Note

Identification of Vibrio parahaemolyticus from farmed penaeid shrimp, Penaeus vannamei (Boone, 1931) by multiplex PCR targeting toxR and tlh genes

R. Ananda Raja^{1,5*}, R. Sridhar¹, C. Balachandran¹, A. Palanisammi², S. Ramesh³, K. Nagarajan¹ and S. Paulpandi⁴

Department of Veterinary Pathology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) Chennai - 600 007, Tamil Nadu, India

²Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) Chennai - 600 007, Tamil Nadu, India

³Laboratory Animal Medicine, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) Chennai - 600 051, Tamil Nadu, India

4Krishi Vigyan Kendra, Veterinary College and Research Institute Campus, Mohanur Road, Namakkal - 637 001, Tamil Nadu, India ⁵ICAR-Central Institute of Brackishwater Aquaculture (ICAR-CIBA), Chennai - 600 028, Tamil Nadu, India

Abstract

Targeted surveillance was conducted in 37 Penaeus vannamei farms in Tamil Nadu, India to find out the prevalence of Vibrio parahaemolyticus (Vp) infections. Special emphasis was given to screen the isolates for acute hepatopancreatic necrosis disease (AHPND). Bacteria were isolated from haemolymph, stomach and hepatopancreas. Initial identifications were carried out using the morphological, physiological and biochemical characteristics. Vp isolates were further confirmed by a newly developed multiplex PCR targeting Vp specific toxR and tlh genes. PCR screening was carried out for AHPND causing AP1, AP2, AP3 (pirAvp, Photorhabdus insect-related binary toxin gene) and AP4 (pirAvp and pirBvp) genes. In addition, PCR was also performed for human pathogenic tdh and trh genes. The PCR results revealed that there were 26 (35.14%) isolates affirmative for Vp specific toxR and tlh genes and negative for AP1, AP2, AP3 and AP4 genes indicating that there was no AHPND causing Vp strain among the isolates. The isolates were also negative for anthropozoonotic tdh and trh genes. The multiplex PCR developed targeting Vp specific toxR and tlh genes would be a useful technique for easy identification of Vp strains from shrimp farms.

*Correspondence e-mail: anandarajars@gmail.com

Keywords:

Acute hepatopancreatic necrosis disease (AHPND). Early mortality syndrome (EMS), Multiplex PCR, Vibriosis, Vibrio parahaemolyticus (Vp)

> Received: 08.04.2021 Accepted: 12.12.2023

Farmed penaeid shrimps are persistently exposed to different kinds of both beneficial and pathogenic microbiota in the cultured pond environment. Though most of them are harmless, prebiotic and probiotic in nature, a few of them could lead to disease manifestation under certain environmental situations. Among them, the bacteria from the family Vibrionaceae are globally recorded as the most significant for causing mass mortality in farmed shrimp (Ananda Raja et al., 2017a, b, c). An emerging disease known as early mortality syndrome (EMS) in shrimp (Penaeus vannamei, Penaeus monodon and Penaeus chinensis), prawn (Macrobrachium rosenbergii) and Artemia franciscana renamed

as acute hepatopancreatic necrosis disease [AHPND] (FAO, 2013) has been reported to cause unusually high mortality and morbidity leading to a significant loss of one billion USD in Asia-Pacific region (FAO, 2013; Tran et al., 2013). Initially, the causative agent lingered perplexing but later it has been recognised and recorded to be caused by Vibrio parahaemolyticus (Vp), V. punensis, V. harveyi, V. owensii, V. campbellii and Shewanella sp. that contains pVA1 plasmid (63-70 kb) encoding the binary PirAVP and PirBVP toxins (Kumar et al., 2021). Because of outbreaks of AHPND, there are many countries neither imported live shrimp nor did any forms of shrimp products from AHPND affected countries (FAO, 2013). Considering the impact on the global market, the current study was undertaken to isolate and identify *Vp* from *P. vannamei* farms in Tamil Nadu, India with special reference to AHPND. Multiplex PCR was developed targeting *Vp* specific *toxR* and *tlh* genes to identify the prevalence of *Vp* among the cultured *P. vannamei*.

Active surveillance against vibriosis was carried out in a total of 37 shrimp farms from the coastal districts, Kancheepuram and Thiruvallur of Tamil Nadu State, India between August and February. Bacteria were isolated from infected haemolymph (moribund and weak animals) based on the dominant five colonies observed on thiosulphate citrate bile salts sucrose (TCBS) plates (Zhou et al., 2012). The stomach and hepatopancreas from representative shrimp ponds with mass mortality were enriched in tryptone soya broth (TSB) for 12 h and inoculated on TCBS plates for next level of bacterial characterisations (Antonio et al., 2015). Thus, 74 well-separated colonies from farms showed mass mortality were selected and identified based on the species-specific characteristics (Alsina and Blanch, 1994; Ananda Raja et al., 2017a, c). Vibriosis was considered as systemic when similar species of isolates were identified from both haemolymph and gut (Ananda Raja et al., 2017a, b,c, Ananda Raja et al., 2021). All the bacterial isolates were preserved at -20 and -80°C in duplicates in TSB with 25% glycerol (v/v).

The glycerol preserved isolates were revived in TSB and genomic DNAs of all isolates were individually mined using the standard protocol of

phenol-chloroform precipitation (Hossain et al., 2013; Ananda Raja et al., 2017b). DNA samples were quantified using Nanodrop and tested for integrity by agarose gel (1%) electrophoresis. The samples were maintained at -80°C for future analysis. Polymerase chain reaction (PCR) was accomplished in a gradient thermal cycler (Eppendorf, HiMedia) for specific genes such as toxR, tdh, tlh, trh, AP1, AP2, AP3 (pirAvp) and AP4 (pirAvp and pirBvp) genes with PCR mixture as mentioned in Table 1. The respective gene primers, expected amplicons and references were as shown in Table 2 (Ananda Raia et al., 2017b). PCR was performed with slight modification in the protocol from the cited references wherever necessary (Ananda Raja et al., 2017b). Multiplex PCR was developed targeting the Vp specific toxR and tlh genes (Table 3). The sensitivity of PCR was checked by using serially diluted DNA samples. The PCR amplified products were examined by agarose gel electrophoresis and eluted using GenElute™ Gel Extraction Kit (Sigma) as per the manufacturer's instructions. Elutes were sequenced by a method called di-deoxy chain termination. The obtained nucleotide sequence was assembled with the help of Auto assembler (ABI Prism, USA) software. To identify the isolate with the maximum percentage of homology. BLAST analysis was carried out. The bacterial sequences were published and available in the National Center for Biotechnology Information (NCBI).

Table 1. PCR mixture for toxR, tdh, tlh, trh, AP1, AP2, AP3 ($pirA^{vp}$) and AP4 ($pirA^{vp}$ and $pirB^{vp}$) genes

Components	Multiplex for <i>toxR</i> and <i>tlh</i> (μl)	Multiplex for <i>tdh</i> and <i>trh</i> (μΙ)	AP1 (μl)	AP2 (µI)	ΑΡ3 (μΙ)	AP4-I step (μΙ)	AP4-II step nested (μΙ)
Buffer without MgCl ₂ (10x)	2.5	2.5	2.5	2.5	2.5	2.5	2.5
MgCl ₂ (1.5 mM)	1.5	1.5	1.5	1.5	0.7 (50 mM)	0.7 (50 mM)	1.5 (50 mM)
dNTPs (200 μM)	2.0	2.0	2.0	2.0	0.4 (10 mM)	0.5 (10 mM)	0.5 (10 mM)
Taq polymerase (5 U μl ⁻¹)	0.5	0.5	0.5	0.5	0.3	0.3	0.3
Forward primer (10 pmol)	1.0 + 1.0	1.0 + 1.0	1.0	1.0	0.5 (10 µM)	0.5 (10 μM)	0.375 (10 μM)
Reverse primer (10 pmol)	1.0 + 1.0	1.0 + 1.0	1.0	1.0	0.5 (10 µM)	0.5 (10 μM)	0.375 (10 μM)
Bacterial DNA	1.0 (1 ng)	1.0 (1 ng)	1.0 (1 ng)	1.0 (1 ng)	2.0 (100 ng)	2.0 (100 ng)	2.0 (AP4-I)
Total volume with nuclease f distilled water	ree 15.0	15.0	15.0	15.0	25.0	25.0	25.0

Table 2. PCR gene specific primers for toxR, tdh, tlh, trh, AP1, AP2, AP3 (pirA^{vp}) and AP4 (pirA^{vp} and pirB^{vp}) genes

Primers	Target genes	Product size (bp)	References
toxRF 5' GTCTTCTGACGCAATCGTTG 3'	toxR	368	Kim et al. (1999)
toxRR 5' ATACGAGTGGTTGCTGTCATG 3'			
tlhF 5' ACTCAACACAAGAAGAGATCGACAA 3'	tlh	208	Nordstrom et al. (2007)
tlhR 5' GATGAGCGGTTGATGTCCAA 3'			
tdhF 5' GTAAAGGTCTCTGACTTTTGGAC 3'	tdh	269	Bej et al. (1999)
tdhR 5' TGGAATAGAACCTTCATCTTCACC 3'			
trhF 5' TTGGCTTCGATATTTTCAGTATCT 3'	trh	500	
trhR 5' CATAACAAACATATGCCCATTTCCG 3'			
AP1F 5' CCTTGGGTGTGCTTAGAGGATG 3'	AP1	700	Flegel and Lo (2014)
AP1R 5' GCAAACTATCGCGCAGAACACC 3'			
AP2F 5' TCACCCGAATGCTCGCTTGTGG 3'	AP2	700	
AP2R 5' CGTCGCTACTGTCTAGCTGAAG 3'			
AP3F 5' ATGAGTAACAATATAAAACATGAAAC 3'	AP3 (pirA ^{vp})	333	Dangtip et al. (2015)
AP3R 5' GTGGTAATAGATTGTACAGAA 3'			
AP4F1 5' ATGAGTAACAATATAAAACATGAAAC 3'	AP4 (pir A^{vp} and pir B^{vp})	1269	
AP4R1 5' ACGATTTCGACGTTCCCCAA 3'			
AP4F2 5' TTGAGAATACGGGACGTGGG 3'		230	
AP4R2 5' GTTAGTCATGTGAGCACCTTC 3'			

Table 3. PCR condition for toxR, tdh, tlh, trh, AP1, AP2, AP3 (pirA^{vp}) and AP4 (pirA^{vp} and pirB^{vp}) genes

Conditions	Multiplex for toxR and tlh	Multiplex for tdh and trh	AP1 & AP2	AP3	AP4-step 1	AP4-step 2 (nested)
Initial denaturation	94°C for 5 m	94°C for 3 m	94°C for 5 m	94°C for 5 m	94°C for 2 m	94°C for 2 m
Denaturation	94°C for 30 s	94°C for 60 s	94°C for 30 s	94°C for 30 s	94°C for 30 s	94°C for 20 s
Annealing	58.4°C for 30 s	58°C for 60 s	60°C for 30 s	53°C for 30 s	55°C for 30 s	55°C for 20 s
Extension	72°C for 60 s	72°C for 60 s	72°C for 60 s	72°C for 40 s	72°C for 90 s	72°C for 20 s
No. of cycles			30			25
Final extension	72°C for 5 m	72°C for 5 m	72°C for 10 m	72°C for 5 m	72°C for 2 m	72°C for 2 m

The bacterial isolates were tested for MIC using sterile Mueller Hinton agar (MHA) plates with a depth of about 4 mm as per Bauer-Kirby method (Bauer et al., 1966). The standardised bacterial suspension (0.13 OD at 625 nm) was swabbed on to MHA plates with the help of sterile non-toxic cotton swabs. The inoculated MHA plates were then left to dry for 10 min before placing the HiComb strip (Ananda Raja et al., 2017a). The strips containing the following 25 antibacterial agents such as amikacin (AK), gentamicin (GEN), kanamycin (KM), neomycin (NM), streptomycin (STM), ampicillin (AMP), amoxycillin (AMX), amoxyclav (AMC), benzyl penicillin (P), cephalexin (CEX), cephotaxime (CTX), ciprofloxacin (CIPX), nalidixic acid (NA), norfloxacin (NX), ofloxacin (OFLX), vancomycin (VAN), chloramphenicol (CAP), erythromycin (ERY), mupirocin (MU), nitrofurantoin (NIT), rifampicin (RIF), sulphafurazole (SIX), trimethoprim (TMP), co-trimoxazole (COT) and tetracycline (TCN) were positioned on the individual plates and incubated at 30°C and examined after 18 h. The diameter of the zone of inhibition was calculated and equated with zone diameter interpretative chart (HiMedia, India) as per Clinical and Laboratory Standard Institute (CLSI) provided by the manufacturer.

Vp isolates were predominant (35.14%) among P. vannamei samples, followed by major species such as V. harveyi (21.62%), V. anguillarum (16.22%) and V. campbellii (10.81%). Other species such as V. mimicus (8.11%), V. alginolyticus (5.41%) and Pseudomonas aeruginosa (2.7%) were also observed at lesser percentage. These results were in agreement with the findings of Sudha et al. (2014) and Alsina and Blanch, (1994). In contrarily, Rosalind George (2002) identified V. alginolyticus (41.73%) as the most abundant species found in P. monodon culture pond water. Vp isolates were tested sensitive to heating. The numbers of bacterial cells were found to be at non-detectable levels when incubated at 55°C for 5 min. In addition, Vp did not grow in peptone water

at 4°C for 18 h and not survived at -18 to -20°C after 30 days of incubation (Zorriehzahra and Banaederakhshan, 2015). Hence, the transmission of V_p could be prevented either by heating or freezing the shrimp products to the desired temperature.

Out of 74 isolates, twenty-six (35.14%) isolates were positive for *Vp* specific *toxR* and *tlh* genes in the multiplex PCR (Fig. 1) [Kim *et al.*, 1999; Nordstrom *et al.*, 2007]. All the isolates were negative by the PCR screening for the presence of AHPND causing genes among the collected farmed shrimp samples (Flegel and Lo, 2014; Dangtip *et al.*, 2015) as well as different gradient PCR procedures (Ananda Raja *et al.*, 2017b). All the seventy-four isolates were also recognised to be negative for *trh* and *tdh* genes (Bej *et al.*, 1999; Ananda Raja *et al.*, 2017b).

It has been challenging to differentiate virulent Vp bacterial strains from avirulent strains with the help of growth phenotypes i.e., traditional culture methods (Takahashi et al., 2005). So, PCR assays were becoming increasingly popular for detection of pathogenic bacterial strains targeting virulent genes (Hossain et al., 2012). Compared to the conventional microbiological culture methods, this multiplex PCR was found to be guick and steadfast for detection of pathogenic Vp in shrimp. Silvester et al. (2015) confirmed 75 isolates as Vp using a PCR assay targeting the species-specific tlh gene and found that the prevalence of Vp was 71.6% in the Cochin Estuary and 53.3% in the shrimp farms. Letchumanan et al. (2015) indicated that a total of 57.8 and 44.4% isolates were positive for VP with toxR-based PCR assay. Vp prevalence in the present study was lower (35.14%) when compared to that of the earlier reports (Letchumanan et al., 2015). The percentage of sequence homologies of rRNA (Kita-Tsukamoto et al., 1993) and gyrB (Venkateswaran et al., 1998) was reported to be more than 99 and 86.8% among Vp and V. alginolyticus, correspondingly. Hence, toxR was recognised as a gene identical to Vp. The toxR was also renowned for the regulation of several genes in V. cholerae (DiRita, 1992). However,

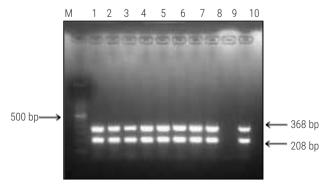


Fig. 1. $V_p - toxR$ and tlh genes – Agarose gel showing the multiplex PCR product specific to toxR and tlh genes Lane M – 100 bp Marker; Lane 1 to 8 – Positive templates; Lane 9 – Negative control; Lane 10 – Positive control

the level of similarity of the toxR between *Vp* and *V. cholera* was only 52%, that was much lesser than that of the rRNA (91 to 92% identity) (Kita-Tsukamoto *et al.*, 1993; Kim *et al.*, 1999). The *toxR* gene was well conserved among *Vp* and therefore, a *toxR*-targeted PCR protocol was customised for the specific detection of *Vp* (Kim *et al.*, 1999). Yang *et al.* (2014) reported that the *Vp* strains causing AHPND were invariably having the transcriptional activator *toxR*. Though the present study revealed the toxR positive *Vp* strains, they were persistently negative to AHPND causing AP1, AP2, AP3 (pirAvp) and AP4 (*pirAvp* and *pirBvp*) genes (Kumar *et al.*, 2014; Ananda Raja *et al.*, 2017b; Das *et al.*, 2017).

Hossain et al. (2013) established a multiplex PCR for discovery of Vp based on groEL, tdh and trh genes with the sensitivity of 200 pg DNA. Similar level of sensitivity was detected in the present study in distinguishing the species-specific marker tlh and virulence marker toxR genes. The current study discovered that there was not even a single isolate found positive for anthropozoonetic tdh and trh genes among all the 74 isolates. Sahilah et al. (2014) characterised 44 genomic DNA of VP for the occurrence of toxR, tdh and trh genes and found 37 isolates affirmative towards toxR gene. No isolate was detected positive to tdh and trh genes as found in the present study. In disagreement to the present findings, Letchumanan et al. (2015) observed that the trh gene was found among 6.5% toxR-positive isolates. However, no isolates were reported to be affirmative for tdh as observed in the present study. As per the reports from various investigators, possession of specific hemolysin genes (tdh, trh, or both) was imperative to cause gastroenteritis in human beings (Bej et al., 1999). Conversely, it was also reported that there was a small portion of clinical strains possessed neither of the pathogenic genes, tdh and trh (Banerjee et al., 2014). Hence, the diagnosis of gastroenteritis caused by Vp appears to be challenging. Though the present study revealed that all the isolates were negative for both tdh and trh genes, it was not ascertained that they were not pathogenic to human during the present study.

The sequences obtained for toxR forward (NCBI GenBank accession no. KT360934) and reverse (KT360936) exhibited 99 and 98% homology to Vp RIMD 2210633 chromosome 1, respectively. There was deletion of T at 29th, replacement of A with T at 85th, G with A at 232nd and A with G at 265th positions in forward sequence while there was deletion of T and A at 4th and 30th position and replacement of C with T at 67th, T with A at 190th, A with T at 259th and 292nd positions in reverse sequence, respectively. Both the forward (KT360935) and reverse (KT360937) sequences of tlh gene exhibited 96 and 99% homology to Vp RIMD 2210633 chromosome 2. There was deletion of A at 15th, 121st and 160th, replacement of A with C at 118th, C with T at 144th and A with T at 164th positions in forward sequence while there was replacement of T with G at 11th positions in reverse sequence, respectively. Natural deletion and induced mutation were possible in Vp as reported by Tinwongger et al. (2014) and Nithya Quintal et al. (2009), respectively. It needed further validation to find out the possibilities of deletion and mutation changing the isolate pathogenic to shrimp.

It was observed that all the VP isolates were susceptible to AK, GEN, KM, NM, STM, AMC, CEX, CTX, NA, OFLX, MU, SIX, TMP and COT, but resistant to AMP, AMX, P, CIPX, VAN, ERY, NIT and RIF. Antibiotics such as NX, CAP and TCN showed intermediate result against shrimp pathogenic VP isolate as shown in Table 4. The present study revealed that the VP isolates were resistant to AMP, AMX, P, CIPX, VAN, ERY, NIT and RIF. Tendencia and de la Pena (2001) described that the incidence of resistance to oxytetrtacycline (OTC) was highest (4.3%) followed by furazolidone [FZD] (1.6%), OXA (1%) and CAP (0.66%). Han et al. (2015)

evaluated the antibiotic resistance pattern in Vp strains associated with AHPND in penaeid shrimp and identified a high level of resistance to TCN (\geq 5 µg ml $^{-1}$). Luminous *Vibrio* species from shrimp hatcheries in Java Island, Indonesia were confirmed with multiple antibiotic resistances (MAR) to AMP, TCN, AMX, and STM (Tjahjadi *et al.*, 1994).

In agreement with the present findings, Rosalind George, (2002) found that none of the Vibrio isolates were sensitive to ERY, but most of the isolates were sensitive to TMP, TCN and NA. As found in the present study, many researchers reported that the V_a isolated from P. vannamei was resistant to β-lactam antibiotics (Sahilah et al., 2014; Sudha et al., 2014). Sahilah et al. (2014) found that the V_a isolates were not resistant to CIPX and VAN but V_a isolated in the present study was resistant to CIPX and VAN. Antibiotics were not used by the shrimp hatchery operators and shrimp farmers in India aligning with strict implementation of guidelines by the Government of India and awareness created by the Indian Council of Agricultural Research (ICAR) institutes, Marine Product Export and Development Agency (MPEDA), Coastal Aquaculture Authority (CAA), State and Central Government officials, National Centre for Sustainable Aguaculture (NaCSA) as well as Universities (Ananda Raja et al., 2012). Lai

Table 4.Minimum inhibitory concentration (MIC) of V_n isolates from shrimp

	,	· / P	'
Group	Antibiotics	MIC	Result
Aminoglycosides	AK	8 µg	S (≤16)
	GEN	0.25µg	S (≤4)
	KM	3 µg	S (≤16)
	NM	60 µg	NA
	STM	10 μg	NA
β-Lactam Antibiotics	AMP	128 µg	R (>32)
	AMX	>240 µg	R (>8)
	AMC	>240 µg	S (≤8/4)
	Р	>256 µg	R (>16)
Cephalosporins	CEX	0.001 µg	NA
	CTX	5 μg	S (≤8)
Fluoroquinolones	CIPX	5 μg	R (>4)
	NA	0.5 μg	S (≤16)
	NX	5 μg	I (5-16)
	OFLX	0.15 μg	S (≤2)
Glycopeptides	VAN	>240 µg	R (>32)
Macrolides	CAP	10 μg	I (9-32)
	ERY	>240 µg	R (>8)
Monoxycarbolic acid	MU	15 μg	NA
Nitrofurans	NIT	240 μg	R (>120)
Rifamycin group	RIF	30 µg	R (>4)
Sulphanomides	SIX	1 μg	NA
	TMP	5 μg	S (≤8)
	COT	4 μg	S (≤2/38)
Tetracyclines	TCN	5 μg	I (5-16)

*Amikacin (AK); Gentamicin (GEN); Kanamycin (KM); Neomycin (NM); Streptomycin (STM); Ampicillin (AMP); Amoxycillin (AMX); Amoxyclav (AMC); Benzyl penicillin (P); Cephalexin (CEX); Cephotaxime (CTX); Ciprofloxacin (CIPX); Nalidixic acid (NA); Norfloxacin (NX); Ofloxacin (OFLX); Vancomycin (VAN); Chloramphenicol (CAP); Erythromycin (ERY); Mupirocin (MU); Nitrofurantoin (NIT); Rifampicin (RIF); Sulphafurazole/Sulfisoxazole (SIX); Trimethoprim (TMP); Co-Trimoxazole (COT); Tetracycline (TCN); S-Susceptible; I-Intermediate; R-Resistant; NA-Not available, so considered as susceptible at that concentration. Reference values are shown in parenthesis.

et al. (2015) reported that antibiotics such as CAP and OFLX were universally effective against both virulent and non-virulent $V_{\rm s}$ strains, but resistance to AMP in agreement with the present findings. Teo et al. (2002) described that the natural occurrence of B-lactamases in V. harvevi strains might have caused resistance against β -lactam antibiotics. The same enzyme might also be available in present V_n strain since it belongs to the same genus. Letchumanan et al. (2015) reported high resistance of V_p isolates to AMP, AK, KM and CTX but the V_a isolate in the present study was susceptible to AK, KM and CTX but resistant to AMP. In contrast to the present findings, Ananda Raja et al. (2017a) reported that there was no unusual antibiotic resistance in V. mimicus isolated from diseased shrimp in Sunderban. The present study concluded that the prevalence of $V_{\rm a}$ in the *P. vannamei* farms was predominant but there was no AHPND causing V_{n} isolates among the samples collected. Continuous monitoring and screening are required to monitor AHPND in India in future. And also, the multiplex PCR developed targeting Vp specific toxR and tlh genes would be a very much useful to easily identify the shrimp pathogenic non-AHPND Vp strains from shrimp farms.

Acknowledgements

The authors thank the Director, ICAR-CIBA, Chennai for granting permission to carry out this work and Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) for funding this work.

References

- Alsina, M. and Blanch, A. R. 1994. A set of keys for biochemical identification of environmental *Vibrio* species. *J. Appl. Microbiol.*, 76: 79–85. https://doi.org/10.1111/j.1365-2672.1994.tb04419.x.
- Ananda Raja, R., Panigrahi, A. and Sujeet Kumar 2012. Epidemiological investigation of brackishwater culture system of West Bengal. J. Appl. Aquac., 24: 49-59. https://doi.org/10.1080/10454438.2012.652029.
- Ananda Raja, R., Panigrahi, A., De, D. and Sujeet Kumar. 2017a. Investigation on white spot disease outbreak in *Penaeus monodon* (Fabricius, 1798) in association with *Vibrio mimicus* infection in the Sunderbans, West Bengal, India. *Indian J. Fish.*, 64: 56-60. https://doi. org/ 10.21077/ijf.2017.64.1.54833-09.
- Ananda Raja, R., Sridhar, R., Balachandran, C., Palanisammi, A., Ramesh, S. and Nagarajan, K. 2017b. Pathogenicity profile of *Vibrio parahaemolyticus* in farmed Pacific white shrimp, *Penaeus vannamei. Fish Shellfish Immunol.*, 67: 368-381. https://doi.org/10.1016/j.fsi.2017.06.020.
- Ananda Raja, R., Sridhar, R., Balachandran, C., Palanisammi, A., Ramesh, S. and Nagarajan, K. 2017c. Prevalence of Vibrio spp. with special reference to Vibrio parahaemolyticus in farmed penaeid shrimp Penaeus vannamei (Boone, 1931) from selected districts of Tamil Nadu, India. Indian J. Fish., 64: 122-128. https://doi.org/10.21077/ijf.2017.64.3. 69011-18.
- Ananda Raja, R., Sridhar, R., Balachandran, C., Palanisammi, A., Ramesh, S. and Nagarajan, K. 2021. Susceptibility of farmed Pacific white shrimp, *Penaeus vannamei* to non-AHPND strain of *Vibrio parahaemolyticus*. *Indian J. Vet. Anim. Sci. Res.*, 50(6): 53-68.
- Antonio, N. L., Brock, J. A. and Bauman, H. 2015. Limited decomposition enhances PCR detection of AHPND *Vibrio* in shrimp. *GAA*, Nov-Dec, 66-67.

- Banerjee, S. K., Kearney, A. K., Nadon, C. A., Peterson, C. L., Tyler, K., Bakouche, L., Clark, C. G., Hoang, L., Gilmour, M. W. and Farber, J. M. 2014. Phenotypic and genotypic characterization of Canadian clinical isolates of Vibrio parahaemolyticus collected from 2000 to 2009. J. Clin. Microbiol., 52: 1081–1088. https://doi.org/10.1128/JCM.03047-13.
- Bauer, A. W., Kirby, W. M. M., Sherris, J. C. and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Pathol.*, 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493.
- Bej, A. K., Patterson, D. P., Brasher, C. W., Vickery, M. C. L., Jones, D. D. and Kaysner, C. A. 1999. Detection of total and hemolysin-producing *Vibrio* parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods, 36: 215–225. https://doi.org/10.1016/ s0167-7012(99)00037-8.
- Dangtip, S., Sirikharin, R., Sanguanrut, P., Thitamadee, S., Sriunyaluucksana, K., Taengchaiyaphum, S., Mavichak, R., Proespraiwong, P. and Flegel, T. W. 2015. AP4 method for two-tube nested PCR detection of AHPND isolates of *Vibrio parahaemolyticus*. *Aquac. Rep.*, 2: 158-162. https://doi.org/10.1016/j.aqrep.2015.10.002.
- Das, S., Ghoshal, T. K. and Biswas, G. 2017. Occurrence of white spot syndrome virus and *Vibrio parahaemolyticus* in brackishwater shrimp culture systems of Sundarban, West Bengal, India. *Indian J. Fish.*, 64(4): 65-70.https://doi.org/10.21077/ijf.2017.64.4.62657-09.
- DiRita, V. J. 1992. Co-ordinate expression of virulence genes by ToxR in *Vibrio cholerae*. *Mol. Microbiol.*, 6: 451–458. https://doi.org/10.1111/j.1365-2958.1992.tb01489.x.
- FAO 2013. Report of the FAO/MARD Technical Workshop on Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Syndrome (AHPNS) of Cultured Shrimp (under TCP/VIE/3304), Hanoi, Viet Nam. FAO Fisheries and Aquaculture Report No. 1053, Food and Agriculture Organisation of the United Nations, Rome, Italy, 54 p.
- Flegel, T. W. and Lo, C. F. 2014. Free release of primers for specific detection of bacterial isolates that cause acute hepatopancreatic necrosis disease (AHPND). Network of Aquaculture Centres in Asia and the Pacific, Bangkok, Thailand. http://www.enaca.org/modules/library/publication.php?publication_id=1128. (Accessed 14 February 2015).
- Han, J. E., Mohney, L. L., Tang, K. F. J., Pantoja, C. R. and Lightner, D. V. 2015. Plasmid mediated tetracycline resistance of *Vibrio parahaemolyticus* associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. *Aquac. Rep.*, 2: 17-21. http://dx.doi.org/10.1016/j.aqrep.2015.04.003.
- Hossain, M. T., Kim, E. Y., Kim, Y. R., Kim, D. G. and Kong, I. S. 2012. Application of groEL gene for the species-specific detection of *Vibrio parahaemolyticus* by PCR. *Lett. Appl. Microbiol.*, 54: 67-72. https://doi.org/10.1111/j.1472-765X.2011.03174.x.
- Hossain, M. Y., Kim, Y. O. and Kong, I. S. 2013. Multiplex PCR for the detection and differentiation of *Vibrio parahaemolyticus* strains using the groEL, tdh and trh genes. *Mol. Cell. Probes.*, 27: 171-175. http://dx.doi. org/10.1016/j.mcp.2013.04.001.
- Kim, Y, B., Okuda, J., Matsumoto, C., Takahashi, N., Hashimoto, S. and Nishibuchi, M. 1999. Identification of *Vibrio parahaemolyticus* strains at the species level by PCR targeted to the toxR gene. *J. Clin. Microbiol.*, 37: 1173–1177. https://doi.org/10.1128/JCM.37.4.1173-1177.1999.
- Kita-Tsukamoto, K., Oyaizu, H., Nanba, K. and Shimidu, U. 1993. Phylogenetic relationships of marine bacteria, mainly members of the family *Vibrionaceae*, determined on the basis of 16S rRNA sequences. *Int. J. Syst. Bacteriol.*, 43: 8–19. https://doi.org/10.1099/00207713-43-1-8.
- Kumar, B. K., Deekshit, V. K., Raj, J. R. M., Rai, P., Shivanagowda, B. M., Karunasagar, I. and Karunasagar, I. 2014. Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured *Litopenaeus* vannamei (Pacific white shrimp) in India. Aquaculture, 433: 247-251. http://dx.doi.org/10.1016/j.aquaculture.2014.06.016.

- Kumar, V., Roy, S., Behera, B. K., Bossier, P. and Das, B. K. 2021. Acute hepatopancreatic necrosis disease (AHPND): Virulence, pathogenesis and mitigation strategies in shrimp aquaculture. *Toxins*, 13(8): 524. https://doi.org/10.3390/toxins13080524.
- Lai, H-C., Ng, T. H., Ando, M., Lee, C-T., Chen, I-T., Chuang, J-C., Mavichak, R., Chang, S-H., Yeh, M-D., Chiang, Y-A., Takeyama, H., Hamaguchi., H-O., Lo, C-F., Aoki, T. and Wang, H-C. 2015. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in Shrimp. Fish Shellfish Immunol., 47: 1006-1014. http://dx.doi.org/10.1016/j.fsi.2015.11.008.
- Letchumanan, V., Pusparajah, P., Tan, LT-H., Yin, W-F., Lee, L-H. and Chan, K-G. 2015. Occurrence and antibiotic resistance of *Vibrio parahaemolyticus* from shellfish in Selangor, Malaysia. *Front. Microbiol.*, 6: 1-11. https://doi.org/10.3389/fmicb.2015.01417.
- Nithya Quintal, M., Porteen, K., Wilfred Ruban, S., Abraham, T. J. and Pramanik, A. K. 2009. Chloramphenicol induced mutation frequency of *Vibrio parahaemolyticus* strains isolated from freshwater fishes. *Indian Vet. J.*, 86: 451-453.
- Nordstrom, J. L., Vickery, M. C. L., Blackstone, G. M., Murray, S. L. and DePaola, A. 2007. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl. Environ. Microbiol., 73: 5840–5847. https://doi.org/10.1128/AEM.00460-07.
- Rosalind George, M. 2002. Characterization of Vibrio spp. from farm reared shrimps and coastal waters. Ph. D. Thesis, Fisheries College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Thoothukudi, India.
- Sahilah, A. M., Laila, R. A. S., Sallehuddin, H. M., Osman, H., Aminah, A. and Azuhairi, A. A. 2014. Antibiotic resistance and molecular typing among cockle (*Anadara granosa*) strains of *Vibrio parahaemolyticus* by polymerase chain reaction (PCR)-based analysis. *World J. Microbiol. Biotechnol.*, 30: 649-659. https://doi.org/10.1007/s11274-013-1494-y.
- Silvester, R., Alexander, D. and Ammanamveetil, M. H. A. 2015. Prevalence, antibiotic resistance, virulence and plasmid profiles of *Vibrio parahaemolyticus* from a tropical estuary and adjoining traditional prawn farm along the southwest coast of India. *Ann. Microbiol.*, 65: 2141-2149. https://doi.org/10.1007/s13213-015-1053-x.
- Sudha, S., Mridula, C., Silvester, R. and Hatha, A. A. M. 2014. Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. *Indian J. Geo-Mar. Sci.*, 43: 815-824.
- Takahashi, H., Hara-Kudo, Y., Miyasaka, J., Kumagai, S. and Konuma, H. 2005. Development of a quantitative real-time polymerase chain

- reaction targeted to the toxR for detection of Vibrio vulnificus. J. Microbiol. Methods., 61: 77-85. https://doi.org/10.1016/j.mimet.2004.11.005.
- Tendencia, E. A. and de la Pena, L. 2001. Antibiotic resistance of bacteria from shrimp ponds. *Aquaculture*, 195: 193–204. https://doi.org/10.1016/S0044-8486(00)00570-6.
- Teo, J. W. P., Tan, T. M. C. and Poh, C. L. 2002. Genetic determinants of tetracycline resistance in *Vibrio harveyi*. *Antimicrob. Agents Chemother.*, 46: 1038–1045. https://doi.org/10.1128/AAC.46.4.1038-1045.2002.
- Tinwongger, S., Proespraiwong, P., Thawonsuwan, J., Sriwanayos, P., Kongkumnerd, J., Chaweepack, T., Mavichak, R., Unajak, S., Nozaki, R., Kondo, H. and Hirono, I. 2014. Development of PCR diagnosis method for shrimp acute hepatopancreatic necrosis disease (AHPND) strain of *Vibrio parahaemolyticus*. *Fish Pathol.*, 49: 159–164. http://doi.org/10.3147/jsfp.49.159.
- Tjahjadi, M. R., Angk, S. L. and Suwanto, A. 1994. Isolation and evaluation of marine bacteria for biocontrol of luminous bacterial disease in tiger shrimp larvae (*P. monodon*, Fab). *Asia-Pac. J. Mol. Biol. Biotechnol.*, 2: 347-352.
- Tran, L., Nunan, L., Redman, R. M., Mohney, L., Pantoja, C. R., Fitzsimmons, K. and Lightner, D. V. 2013. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. *Dis. Aquat. Org.*, 105: 45–55. https://doi.org/10.3354/dao02621.
- Venkateswaran, K., Dohmoto, N. and Harayama, S. 1998. Cloning and nucleotide sequence of the *gyrB* gene of *Vibrio parahaemolyticus* and its application in detection of this pathogen in shrimp. *Appl. Environ. Microbiol.*, 64: 681–687. https://doi.org/10.1128/AEM.64.2.681-687.1998.
- Yang, Y. T., Chen, I. T., Lee, C. T., Chen, C. Y., Lin, S. S., Hor, L. I., Tseng, T. C., Huang, Y. T., Sritunyalucksana, K., Thitamadee, S., Wang, H. C. and Lo, C. F. 2014. Draft genome sequences of four strains of *Vibrio* parahaemolyticus, three of which cause early mortality syndrome/ acute hepatopancreatic necrosis disease in shrimp in China and Thailand. Genome Announc., 2: e00816-14. https://doi.org/10.1128/genomeA.00816-14.
- Zhou, J., Fang, W., Yang, X., Zhou, S., Hu, L., Li, X., Qi, X., Su, H. and Xie, L. 2012. A nonluminescent and highly virulent *Vibrio harveyi* strain is associated with "Bacterial white tail disease" of *Litopenaeus vannamei* shrimp. *PLoS ONE.*, 7: e29961. https://doi.org/10.1371/journal.pone.0029961.
- Zorriehzahra, M. J. and Banaederakhshan, R. 2015. Early mortality syndrome (EMS) as new emerging threat in shrimp industry. *Adv. Anim. Vet. Sci.*, 3: 64-72. http://dx.doi.org/10.14737/journal.aavs/2015/3.2s.64.72. http://dx.doi.org/10.14737/journal.aavs/2015/3.2s.64.72.