPO₄) enhances algal growth and not lipid synthesis (Turpin, 1986).

The present experiment revealed 6 classes of PUFAs in *N. salina*, among which C18:2 n-6 was highest in

Miquel's medium (11.99%) compared to the other three media. The arachidonic acid content was more or less equal in f/2 (1.2%) and in Chu#10 (1.14%) media. DGLA (C20:3 n-6) was recorded only in Chu#10 medium. Hoffmann *et al.* (2010) observed that *N. salina* contains 2.5 to 4.5% PUFA content as well as 1.1-3.5% EPA content.

The content of palmitoleic acid (C16:1 n-7) of *N. salina* cultures grown in Walne's and Chu#10 media in the present study is similar to that reported in *N. limnetica* cultures (Krienitz and Wirth, 2006). Similarly, Volkman *et al.* (1993) reported 2.18% palmitoleic acid (C16:1 n-7) and 0.63% oleic acid (C18:1 n-9) in *N. oculata* CS 216 which is almost equivalent to 2.37 and 0.61% observed from *N. salina* cultures grown in Miquel's and Chu#10 media respectively, during the present study. Cultures in Walne's medium produced the maximum amount of EPA (21.22%) and minimum was recorded with Chu#10 (1.04%) medium. *N. salina* grown in f/2 medium had 10.43% EPA content while it was 5% for Miquel's medium.

Camacho-Rodriguez et al. (2014) found that culture media with low levels of zinc would be having lesser EPA content in N. gaditana. This finding is in tune with the present result because both Miquel's and Chu#10 media are lacking the said trace element and recorded low values of EPA (5 and 1.04% respectively). A higher quantity of Zn accounts for increased EPA content in Walne's medium cultures (21.22%) than those in f/2 medium (10.43%). They also reported that biotin was important for EPA production while thiamine and cyanocobalamin were not. Another reason for the higher content of EPA in f/2 medium cultures could be attributed to presence of biotin. Chen et al. (2013) also showed that trace elements are important for the growth and EPA production in N. oceanica CY2. A close perusal of the chemical composition of f/2 medium and Walne's medium indicates that both have a good balance of micronutrients. Many of these micronutrients are lacking in Miquel's and Chu#10 media. Therefore, the optimum balance of micronutrients in f/2 and Walne's media could be one of the reasons for the higher EPA content in N. salina grown in these media.

Different authors have reported the value of EPA content in different experimental setups and in different species of Nannochloropsis which are in tune with the results of the current study. Zou et al. (2000) reported 2.3-5.7% EPA content in Nannochloropsis spp. Chaturvedi and Fujita (2006) observed 2.4% EPA content in Nannochloropsis oculata ST-6 (wild type) having a PUFA content of 3%. Meng et al. (2015) obtained an EPA value as 2.7-5.2% for Nannochloropsis oceanica IMET1 where total lipid content was 28-59%. Krienitz and Wirth (2006) estimated an EPA value of 0.22-5.6 for Nannochloropsis limnetica SAG18.99 where total PUFA was 0.84-12.25%. Molino et al. (2019) and Mitra et al. (2015) reported an EPA value of 4.4 to 11% in N. gaditana cultures. In their experiment, N. gaditana cultures displayed 1.6-3.5% linoleic acid (18:2 n-6), 0.3-1.1% ALA (18:3 n-3) and 0.4 - 3.4% AA (20:4 n-6). The findings of the present study are in agreement with these reports (Table 4).

There are reports regarding negative impacts of high concentrations of Zn on mocroalgal cell division, total chlorophyll content and ATPase activity (Omar, 2002). In addition, a high concentration of Zn was found to increase lipid peroxides in microalgae like Pavlova viridis (Li and Zhu, 2006), resulting in lipid depravity. The effects of molybdenum (Mo) on microalgal lipid production are still unclear and require further investigation. However, it is known that Mo is essential for the assimilation of nitrate (Raven, 1988) and for the conservation of homeostasis, while certain enzymes carry Mo cofactors conserved in eukaryotes. It was documented that Manganese (Mn) limitation suppresses photosynthetic activities in algae (Constantopoulos, 1970) and thereby enhances lipid synthesis. The present findings regarding lipid production is in agreement with the above results since Miquel's medium is lacking in the above trace elements.

The main goal of this work was to describe the lipid classes of *N. salina* and their composition in terms of esterified fatty acids when grown in different standard microalgal culture media. Since Walne's medium enriches polyunsaturated fatty acid content, cultures from this medium are suitable for optimised larval rearing in aquaculture. As *N. salina* is rich in neutral lipids, it can be used as a potential source of biofuel, which can become a promising industry in the future for which Chu#10 medium can be used. A detailed understanding of biochemical parameters and fatty acid expression patterns in different algal species can help to estimate their dietary potential and can open up possibilities for the manipulation of culture conditions.

Acknowledgments

The authors are thankful to the Department of Marine Biology, Microbiology and Biochemistry, School

of Marine Sciences for providing the necessary facilities and the first author thankfully acknowledges Cochin University of Science and Technology for the financial support (University Junior Research Fellowship).

References

- Ahmad, A. T. 1991. Optimum feeding rate of the rotifer *Brachionus plicatilis* on the marine alga *Nannochloropsis* sp. *J. World Aquac. Soc.*, 22: 230-234. https://doi.org/10.1111/j.1749-7345.1991.tb00739.x.
- Alicia, C., Gemma, V., Rosalia, R., Gonzalo, L. P. and Cleis, S. 2015. Synthesis of fatty acids methyl esters (FAMEs) from Nannochloropsis gaditana microalga using heterogeneous acid catalysts. Biochem. Eng. J., 97: 119-124.
- Andersen, R. A. 2005. Algal culturing techniques. Elsevier Academic Press, USA, p. 65-81.
- Aswathy, K., Anandan, R. and Aneykutty, J. 2020. Culture medium and growth phase modulate the fatty acid composition of the diatom *Nitzschia palea* (Kutzing) W. Smith - Potential source for live feed and biodiesel. *Fishery Technol.*, 57: 28-35.
- Atalah, E., Cruz, C. M. H., Izquierdo, M. S., Rosenlund, G., Caballero, M. J., Valencia, A. and Robaina, L. 2007. Two microalgae *Crypthecodinium cohnii* and *Phaeodactylum* tricornutum as an alternative source of essential fatty acids in starter feeds for seabream (*Sparus aurata*). Aquaculture, 270(1-4): 178-185.
- Barsanti, L. and Gualtieri, P. 2006. *Algae: Anatomy, biochemistry and biotechnology*. CRC Press, Taylor and Francis, Boca Raton, Florida, USA, p. 209-249.
- Becker, E. W. 1994. *Microalgae-biotechnology and microbiology*. Cambridge University Press, Cambridge, UK, 293 pp.
- Bentley, C. D., Carroll, P. M., Watanabe, W. O. and Riedel, A. M. 2008. Intensive rotifer production in a pilot-scale continuous culture recirculating system using nonviable microalgae and an ammonia neutralizer. *J. World Aquac. Soc.*, 39: 625-635. https://doi.org/10.1111/j.1749-7345.2008.00201.x.
- Bligh, E. G. and Dyer, W. J. 1959. A rapid method for total lipid extraction and purification. *Can. J. Biochem. Physiol.*, 37: 911-917. doi: 10.1139/o59-099.
- Bold, H. C. 1942. The cultivation of algae. Bot. Rev., 8: 90-96.
- Bondioli, P., Della Bella, L., Rivolta, G., Chini-Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D. and Tredici, M. R. 2012. Oil production by the marine microalgae *Nannochloropsis* sp. F&M-M24 and *Tetraselmis suecica* F&M-M33. *Bioresour. Technol.*, 114: 567-572. doi: 10.1016/j.biortech.2012.02.123.
- Camacho-Rodriguez, J., Gonzalez-Cespedes, A. M., Ceron-Garcia, M. C., Fernandez-Sevilla, J. M., Acien-Fernandez, F. G. and Molina-Grima, E. 2014. A quantitative study of eicosapentaenoic acid (EPA) production by *Nannochloropsis gaditana* for aquaculture as a function of dilution rate, temperature and average irradiance.

- *Appl. Microbiol. Biotechnol.*, 98(6): 2429-2440. https://doi.org/ 10.1007/s00253-013-5413-9.
- Canizares, R. O., Molina, G. and Dominguez, A. R. 1994. Chemical composition of two marine microalgae used as feed in mariculture. Cryptogamie Algologie, 15: 121-133 (In Spanish).
- Carrero, A., Vicente, G., Rodriguez, R., Linares, M. and del Peso, G. L. 2011. Hierarchical zeolites as catalysts for biodiesel production from *Nannochloropsis* microalga oil. *Cat. Tod.*, 167: 148-153. doi:10.1016/j.cattod.2010.11.058.
- Chaturvedi, R. and Fujita, Y. 2006. Isolation of enhanced eicosapentaenoic acid producing mutants of *Nannochloropsis oculata* ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterisation at mRNA transcript level. *Phycol. Res.*, 54: 208-219. https://doi.org/10.1111/j.1440-1835.2006.00428.x.
- Chen, C. Y., Huang, H. C., Lee, W. L. and Chang, J. S. 2013. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga *Nannochloropsis oceanica* CY2. *Bioresour. Technol.*, 147: 160-167.
- Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H. and Lin, C. S. 2009. Lipid accumulation and CO₂ utilisation of *Nannochloropsis oculata* in response to CO₂ aeration. *Bioresour. Technol.*, 100(2): 833-838.
- Chu, S. P. 1942. The influence of the mineral composition of the medium on the growth of planktonic algae. *J. Ecol.*, 30: 284-325.
- Constantopoulos, G. 1970. Lipid metabolism of manganese deficient algae I. Effect of manganese deficiency on the greening and the lipid composition of *Euglena gracilis* Z. *Plant Physiol.*, 45(1): 76-80. doi: 10.1104/pp.45.1.76.
- Estevez, M. S., Malanga, G. and Puntarulo, S. 2001. Iron dependent oxidative stress in *Chlorella vulgaris*. *Plant Sci.*, 161(1): 9-17.
- Ganuza, E., Benitez-Santana, T., Atalah, E., Vega-Orellana, O., Ganga, R. and Izquierdo, M. S. 2008. *Crypthecodinium cohnii* and *Schizochytrium* sp. as potential substitutes to 23 fisheries-derived oils from seabream (*Sparus aurata*) microdiets. *Aquaculture*, 277(1-2): 109-116.
- Guillard, R. L. 1975. Culture of phytoplankton for feeding marine invertibrates. In: Smith, W. L. and Chanley, M. H. (Eds.), *Culture of marine invertibrate animals*. Plenum Publishing, New York, USA, p.19-60.
- Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. and Anbazhagan, C. 2011. Microalgae: A sustainable feed source for aquaculture. *World J. Microbiol. Biotechnol.*, 27(8): 1737-1746.
- Hibberd, D. J. 1981. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xantophyceae). *Bot. J. Linn. Soc.*, 82: 93-99.

- Hirayama, K., Takagi, K. and Kimura, H. 1979. Nutritional effect of eight species of marine phytoplankton on population growth of the rotifer, *Brachionus plicatilis*. *Bull. Jpn. Soc. Sci. Fish.*, 45: 11-16.
- Hoff, F. H. and Snell, T. W. 1987. *Plankton culture manual*, 6th edn. Florida Aqua Farms, Florida, USA, p. 8-64.
- Hoffmann, M., Marxen, K., Schulz, R. and Vanselow, K. H. 2010. TFA and EPA productivities of *Nannochloropsis salina* influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. *Mar. Drugs*, 8(9): 2526-2545. https://doi.org/10.3390/md8092526.
- Hu, Q. 2008. Environmental effects on cell composition. In: Richmond, A. (Eds.), Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, UK, p. 83-94.
- Ilavarasi, A., Mubarakali, D., Praveenkumar, R., Baldev, E. and Thajuddin, N. 2011. Optimisation of various growth media to freshwater microalgae for biomass production. *Biotechnology (Faisalabad)*, 10(6): 540-545. ISSN1682-296X/DOI:10.3923/biotech.2011.540.545.
- Kaladharan, P., Gopinathan, C. P. and Sridhar, N. 1999. Basic biochemical constituents in the laboratory cultures of six species of microalgae. In: Mohan Joseph, M., Menon, N. R. and. Unnikrishnan Nair, U. R. (Eds), *Proceedings of the* Fourth Indian Fisheries Forum, 24-28 November 1996. Asian Fisheries Society, Indian Branch, Mangalore, Karnataka, India, p. 311-312.
- Koven, W. M., Tandler, A., Kissil, G. W., Sklan, D., Friezlander, O. and Harel, M. 1990. The effect of dietary (n-3) polyunsaturated fatty acids on growth, survival and swim bladder development in *Sparus aurata* larvae. *Aquaculture*, 91: 131-141. DOI: 10.1016/0044-8486(90)90182-m.
- Krienitz, L. and Wirth, M. 2006. The high content of polyunsaturated fatty acids in *Nannochloropsis limnetica* (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. *Limnologica*, 36(3): 204-210. https://doi.org/10.1016/j. limno.2006.05.002.
- Lam, M. K. and Lee, K. T. 2012. Potential of using organic fertiliser to cultivate *Chlorella vulgaris* for biodiesel production. *Appl. Energy*, 94: 303-308. https://doi.org/10.1016/j.apenergy.2012.01.075.
- Li, M., Hu, C. and Zhu, Q. 2006. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga *Pavlova viridis* (Prymnesiophyceae). *Chemosphere*, 62(4): 565-572. DOI: 10.1016/j.chemosphere.2005.06.029.
- Li, Y., Fei, X. and Deng, X. 2012. Novel molecular insights into nitrogen starvation induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae *Micractinium pusillum*. *Biomass Bioenergy*, 42: 199-211. DOI:10.1016/j.biombioe.2012.03.010.

- Lidiya, V. S. and Joseph, A. 2018. Culture media optimization of marine microalga *Tetraselmis gracilis* Kylin (Butcher, 1959). *Indian J. Sci. Res.*, 19(2): 83-86.
- Lincymol, K. P., Ittoop, G., Lakshmidevi, P. and Joseph, A. 2012. Modulation in the nutritional quality of microalgae Chaetoceros calcitrans in different culture media. Fishery Technol., 49: 120-124.
- Liu, Z. Y., Wang, G. C. and Zhou, B. C. 2008. Effect of iron on growth and lipid accumulation in *Chlorella vulgaris*. *Bioresour: Technol.*, 99(11): 4717-4722. https://doi. org/10.1016/j.biortech.2007.09.073.
- Martinez-Fernandez, E., Acosta-Salmon, H. and Southgate, P. C. 2006. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (*Pinctada margaritifera*, L.) larvae. *Aquaculture*, 257: 491-503.
- Meng, Y., Jiang, J., Wang, H., Cao, X., Xue, S., Yang, Q. and Wang, W. 2015. The characteristics of TAG and EPA accumulation in *Nannochloropsis oceanica* IMET1 under different nitrogen supply regimes. *Bioresour. Technol.*, 179: 483-489. doi: 10.1016/j.biortech.2014.12.012.
- Metcalf, L. D., Schimitz, A. A. and Petha, J. R. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. *Anal. Chem.*, 38: 514-515. https://doi.org/10.1021/ac60235a044.
- Mitra, M., Patidar, S. K., George, B., Shaha, F. and Mishra, S. 2015. A euryhaline *Nannochloropsis gaditana* with potential for nutraceutical (EPA) and biodiesel production. *Algal Research-Biomass Biofuels and Bioproducts*, 8: 161-167.
- Miquel, P. 1892. Artificial culture of diatoms. C. R. Academic Science, Paris, France, 94: 1-780 (In Spanish).
- Molino, A., Martino, M., Larocca, V., Di Sanzo, G., Spagnoletta, A., Marino, T. and Musmarra, D. 2019. Eicosapentaenoic acid extraction from *Nannochloropsis gaditana* using carbon dioxide at supercritical conditions. *Mar. Drugs*, 17(2): 132. https://doi.org/10.3390/md17020132.
- Naseera, K., Ittoop, G., Anisha, K. A., Devi, P. L. and Aneykutty, J. 2013. Biochemical variations of microalga *Isochrysis galbana* cultured in different culture media. *J. Aquac.*, 21: 1-8.
- Neethu, A. and Dhandapani, R. 2016. Optimisation study of *Chlorella vulgaris* for biomass, lipid and protein. *Indian J. Appl. Microbiol.*, 19: 48-57.
- Olofsson, M., Lamela, T., Nilsson, E., Berge, J. P., del Pino, V., Uronen, P. and Legrand, C. 2012. Seasonal variation of lipids and fatty acids of the microalgae *Nannochloropsis oculata* grown in outdoor large-scale photobioreactors. *Energies*, 5: 1577-1592. https://doi.org/10.3390/en5051577.
- Omar, H. 2002. Bioremoval of zinc ions by *Scenedesmus obliquus* and *Scenedesmus quadricauda* and its effect on growth and metabolism. *Int. Biodeter. Biodegr.*, 50(2): 95-100. DOI:10.1016/S0964-8305(02)00048-3.
- Otero, A., Garcia, D. and Fabregas, J. 2006. Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. *J. Appl. Phycol.*, 9: 23-36.

- Pavlo, B., Debora, C. K., Natalie, B., Laila, K. N., Celine, C., Steven, C., Chunyang, S., Yuting, T., Michael, J. B. and Edward, J. B. 2016. Effects of inoculums size, light intensity and dose of anaerobic digestion centrate on growth and productivity of *Chlorella* and *Scenedesmus* microalgae and their poly-culture in primary and secondary waste water. *Algal Res.*, 19: 278-290. https://doi.org/10.1016/j.algal.2016.09.010.
- Praba. T., Ajan. C., Citarasu. T., Selvaraj, T. Albin, D., Gopal, S., Michael, P. and Babu, M. 2016. Effect of different culture media for the Growth and oil yield in selected marine microalgae. J. Aquac. Trop., 31(3-4): 165-177.
- Prathima, D. M., Venkata, S. G. and Venkata, M. S. 2012. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation. *Renew. Energy*, 43: 276-283.
- Piorreck, M. and Pohl, P. 1984. Formation of biomass, total protein, chlorophylls, lipids, and fatty acids in green and blue-green algae during one growth phase. *Phytochemistry*, 23: 217-233. https://doi.org/10.1016/S0031-9422(00)80305-2.
- Raven, J. A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. *New Phytol.*, 109: 279-287. https://doi.org/10.1111/j.1469-8137.1988.tb04196.x.
- Rivero-Rodriguez, S., Beaumont, A. R. and Maria, C. L. 2007. The effect of microalgal diets on growth, biochemical composition and fatty acid profile of *Crassostrea corteziensis* (Hertlein) juveniles. *Aquaculture*, 263: 199-210. https://doi.org/10.1016/j.aquaculture.2006.09.038.
- Rodolfi, L., Zittelli, G. C., Barsanti, L., Rosati, G. and Tredici, M. R. 2003. Growth medium recycling in *Nannochloropsis* sp. mass cultivation. *Biomol. Eng.*, 20: 243-248. doi: 10.1016/s1389-0344(03)00063-7.
- Roncarati, A., Meluzzi, A., Acciarri, S., Tallarico, N. and Melotti, P. 2004. Fatty acid composition of different microalgae strains (*Nannochloropsis* sp., *Nannochloropsis* oculata (Droop) Hibberd, *Nannochloris atomus* Butcher and *Isochrysis* sp.) according to the culture phase and the carbon dioxide concentration. *J. World Aquac. Soc.*, 35: 401-411. DOI:10.1111/j.1749-7345.2004.tb00104.x.
- Seto, A., Kumasaka, K., Hosaka, M., Kojima, E., Kasbiwakura, M. and Kato, T. 1992. Production of eicosapentaenoic acid by a marine microalga and its commercial utilisation for aquaculture. In: Kyle, D. J. and Ratledge, C. (Eds.), *Industrial applications of single cell oils*. American Oil Chemists' Society, Champaign, Illinois, USA, p. 219-234.
- Sukenik, A., Zamora, O. and Carmeli, Y. 1993. Biochemical quality of marine unicellular algae with emphasis on lipid composition II, *Nannochloropsis* sp. *Aquaculture*, 117: 313-326.

Rajani S. Ganga et al. 90

Sunda, W. G. and Huntsman, S. A. 1998. Interactions among Cu₂C, Zn₂C and Mn₂C in controlling cellular Mn, Zn and growth rate in the coastal alga *Chlamydomonas*. *Limnol. Oceanogr.*, 43: 1055-1064. https://doi.org/10.4319/lo. 1998.43.6.1055.

- Sunda, W. G., Price, N. M. and Morel, F. M. 2005. Trace metal ion buffers and their use in culture studies. In: Andersen, R. A. (Ed.), Algal culture techniques. Academic Press, Burlington, Massachusetts, USA, p. 35-63.
- Turpin, D. H. 1986. Growth rate dependent optimum ratios in *Selenastrum minutum* implication for competition co-existence and stability in phytoplankton community. *J. Phycol.*, 22: 94-102. DOI: 10.1111/j.1529-8817.1986. tb02521.x.
- Velasquez, S. F., Chan, M. A., Abisado, R. G., Traifalgar, R. F. M., Tayamen, M. M., Maliwat, G. C. F. and Ragaza, J. A. 2016. Dietary Spirulina (*Arthrospira platensis*) replacement enhances performance of juvenile Nile tilapia (*Oreochromis niloticus*). *J. Appl. Phycol.*, 28(2): 1023-1030. DOI: 10.1007/s10811-015-0661-y.
- Volkman, J. K., Brown, M. R., Dunston, G. A. and Jeffre, S. W. 1993. The biochemical composition of marine microalgae from the class Eustigmatophyceae. *J. Phycol.*, 29: 69-78.

- Walne, P. R. 1974. The culture of marine bivalve larvae. In: Wilbur, K. M and Yonge, C. N. (Eds.), *Physiology of mollusca*, Academic Press, New York, USA, p. 197-210.
- Watanabe, T. 1979. Nutritional quality of living feeds used in seed production of fish. *Proceedings of the 7th Japan-Soviet Joint Symposium on Aquaculture*, September 1978, Tokyo, Japan, p. 49-66.
- Watanabe, T., Kitajima, C. and Fuji, S. 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: A review. *Aquaculture*, 34: 115-143.
- Xu, F., Cai, Z., Cong, W. and Ouyang, F. 2004. Growth and fatty acid composition of *Nannochloropsis* sp. grown mixotrophically in fed-batch culture. *Biotechnol. Lett.*, 26: 1319-1322. https://doi.org/10.1023/B:BILE.0000045626.38354.1a.
- Yamasaki, S., Tanabe, K. and Hiram, H. 1989. The efficiency of chilled and frozen *Nannochloropsis* sp. (marine *Chlorella*) for culture of rotifer. *Mem. Fac. Fish. Kagoshima Univ.*, 38: 77-82.
- Zou, N., Zhang, C., Cohen, Z. and Richmond, A. 2000. Production of cell mass and eicosapentaenoic acid (EPA) in ultra-high cell density cultures of *Nannochloropsis* sp. (Eustigmatophyceae). *Eur. J. Phycol.*, 35(2): 127-133. https://doi.org/10.1080/09670260010001735711.

Date of Receipt : 28.8.2020 Date of Acceptance : 08.07.2022