Performance of hatchery-produced and feedweaned fingerlings of striped murrel *Channa striata* (Bloch, 1793) in biofloc system in the subtropical climate

Sudhir Raizada^{1*}, Anurag Rawat¹ and Prem Prakash Srivastava²

¹ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow-226 002, Uttar Pradesh, India ²Dr Rajendra Prasad Central Agricultural University, Samastipur-848 125, Bihar, India

Abstract

The performance of hatchery-produced and pellet-feed-weaned fingerlings of striped murrel, *Channa striata* (Bloch, 1793) was assessed in the biofloc tanks for growth and survival, in a subtropical climate. The rearing was undertaken in two phases with an increase in fish size. In the first phase, fingerlings (weight 1.94±0.71 g, length 6.29±0.81 cm) were stocked @ 200 m³ in the biofloc tanks, which were reduced to 15 m³ in the second phase using the same stock. The fish attained a length of 25.44±1.81 cm and weight of 149.60±28.58 g in 10 months with overall survival of 93% at the end of the second phase. The total fish biomass recorded was 9.7 kg m³ at the final harvest. The growth parameters were found temperature-dependent, which recorded 15±1.0 to 28±1.5°C and 'W' values were found to follow Fulton's cube law during the entire culture period. The exponent (b) of 3.278 was recorded as highest in July 2020 and lowest at 2.210 in December 2020. The lowest R² was 0.768 and highest 0.943 during December and April respectively whereas, the recorded 'K' of 0.611 was the lowest in winter and highest being 0.908 in August. The study demonstrated a higher culture potential of striped murrel with hatchery-produced and feed-weaned seed in the biofloc system with zero-water exchange.

Introduction

*Correspondence e-mail: sudhirraizada@hotmail.com

Keywords:

Condition factor, Fulton's cube law, Growth, Production, Survival, Zero-water exchange

Received: 09.11.2021 Accepted: 20.6.2023

Burgeoning fish demand and space limitations has necessitated future aguaculture needs to be more intensive even in less space but sustainable with significantly low usage of water and land resources. However, intensive fish farming causes guick deterioration of water quality due to the accumulation of toxic substances which are lethal to fish. Biofloc Technology (BFT) can however, provide fish production at high stocking density in a condition that is sustainable and biologically safe (Ray et al., 2010; Zhao et al., 2012; Schveitzer et al., 2013) as it allows conversion of toxic ammonia, excreted by the fish into the rearing system to safer nitrate products, besides, the heterotrophic microbes which becomes a source of natural food for the filter-feeding

fishes and shrimps (Avnimelech, 2009; Cardona et al., 2015; Ray and Lotz, 2017). Several past studies have demonstrated suitability of BFT for the farming of Pacific white-leg shrimp (Penaeus vannamei) and Nile tilapia (Oreochromis niloticus) owing to their better filter-feeding efficiency in the biofloc system (Xu et al., 2012: Martins et al., 2020; Nguyen et al., 2021; Suarez-Puerto et al., 2021). Studies have also indicated that BFT not only serves as a feeding media but also provides positive effects on fish immunity and reproductive performances (Eksari et al., 2014, 2016; Cardona et al., 2016). Biofloc has also been reported to perform better in terms of growth and survival for the larval rearing and grow-out productions of many species including those which are omnivorous and carnivorous such as grey mullet (Mugil cephalus), common

carp (Cyprinus carpio), tench (Tinca tinca), rohu (Labeo rohita), African catfish (Clarias gariepinus), channel catfish (Ictalurus ictalurus), silver catfish (Rhamdia quelen), striped catfish (Pangasianodon hypophthalmus), Pangas catfish (Pangasius pangasius), largemouth bass (Micropterus salmoides), hybrid striped bass (Morone chrysops x M. saxatilis) (Poli et al., 2015; Ekasari et al., 2016; Dauda et al., 2017; Bakhshi et al., 2018; Green et al., 2018; Vinatea et al., 2018; Nageshwari et al., 2019; Sukardi et al., 2019; Battisti et al., 2020; Green et al., 2020; Romano et al., 2020; Vadhel et al., 2020).

BFT is becoming very popular in India as it requires comparatively smaller landholdings and less water, which are the immediate and future needs of the farmers. The government is also popularising it by providing good incentives to farmers and entrepreneurs. The species presently cultured in BFT are striped catfish to a greater extent and GIFT strain of Nile tilapia to a lesser, depending on the availability of seed. However, both are low-value species and the farming of these species may not be economically viable in BFT due to the higher cost of production. Therefore, BFT requires high-value fish species suitable for the system for its sustenance.

Striped murrel or striped snakehead Channa striata (Bloch, 1793) is a high-value and very hardy fish in terms of tolerance to high levels of total dissolved solids (TSS), temperature fluctuations, and low dissolved oxygen conditions in water as it is an air-breathing species. Recent interventions have made the possibility of mass-scale production of hatchery-seed of C. striata, which could also be weaned on a commercial pellet diet for an almost complete elimination of cannibalism (Rawat et al., 2020; Raizada et al., 2021). Therefore, the present study was aimed at exploring the suitability of striped murrel culture in the BFT system using hatchery-produced and feed-weaned seed in tropical and sub-tropical climatic conditions. Since BFT requires a small area and almost zero-water exchange, it would meet the requirements of small farmers and entrepreneurs to produce it on low inputs. This will also help in increasing the income of the farmers as it is a high-value species.

Materials and methods

Study area

The experimental culture of striped murrel was undertaken at a private biofloc fish farm in Lucknow City, Uttar Pradesh, India (26.7651°N; 80.9571°E). The climate of the area is subtropical warm with air temperatures of a minimum average of 8.8°C in January and a maximum average of 41.1°C in June. It has three seasons consisting of winter (November-February), monsoon (July-September), and rest summer.

Fish

The hatchery-produced and pellet-weaned seed of striped murrel *C. striata* were sourced from the ICAR-National

Bureau of Fish Genetic Resources (ICAR-NBFGR), Lucknow, India located at about 5 km distance from the experimental BFT farm site. The seed was transported in oxygen-packed polythene bags. The seed was acclimatised to the water quality of the BFT farm site and subsequently with biofloc media of the experimental tanks before stocking in the first-phase rearing tanks.

Rearing systems

The rearing of *C. striata* was undertaken in two phases in BFT tanks, partly open from two sides to get sufficient sunlight. The first-phase rearing was undertaken in winter (November 2019-March 2020) during which early-fingerlings were reared to advanced-fingerlings size. To reduce the effect of cold temperature, the tank area was covered from all sides with 200 microns thick transparent HDPE sheet. Two circular HDPE-lined tanks of dia. 2.5 m and height 0.9 m (water depth 0.7 m, volume 3400 l) were used for fish rearing. The tanks were covered with nylon netting to prevent any loss due to the jumping of fish. The second-phase rearing was undertaken during summer and monsoon (April-August 2020) in two oval-shaped cement tanks of 10 t capacity for raising juveniles by restocking the advanced fingerlings produced in the first phase.

Rearing protocol

The biofloc was developed and maintained in the tanks following the protocol of Avnimelech (2009). The main carbon source used for the production of biofloc was jaggery, which was supplemented with commercial as well as home-made probiotics. The tanks were provided continuous aeration from a portable air-blower (Grand HAP-120, Hailea Hi-blow). In the first phase, each circular tank was stocked with 700 fingerlings (weight 1.97±0.67 g and length 6.29±0.81 cm) equivalent to a stocking density of 200 fingerlings of striped murrel per m³. The fish were fed with commercial floating pellets containing crude protien (CP) 45%, lipid 10%, and fibre 3.5% (pellet size 1.2 mm) in the first-phase rearing, which was the same feed on which the fingerlings were weaned at the sourced hatchery. The tanks of the first-phase rearing were harvested in March 2020. In the second phase, the harvested fishes from the first-phase rearing were restocked the same day after giving a prophylactic bath of 2 mg l-1 of potassium permanganate at a stocking density of 686 fish per tank of 10 m³ size (weight 23.26±5.83 g and length 14.06±1.02 cm), which was equivalent to a stocking density of 68.6 m⁻³ and reared till August 2020. The fishes were given a pellet diet of CP 40%, lipid 8%, and fibre 3.5% (pellet size 1.8 mm). The feed was given ad libitum 2-3 times a day. The quantity and frequency of feed were adjusted depending on feed acceptability at different fish sizes and temperature regimes. The quantity of biofloc was monitored in the tanks on every alternate day with Imhoff cone and maintained between 25-40 ml l⁻¹ by adding various nutrients used for the development of biofloc at an initial stage.

The tanks of the second-phase rearing were finally harvested in August 2020. The same biofloc media was continuously used during the entire culture period except for topping off the water level due to evaporation loss.

Sampling and analysis of growth indices

Around 100 fishes were harvested from each tank by dragging a netting on a monthly basis. They were sampled for length and weight assessment during the entire culture period. The length-weight of 50 fish was taken on a random basis by pooling fishes from both the rearing tanks. The length of the fish was measured with the help of a digital vernier calliper and weight by a digital balance. The weight of the small-size fishes measuring less than 5 g was taken with an electronic balance (Sartorius, precision 0.001 g) whereas, larger ones with a digital single pan-balance (ATCO, precision 1 g). All the fish were returned to the tanks immediately after recording lengths and weights and giving a short-bath in 2 mg l⁻¹ of potassium permanganate.

The length-weight relationship (LWR) and growth indices were analysed using MS Excel (2007). The length-weight relationship (log-transformed) was determined by linear regression analysis and scatter diagrams following the cube law given by Le Cren (1951) using the formula:

$$W = aL^b$$

where, W=Weight of fish (g), L= Total length (cm), 'a'= Regression intercept, and 'b' = Regression slope or exponent.

The logarithmic transformation of the above formula.

$$Log W = log a + b log L$$

Fulton's Condition Factor (K) was calculated using the equation given by Htun-Han (1978):

$$K = \frac{W \times 100}{L^3}$$

where, W=Weight of fish (g), L=Total length of fish (cm)

Specific growth rate (SGR) was calculated using the formula:

where weights are in gram

The coefficient of determination (R^2) was estimated by drawing the regression line using X and Y variables in MS Excel (2007), where 'X' was the log length and 'Y' was the log weight.

Survival was estimated using the following formula:

Water quality

Water quality was analysed all throughout the culture period. Water temperature, pH, and dissolved oxygen (DO) were recorded on a daily basis whereas; ammonia, nitrite, and nitrates were recorded on a weekly basis and total dissolved solids (TDS), and total alkalinity on a fortnightly basis. Temperature was measured with a mercury thermometer (0-110°C); pH with a digital pH meter (make Hanna); TDS by a digital TDS meter (make Hanna); ammonia, nitrite, and nitrates by the Lifesonic Master Water Test kit [Lifesonic Innovations (P) Ltd., India], dissolved oxygen (DO) and total alkalinity (TA) by titration method (APHA, 2005).

Results

The monthly data on the weight-length relationship (WLR), growth, and survival are given in Table 1 and their graphical presentation in Fig. 1, 2 and 3.

Growth and survival

The striped murrel was found to grow well in biofloc media with survivals of 98 and 93% at the end of the first phase (winter) and the second phase (monsoon-summer) rearing (Table 1) respectively. The fish showed continuous growth both in lengths and weights at a temperature regime of 15±1.0 to 28±1.5°C, which was found directly proportional to each other (Fig. 1). During 300 days of rearing, the growth in terms of both lengths and weights was found to increase despite the fact that there were large differences in the temperature regime from a low of 15±1.0 to a high of 28±1.5°C (Table 1, Fig. 1). The SGR was found highest (1.967%) in the small size-group at normal temperature of rearing whereas, it was negative (-0.086) during January-February when water temperature dropped to 15±1.0°C. However, the rate of growth was faster at higher water temperatures. The survival at the end of first-phase rearing was recorded at 98% whereas. overall 93% at the end of second-phase rearing (Table 1).

Weight-length relation (WLR)

The 'W' values were found to follow Fulton's cube law during the entire culture period in biofloc media. The values of exponent 'b' of 3.278 were highest in July 2020 and lowest *i.e.*, 2.210 in December 2020. The coefficient of regression (R²) was 0.768 being lowest in December (winter) and highest (0.943) during April (summer). Similarly, the lowest value of

Table 1. Details of LWR, survival and growth data of striped murrel reared in BFT for 300 days

Parameter	Stocking details (23.10.19)	30 days (23.11.19)	60 days (23.12.20)	90 days (23.01.20)	120 days (23. 02.20)	150 days (23.03.20)	180 days (23.04.20)	210 days (23.05.20)	240 days (23.06.20)	270 days (23.07.20)	300 days (23.08.20)
Water temperature (°C)	27±2.0	25±2.0	17±1.5	15±1.0	18±2.0	21±2.0	23±1.0	27±1.5	28±1.5	27±1.5	28±1.5
Mean total length (cm)	6.29	9.42	10.80	11.30	12.00	14.06	16.50	18.28	23.96	25.31	25.44
	±0.81	±0.77	±0.93	±0.78	±1.12	±1.02	±0.80	±1.75	±1.36	±1.09	±1.81
Max length (cm)	8.2	10.7	13.2	13.1	14.3	16.5	18.2	21.5	26.8	29.0	29.1
Min length (cm)	4.9	8.0	8.5	9.5	9.5	12.5	15.0	12.4	20.4	23.0	22.0
Mean weight	1.97	7.48	10.53	12.56	14.93	23.26	32.60	45.82	108.26	133.88	149.60
(g)	±0.675	±1.75	±2.40	±2.54	±3.53	±5.83	±3.93	±11.57	±19.00	±21.63	±28.58
Max weight (g)	3.9	12.0	18.0	19.0	22.0	38.0	43.0	72.0	156.0	196.0	216.0
Min weight (g)	1.1	5.0	16.0	7.0	8.0	16.0	24.0	16.0	62.0	100.0	94.0
Proportionality constant 'a'	-1.679	-1.680	-1.268	-1.949	-1.605	-2.318	-1.208	-0.1.814	-1.926	-2.278	-1.312
Exponent 'b'	2.454	2.614	2.210	2.887	2.567	3.201	2.233	2.745	2.868	3.278	2.477
Coefficient of determination 'R2'	0.936	0.858	0.768	0.899	0.826	0.929	0.943	0.946	0.850	0.806	0.851
Ponderal Index 'K'	0.792	0.895	0.836	0.868	0.611	0.835	0.725	0.749	0.786	0.825	0.908
SGR (%) per day	-	1.967	0.481	0.250	-0.086	0.730	0.502	0.449	1.234	0.311	0.147
Survival (%)	-	-	-	-	-	98	-	-	-	-	93

Ponderal Index (K) was found at 0.611 in February (winter) and the highest at 0.908 in August (Table 1, Fig. 2). The scatter regression line diagrams drawn from the month-wise data on lengths and weights have shown straight regression lines without showing any potential outliers (Fig. 3).

Water quality

There were large differences in water temperature during the winter and summer seasons. The minimum temperature of 15.0±1.0°C was observed in January 2020 during extreme

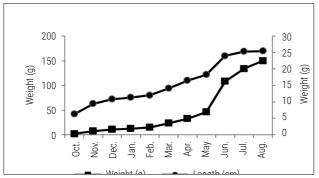


Fig. 1. Month-wise length and weight performance of striped murrel in BFT

winter and a maximum of 28±1.5°C during June and August 2020 during the summer season. The water quality parameters recorded were: pH 8.0±0.5; TDS 650±79 mg l^{-1} , total alkalinity 230±9 mg l^{-1} , DO 5.2±0.4 mg l^{-1} , unionised ammonia 0.35±0.12 mg l^{-1} , nitrite 0.27±0.10 mg l^{-1} , and nitrate 0.42±0.21 mg l^{-1} , which were found in the normal range for the biofloc media.

Discussion

The higher survivals of 98 and 93% respectively, in the first and the second-phase rearing were remarkable after 10 months

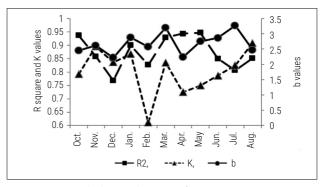


Fig. 2. Month-wise 'b', 'R2' and 'K' values of striped murrel in BFT $\,$

of rearing, considering that the species is highly carnivorous and cannibalistic (Ng and Lim, 1990). Devraj (1973) reported survival of only 19.3% in 3 months and 1.3% in 5 months culture in cement tanks when fingerlings of striped murrel procured from the wild resources were reared by feeding on fish liver. Past studies have revealed that weaning the seed on a pellet diet after its procurement from wild resources has shown higher survival in pond systems (Rahman et al., 2012; So et al., 2012; Farhana et al., 2016; Rao, 2020). It is to be mentioned here that the mortality of 7% after 10 months of culture period was mainly due to mishandling of fish during monthly samplings. The mortality due to cannibalism was not absent as none of the fish was observed to have a distended belly, a characteristic of a cannibal, during monthly samplings. The absence of cannibalism, therefore, seems to be due to the proper weaning of fingerlings from the stage of hatchlings to fingerling-size on well-acceptable diets of live and inert feeds in the hatchery and thereafter in the rearing tanks. Yadav et al. (2014) have also reported that feed having CP 50% and fat 9% considerably increased survival and growth in C. marulius.

Striped murrels have largemouth gape; sharp jaw teeth for catching and grasping prey and can consume prey fish of more than half to two-thirds of its length (Wee, 1981; Diana et al., 1985; Ng and Lim, 1990; Qin and Fast, 1996). It exhibits both filial and Intracohort cannibalism (ICC) in their life-cycle. Whereas filial cannibalism is the consumption of offspring by the parents during parental care under natural conditions, ICC has been observed both in natural and controlled rearing systems, where siblings prey upon each other in a population. Therefore, the major bottlenecks in the farming of striped murrel are its carnivorous and cannibalistic habit, and non-acceptance of artificial feed once it develops carnivore habits. According to Qin and Fast (1997) when two different size larval populations; larger fish of size 57.0+5.7 mm TL and small of size 18.1+1.8 mm TL in 1:2 ratio, were reared together without feed, 86% ICC was observed in captive conditions. However, cannibalism was reduced to 60 and 35% when a feeding ration was provided @ 5 and 15% of larval body weight in a 6 days period. The rate of cannibalism also depends on the quantity of feed application in a homogenous size population in this species. Cannibalism reduced from 12.23±1.94 to 3.31±1.90% with an increase in feed application rate from 2 to 8% body weight in a population of uniform size larvae (1.42±0.12 g) (Kumari et al., 2018). Based on the above assumptions, the fingerlings stocked in the present trial were weaned on an artificial pellet diet before stocking in the biofloc media and fed ad libitum and hence there was no cannibalism at later stages resulting in higher survivals. Weaning striped murrel on an artificial diet also reduced size heterogeneity to a greater extent and that could also be one of the reasons for higher survival in the present study.

Though the fish survivals were higher in both the rearing phases but the growth was extremely slow in winter (October 2019 to March 2020) when the water temperature was

extremely low (>8.8 °C). However, higher survival of 98% after 5 months of winter rearing in indoor tanks without soil base has given an impression that the species is hard enough to tolerate this much low temperature in biofloc media. This would provide an option for over-winter rearing of fingerlings which could be utilised as a source of seed for grow-out productions in spring and summer seasons for getting maximum utilisation of growth period both in tropical and sub-tropical climatic conditions.

The fish picked up growth with an increase in water temperature from April (23±1.0 °C) that continued till August (28±1.5°C). During this period, the average length of fish increased from 16.50±0.80 to 25.44±1.81 cm and weight from 32.60±3.93 to 149.60±28.58 g. Thus, there was a weight gain of about 117 g per fish within 4 months at a stocking density of 15 fingerlings m⁻³. The estimated total biomass produced per tank (10 t) therefore was observed to be 97 kg (9.7 kg m⁻³), which is extremely a higher production in comparison to the pond and hapa rearing systems, where seed procured from wild resources have been used as stocking material and fed pellet diet (Rahman et al., 2012; So et al., 2012; Haiwen et al., 2014; Farhana et al., 2016). This is perhaps the first study on biofloc in which hatcheryproduced and pellet-diet-weaned striped murrel has been cultured with high survival and production rates. In a recent study, Rao (2020) demonstrated production of 20.93 t under intensive farming in the earthen pond (0.6 ha) in 8 months with 95% survival by stocking feed-weaned fingerlings of striped murrel at a stocking density of 2.6 fingerling m⁻², which confirms the possibility of a higher fish production with this species and hence their study strongly supports the present finding.

It is a general assumption that biofloc is suitable for only filter-feeding fish/shrimp species as they can utilise biofloc, a highly proteinaceous diet for their growth. However, in some of the recent studies, BFT has been found highly suitable for the culture of catfishes as well as African catfish, channel catfish, striped catfish, and pangas catfish, which have shown higher survivals and production rates (Nageswari et al., 2019; Sukardi et al., 2019; Chen et al., 2020; Green et al., 2020). The major advantage of biofloc is the maintenance of healthy water quality with almost zero-water exchange, which has become one of the biggest concerns recently, and further, it is operable at small and large-scale as per the need of the farmers and the entrepreneurs.

Weight-length relationship (WLR), coefficient of determination (R^2), and condition factor (K, Ponderal Index) of the fish were estimated on a monthly basis to determine the weight corresponding to a given length, Goodness of fit, and comparing the 'condition', 'fatness' or 'well-being' of fish (Tesch, 1968) in biofloc media, based on the assumption that heavier fish of given length is in better condition (Table 1, Fig. 2).

The scatter regression line diagrams drawn from monthwise data on length and weight have shown a straight-line

regression that confirms an increase in weight corresponding to an increase in length and there were no major outliers in the population and hence chances of cannibalism were probably not there (Fig. 3). There are very few reports available on WLR for murrels including striped murrel. Past studies revealed that murrels in general exhibit more of a negative allometric growth pattern (b < 3) than positive (b > 3) (Table-2), which may be attributed to their less rounded body and low fecundity even at full maturity. The value of 'b' recorded in the present study ranged from 2.210-3.278 in captive conditions with the lowest value of 2.210 in December, which might

have occurred due to a sudden drop of water temperature from 25 ± 2.0 to $17\pm1.5^{\circ}\text{C}$ within about 30 days and would have caused serious stress on fish. The highest 'b' of 3.278 was obtained in July when the temperature of the system rose to $27\pm1.5^{\circ}\text{C}$ and fish developed mature gonads as this species starts attaining maturity in the first year of its life (Table 1 and Fig. 2).

The coefficient of determination (R²) in murrels, in general, follows a good fit concerning length and weight data sets except in severe stress conditions (Table 2). The factors

Table 2. Statistical values of exponent 'b', coefficient of determination (R2) and condition factor of striped murrel in wild and captive stock

	Stock type and place	Fish size	b	R ²	K/Kn	References	
hanna	striatus						
	Captive stock, Lucknow, India	6.29-25.44 cm	2.213.278	0.768-0.946	0.611-0.908	Present study	
	Ganga River, India	-	2.929	0.970	-	Khan et al. (2011)	
	Chi River, Thailand	-	2.94	-	-	Satrawaha and Pilasamorn (2009)	
	Sungai River, Indonesia	=	2.9223	0.9725	-	Ahmadi (2018)	
	River Siang, India	=	1.612	=	-	Das et al. (2015)	
	Rawa Sekayu	20.73 cm	2.812	0.952		Muthmainnah (2012)	
	Rawa Mariana (Wetlands), Indonesia	20.84 cm,	2.543	0.881	-	Muthmainnah (2013)	
	Vembanad Lake, Kerala, India	-	2.73	0.6113	-	Ali et al. (2013)	
	Captive stock, Chennai, India	=	0.9628-1.127	0.9836-0.9965	-	Sugumaran et al. (2018)	
	Capture, Nadia, West Bengal, India	13-40 cm	3.06-3.10	-	1.02-1.22 (Kn)	Chakraborty et al (2017	
	Capture, Lucknow, India	22.9-42.4 cm	3.407-3.958	0.9333	-	Dayal et al (2012)	
hanna	marulius						
	Captive stock, Lucknow, India	1-70 cm	2.428-4.205	0.556-0.855	0.589-0.924	Yadav et al. (2014)	
	Harike Reservoir, Punjab, India	29.02-73.52 cm 441.17-1557.57 g	2.15	0.9308	-	Dua and Kumar (2006)	
	Poongar Swamp, Bhavanisagar, Tamil Nadu, India	Larger size Small size	3.32 1.175	-	-	Devraj (1973)	
	Kali River, India	-	3.16	-	_	Ahmad et al (1990)	
		-	2.962	_	-	Parameswaran (1975)	
	Ganga River, India	=	3.0	0.882	-	Khan et al. (2012)	
	Godavari River, India	=	1.45	0.935	-	Rathod <i>et al.</i> . (2011)	
	Pampa River, Kerala, India	=	1.54	0.882	-	Ali et al (2013)	
nanna	punctatus						
	Beas River, Himachal Pradesh, India	30-170 mm,	2.803	0.998	-	Koundal et al (2014)	
	Hilna Beel	,	3.0537	0.812			
	Kumari Beel, Bangladesh	-	2.5598	0.853		Alam <i>et al</i> . (2018)	
	Mathabhanga River, Bangladesh	=	3.37	0.978	-	Hossain et al. (2006)	
	Siruvani , Vellar, Caurvery and	2.720-		0.724-			
	Tamirbrani rivers, Tamil Nadu, India	=	3.200	0.876	=	Haniffa <i>et al.</i> . (2006)	
	Wild pond, Multan, Pakistan	-	2.90	-	0.84-1.17	Ali et al. (2000)	
	Ludhiana, Punjab, India	21.67-22.16 cm	2.76-4.39	0.622-0.892	1.09-1.33	Datta et al (2013)	
hanna	micropeltes					, , ,	
	Pechipparai Reservoir, Kanyakumari, Tamil Nadu, India	=	2.734 2.583	0.8843 0.9779	=	Ebanasar and Jayaprakash (2005)	
hanna	diplogramma					, , , ,	
Julia	Pampa River, Vembanad Lake, Kerala, India	-	1.28	0.8732	-	Ali et al. (2013)	

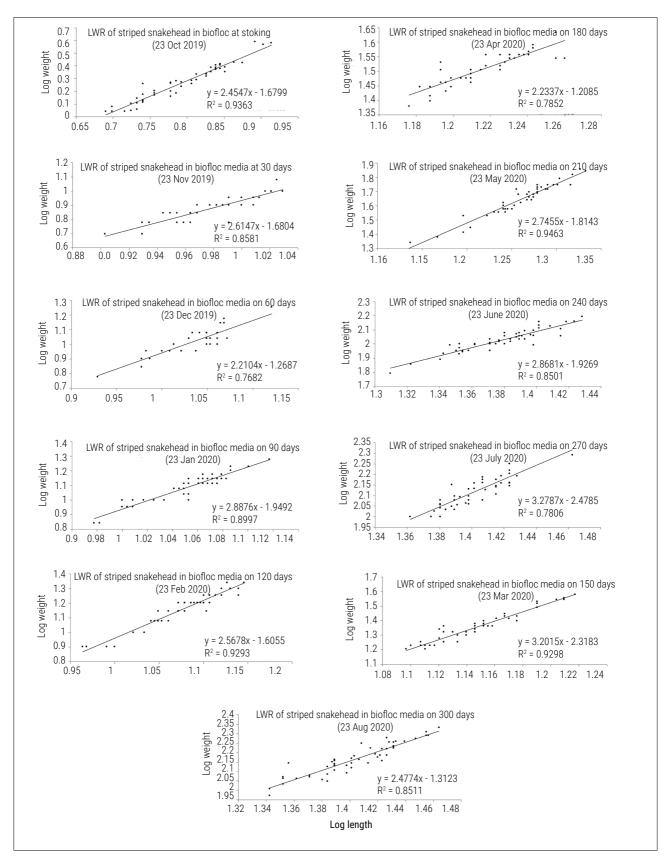


Fig. 3. Month-wise linear regression and scatter diagrams of striped murrel cultured in BFT

that affect the value of 'b' in WLR also influence the value of R^2 . The lowest value of R^2 (0.768 in December) obtained in the present study clearly shows that a sudden drop in temperature could be the sole reason. Higher values were obtained either in small size or also when there was a rise in temperature (March) when fish took a fast pace in gaining both length and weight. However, these values were found low in June to July when fish attained higher weights in comparison to lengths probably due to the attainment of first maturity in comparison to the growth phase (Fig. 1, 2)

Studies on Fulton's condition factor or Ponderal Index (K) on murrels are scanty. According to Hile (1936), Fulton's condition factor is the appropriate method for comparing relative heaviness, whereas the WLR equation is the appropriate method for estimating weight from length. WLR in fishes can be affected by various factors such as temperature, pH, dissolved oxygen (DO), seasonal changes, habitat, age, gonadal maturity, sex, stomach fullness, health and preservation technique (Tesch, 1971; Bagenal and Tesch, 1987). The factors that affect the value of 'b' in WLR also influence the value of 'K' except in those which follow the cube law (Ali et al., 2000). The value of K was observed lowest (0.611) in February (temperature 18±2.0 °C) when there was a sudden increase in temperature from the previous month (January), which showed different trends both from 'b' and 'R2' values that are more affected when dropping down in temperature was high (25±2.0 to 17±1.5°C). The 'K' was found to increase with the onset of maturity from April to August and the highest 'K' (0.908) was recorded on attaining complete maturity due to an increase in the girth.

BFT was found highly suitable for rearing feed-weaned striped murrel with higher survivals both at fingerling (98%) and yearling (93%) stages. Production of 9.7 kg m³ obtained in the study was found very high in comparison to production in ponds (Rao, 2020). The WLR data revealed that the species can tolerate a low temperature of 15±1.0°C without soil base in this system and growth was found to continue to increase at a temperature regime of 15±1.0 to 28±1.5°C and hence suitable for rearing in biofloc system in a subtropical climate. This perhaps accounts for the first report of rearing hatchery-produced and feed-weaned striped murrel in biofloc media.

Acknowledgements

The first two authors are thankful to the Indian Council of Agricultural Research, New Delhi, for the award of the Emeritus Scientist Scheme under which this work has been carried out. The authors are also thankful to the Deputy Director General (Education Division), ICAR for facilitating all support for the smooth running of the scheme. The authors wish to express their gratitude to the Deputy Director General (Fisheries Science), ICAR for his constant encouragement during the course of this study. The authors also wish to extend their sincere thanks to the Director, ICAR-NBFGR,

Lucknow for providing necessary field and lab facilities for the hatchery production of seed. The BFT facility provided by Mr. Dharmvir Singh, a retired Indian Navy officer at his biofloc farm in Lucknow is also gratefully acknowledged.

References

- Ahmad, M. U., Khumar, F., Anwar, S. and Siddiqui, M. S. 1990. Preliminary observations on the growth and food of murrel *Channa* (=Ophicephalus) marulius Bloch of the river Kali in North India. J. Freshwat. Biol., 2(1): 47-50
- Ahmadi, A. 2018. The length-weight relationship and condition factor of the threatened snakehead (*Channa striata*) from Sungai Batang River, Indonesia. *Pol. J. Nat. Sci.*, 33(4): 607-623.
- Alam, M. T., Hussain, M. A., Sultana, S., Hasan, M. T., Mazlan, A. G., Simon K. D. and Mazumdar, S. K. 2018. Population growth and reproductive potential of five important fishes from the freshwater bodies of Bangladesh. *Iran. J. Fish. Sci.*, 17 (4): 657-674. https://doi.org/10.22092/ijfs.2018.116824
- Ali, A., Dahanukar, N. and Raghavan, R. 2013. Length-weight and length-length relationship of three species of snakehead fish, *Channa diplogramma*, *C. marulius* and *C. striata* from the riverine reaches of Lake Vembanad, Kerala, India. *J. Threatened Taxa*, 5(3): 4769-4773. https://doi.org/10.11609/JoTT.o3353.4769-73
- Ali, M., Salam, A. and Iqbal, R. 2000. Weight-length and condition factor relationship of wild *Channa punctatus* from Multan (Pakistan), *Punjab Univ. J. Zool.*, 12(10): 75-85.
- APHA 2005. Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA
- Avnimelech, Y. 2009. *Biofloc technology-A practical guide book*. The World Aquaculture Society, Baton Rouge, Louisiana, USA, 182 p.
- Bagenal, T. B. and Tesch, F. W. 1987. Methods for the assessment of fish production in freshwaters. Blackwell Scientific Publications, Oxford, UK, pp.101-136.
- Bakhshi, F., Ebrahim, H. N., Ramin, M. and Amir, T. 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (*Cyprinus carpio* L.) fingerlings. *Aquaculture*, 484: 259-267. https://doi.org/10.1016/j.aquaculture.2017.11.036
- Battisti, E. K., Rabaioli, A., Uczay J. and Sutili F. J. 2020. Effect of stocking density on growth, hematological and biochemical parameters and antioxidant status of silver catfish (*Rhamdia quelen*) cultured in a biofloc system. *Aquaculture*, 524: 735213 https://doi.org/10.1016/j.aquaculture.2020.735213
- Cardona, E., Lorgeious, B., Geffroy, C., Richard, P., Saulnier, D., Gueguen, Y., Guillou, G. and Chim, L. 2015. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (*Littopenaeus stylirostris*) reared in biofloc assessment by C and N stable isotope ratios and effect on key digestive enzymes. *Aquaculture*, 448: 288-297.
- Cardona, E., Lorgeoux, B., Chim, L., Goguenheim, J., Le Delliou, H. and Cahu, C. 2016. Biofloc contribution to antioxidant defense status, lipid nutrition and reproductive performance of broodstock of the shrimp *Litopenaeus stylirostris*: Consequences for the quality of eggs and larvae. *Aquaculture*, 452: 252-262.https://doi.org/10.1016/j.aquaculture.2015.08.003
- Chakraborty, R., Das, S. K. and Bhakta, D. 2017. Length-weight relationship, relative condition factor, food and feeding habits of *Channa striata* from wetlands of Nadia district, West Bengal. J. Inland Fish. Soc. India, 49(2): 22-26.
- Chen, X., Guozhi, L., Hinghond, T., Hongxin, T. and Miaolan, Y. 2020. Effects of carbohydrate supply strategies and biofloc concentrations on the growth performance of African catfish (*Clarias gariepinus*) cultured in biofloc systems. *Aquaculture*, 517: 734808. https://doi.org/10.1016/j. aquaculture.2019.734808
- Das, B. K., Singh, N. R., Das, S. and Kar, D. 2015. Length-weight relationship (LWR) of *Channa striatus* (Bloch, 1793) of River Siang, Arunachal Pradesh. *Int. J. Environ. Nat. Sci.*, 7: 1-6.

- Datta, S. N., Kaur, V. I., Dhawan, A. and Jassal, G. 2013. Estimation of length-weight relationship and condition factor of spotted snakehead *Channa punctata* (Bloch) under different feeding regimes. *SpringerPlus*, 2: 436. https://doi:10.1186/2193-1801-2-436
- Dauda, A. B., Romano, N., Ebrahimi, M., Karim, M., Natrah, I., Kamarudin, M.S and Eksari, J. 2017. Different carbon sources affects on biofloc volume, water quality and the survival and physiology of African catfish, Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fish. Sci., 83: 037-1048. https://doi.org/10.1007/ s12562.017. 1144-7.
- Dayal, R., Srivastava, P. P., Bhatnagar, A., Chowdhary, S., Lakra, W. S., Raizada, S. and Yadav, A. K. 2012. Comparative study of WLR of *Channa striatus* of fry-fingerling, grow-outs and adults of Gangetic Plains. *J. Anim. Feed Res.*, 2(2): 174-176.
- Devraj, M. 1973. Experiments on the culture of the large snakehead *Ophiocephalus marulius* (Hamilton). *Indian J. Fish.*, 20(1): 138-147.
- Diana, J. S., Chang, W. Y. B., Ottey, D. R. and Chuapoehuk, W. 1985. Production systems for commonly cultured freshwater fishes of South-east Asia. *International Program, Report No. 7*. Great Lake and Marine Water Centre, University of Michigan, Michigan, USA, pp. 75-79.
- Dua, A. and Kumar, K. 2006. Age and growth patterns in Channa marulius from Harike Wetland (A Ramsar site), Punjab India. J. Environ. Biol., 27(2): 377-380
- Ebanasar, J. and Jayaprakas, V. 2005. Length-weight relationship of *Channa micropeltes* (Cuvier) from Pechipparai Reservoir, Tamil Nadu. *J. Inland Fish. Soc. India*, 37(1): 60-63.
- Eksari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P. and Bossier, P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. *Fish Shellfish Immunol.*, 41: 332-339. https://doi.org/10.1016/j.fsi.2014.09.004
- Eksari, J., Suprayudi, M. A., Wiyoto, W., Haganah, R. F., Tenggara, G. S., Sulistiani, R., Alkali, M. and Zairin, M. 2016. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. *Aquaculture*, 464: 349-356. https://doi.org/10.1016/j.aquaculture.2016.07.013
- Farhana, T., Hasan, M. E., Mamun, A. and Islam, M. S. 2016. Commercially culture potentiality of striped murrel fish *Channa striatus* (Bloch, 1793) in earthen ponds of Bangladesh. *Inter. J. Pure Appl. Zool.*, 4(2): 168-173.
- Green, B. W., Rawles, S. D., Webster, C. D. and McEntire, M. E. 2018. Effects of stocking rate on growing juvenile sunshine bass, *Morone chrysops x M. saxatilis*, in an outdoor biofloc production system. *J. World Aquac. Soc.*, 49: 827-836. https://doi.org/10.1111/jwas.12491
- Green, B. W., Kevin, K. S., Steven, D. R. and Carl, D. W. 2020. Comparison of unused water and year-old used water for production of channel catfish in the biofloc technology system. *Aquaculture*, 519: 734739. https://doi.org/10.1016/j.aquaculture.2019.734739
- Haiwen, B., Shaoyu, H., Lwin, U. T., Swe, U., Dong, Q., Zhang, S. and Yong, Y. 2014. The snakehead fish: A success in Myanmar. Aquaculture Asia Pacific Mag. (April-May): 20-23.
- Haniffa, M. A., Nagarajan, M. and Gopalakrishnan, A. 2006. Length-weight relationships of *Channa punctata* (Bloch, 1793) from Western Ghats rivers of Tamil Nadu. *J. Appl. lchthyol.*, 22: 308-309. https://doi.org/10.1111/j.1439-0426.2006.00779.x
- Hile, R. 1936. Age and growth of the cisco *Leucichthys artedi* (Le Sucur), in the lakes of the north-eastern highlands, Wisconsin. *Bulletin of the United States Bureau of Fisheries*, 48: 211-317.
- Hossain, M. Y., Ahmed, Z. F., Leunda, P. M., Islam, A. K. M., Jasmine, S., Oscoz, J., Miranda, R. and Ohtomi, J. 2006. Length-weight and length-length relationship of some small indigenous fish species from the Mathabhanga River, South-western Bangladesh. *J. Appl. Ichthyol.*, 22(4): 301-303. https://doi.org/10.1111/j.1439-0426.2006.00801.x
- Htun-Han, M. 1978. The reproductive biology of the dab *Limanda limanda* (L) in the North Sea, gonadosomatic index, hepatosomatic index and condition factor. *J. Fish Biol.*, 13(3): 369-378. https://doi.org/10.1111/j.1095-8649.1978. tb03445.x
- Khan, M. A., Khan, S. and Miyan, K. 2012. Length-weight relationship of giant snakehead, *Channa marulius* and stinging catfish, *Heteropneustes fossilis*

- from the river Ganga, India. J. Appl. Ichthyol., 28: 154-155. https://doi.org/10.1111/j.1439-0426.2011.01901.x
- Khan, S., Khan, M. A., Miyan, K. and Mubark, M. 2011. Length-weight relationships for nine freshwater teleosts collected from river Ganga, India. *Inter. J. Zool. Res.*, 7(6): 401-405. https://dx.doi.org/10.3923/ iizr.2011.401.405
- Koundal, A., Dhanze, R. and Sharma, I. 2014. Length-weight relationship, condition factor and relative growth patterns of *Channa punctata* (Bloch) from Himachal Pradesh, India. *Zoo's Print*, 23(1): 25-29.
- Kumari, S., Tiwari, V. K., Babitha Rani A. M., Kumar, R. and Prakash, S. 2018. Effect of feeding rate on growth, survival and cannibalism in striped snakehead, *Channa striata* (Bloch, 1793) fingerlings. *J. Exp. Zool. India*, 21(1): 205-210.
- Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (*Perca fluviatilis*). *J. Anim. Ecol.*, 20: 201-219. https://doi.org/10.2307/1540
- Martins, M. A., Poli, M. A., Legarda, E. C., Pinheiro, I. C., Carneiro, R. F. S., Pereira, S. A., Martins, M. L., Goncalves, P., Schleder, D. D. and Vieira, F. N. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. *Aquaculture*, 514: 734517. https://doi.org/10.1016/j.aquaculture.2019.734517
- Muthamainnah, D. 2013. The length-weight relationship and condition factor of striped snakehead (*Channa striata* Bloch, 1793) grow-out in swamp pond, South Sumatra Province. *Depik*, 2(3): 184-190.
- Nageswari, P., Verma, A. K., Gupta, S. and Jeyakumari, A. 2019. Finger millet as a carbon source for biofloc: Improved growth performance of *Pangasianodon hypophthalmus* (Sauvage, 1878) fingerlings. *Indian J. Fish.*, 67(4): 56-61. https://doi.org/10.21077/ ijf.2020.67.4.98872-07
- Ng, P. K. and Lim, K. K. P. 1990. Snakeheads (Pisces: Channidae): Natural history, biology and economic importance. In: Ming, C. L. and Ng, P. K.L.(Eds.), Essays in zoology. Papers commemorating the 40th Anniversary of the Department of Zoology, National University of Singapore, Singapore, pp.127-152.
- Nguyen, H. Y. N., Trinh, T. L., Baruah, K. and Lundh, T. 2021. Growth and feed utilization of Nile tilapia (*Oreochromis niloticus*) fed different protein levels in a clear-water or biofloc-RAS system. *Aquaculture*, 536: 736404. https:// doi.org/10.1016/j.aquaculture.2021.736404
- Parameswaran, S. 1975. Investigation on the biology of some fishes of the genus Channa. Ph. D. Thesis, Magadh University, Bodh-Gaya, India, 299 p.
- Poli, M. A., Schveitzer, R. and Nuner, P. O. 2015. The use of biofloc technology in a South American catfish (*Rhamdia quelen*) hatchery: Effect of suspended solids in the performance of larvae. *Aquac. Eng.*, 66: 17-21. https://doi. org/10.1016/j.aquaenq.2015.01.004
- Qin, J. and Fast, A. W. 1996. Size and feed dependent cannibalism with juvenile snakehead *Channa striatus*. *Aquaculture*, 114: 313-320. https://doi.org/10.1016/0044-8486(96)01299-9
- Qin, J. G., He, X. and Fast, A. W. 1997. A bioenergetics model for an airbreathing fish *Channa striatus*. *Env. Biol. Fishes*, 50: 309-318.
- Rahman, M. A., Arshad, A. and Amin, S. M. N. 2012. Growth and production performance of threatened snakehead fish, *Channa striatus* (Bloch), at different stocking densities in earthen ponds. *Aquac. Res.*, 43(2): 297-302. https://doi.org/10.1111/j.1365-2109.2011.02830.x
- Raizada, S., Srivastava P. P. and Rawat, A. 2021. A handbook on striped snakehead, Channa striata (Bloch, 1793): Reproductive biology, breeding, seed and grow-out productions. NIPA Books, New Delhi, India, 101 p.
- Rao, T. and Narasimha, C. V. 2020. Experience in farming the murrel in India. Aquaculture Asia Pacific Magazine, May-June, 2020, pp. 40-41.
- Rathod, S. R., Shinde, S. E. and More, P. R. 2011. Length-weight relationship in Salmostoma navacula and Channa marulius in Godavari River at Kaigaon Toka, District, Aurangabad, India. Rec. Res. Sci. Technol., 3(3): 104-106.
- Rawat, A., Raizada, S., Yadav, K. C. and Sahu, V. 2020. Induced spawning and embryonic development of striped murrel, *Channa striatus* (Bloch, 1793) in indoor conditions with sGnRH analogue. *Indian J. Fish.*, 76(3): 52-61. https://doi.org/10.21077/ijf.2020.67.3.97091-06
- Ray, A. J., Lewis, B. L., Browdy, C. L. and Leffler, J. W. 2010. Suspended solids removal to improve shrimp (*Litopenaeus vannamei*) production and an

- evaluation of a plant-based feed in minimal-exchange, super intensive culture systems, *Aquaculture*, 299(1-4): 89-98. https://doi.org/10.1016/j. aquaculture.2009.11.021
- Ray, A. J. and Lotz, J. M. 2017. Shrimp (*Litopenaeus vannamei*) production and stable isotope dynamics in clear-water recirculating aquaculture systems versus biofloc systems. *Aquac. Res.*, 48: 4390-4398. https://doi. org/10.1111/are.13262
- Romano, N., April, S., Nilima, R., Jesus, M., and Nathan, E. 2020. Assessing the feasibility of biofloc technology to largemouth bass *Micropterus salmoides* juveniles: Insights into their welfare and physiology. *Aquaculture*, 520: 735008. https://doi.org/10.1016/ J.aquaculture2020.735008
- Satrawaha, R. and Pilasamorn, C. 2009. Length-weight and length-length relationships of fish species from the Chi River, north-eastern Thailand. J. Appl. Ichthyol., 25(6): 787-788. https://doi.org/10.1111/j.1439-0426.2009.01293.x
- Schveitzer, R., Arantes, R., Costodio, P. F. S., Santo, C. M. E., Arana, I. V., Seiffert, W. Q. and Andreatta, E. R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of *Litopenaeus vannamei* in a tank system operated with no water exchange. *Aquac. Eng.*, 56: 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006
- So, N., Sam, N., Bui, M. T., Tran, T. T. H. and Pomeroy, R. S. 2012. Sustainable murrel aquaculture development in the lower Mekong River Basin of Cambodia and Vietnam. *Indigenous Species Development/Study/09IND02UC Part 1: Breeding and weaning of striped murrel (Channa striata) in Cambodia*. Corpus ID: 53954029.
- Suarez-Puerto, B., Delgadillo-Diaz, M., Sanchez-Solis, M. J. and Gullian-Klanian, M. 2021. Analysis of the cost-effectiveness and growth of Nile tilapia (*Oreochromis niloticus*) in biofloc and green water technologies during two seasons, *Aquaculture*, 538: 736534. https://doi.org/10.1016/j. aquaculture.2021.736534
- Sugumaran, E., Shabeena, B. and Radhakrishnan, M. V. 2018. Growth performance, length-weight relationship of snakehead fish *Channa striata* (Bloch) fed with different diets. *Int. J. Zool. Inv.*, 4(1): 81-87.
- Sukardi, P., Norman, A. P., Taufik, B. P., Agung, S. and Taufan, H. 2019. Evaluation of local carbon sources in the biofloc system for juvenile *Pangasius*

- pangasius culture using small-scale plastic pond in Central Java, Indonesia. *Aquac. Indonesiana*, 20(1): 48-56. http://doi.org/10.21534/ai.v20i1.146
- Tesch, F. W. 1968. Age and growth. In: Ricker, W. E. (Ed.). Methods for assessment of fish production in freshwater. Blackwell Scientific Publications, Oxford, UK.
- Tesch, F. W. 1971. Age and growth. In: Ricker, W. E. (Ed.), *Methods for assessment of fish production in fresh waters*. Blackwell Scientific Publications, Oxford, UK, pp. 99-130.
- Vadhel, N., Juned, P., Vivek, S., Nitin, A., Sujit Kumar, Chandra, K. M. and Kanta, D. M. 2020. Comparative study on the performance of genetically improved rohu "Jayanti" and native rohu, *Labeo rohita* fingerlings reared in biofloc system, *Aquaculture*, 523: 735201. https://doi.org/10.1016/j. aquaculture.2020.735201
- Vinatea, L., Jesus, M., Ricard, C., Karl, B. A., Enric, G. and Alicia, E. 2018. A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of *Tinca tinca* (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture, 482: 155-161. https://doi.org/10.1016/j.aquaculture.2017.09.041
- Wee, K. L. 1981. Snakehead (Channa striatus) farming in Thailand. NACA/ WP/81/3.Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand.
- Xu W. J., Pan, L. Q., Zhao, D. H. and Huang, J. 2012. Preliminary investigation into the contribution of bioflocs on protein nutrition of *Litopenaeus* vannamei fed with different dietary protein levels in zero-water exchange culture tanks. *Aquaculture*, 350-353: 147-153. https://doi.org/10.1016/j. aquaculture.2012.04.003
- Yadav, K. C., Mishra, A., Raizada, S., Sahu, V. and Sriandvastava, P. P. 2014. Influence of formulated diet on survival and growth of giant-snakehead, Channa marulius reared in pond condition. Proc. Nat. Acad. Sci. India B. Biol. Sci., 86(1): 97-103. https://doi.org/10.1007/s40011-0414-8
- Zhao, P., Huang, J., Wang, X. H., Song, X. I., Yang, C. H., Zhang, X. G. and Wang, G. C. 2012. The application of bioflocs technology in high-intensive, zero exchange farming systems of *Marsupenaeus japonicas*. *Aquaculture*, 354-355: 97-106. https://doi.org/10.1016/j.aquaculture.2012.03.034