Length-weight relationship and exploitation of Macrobrachium species in the Burhi Gandak River, **North Bihar, India**

Omkar Sahu, H. S. Mogalekar*, Sahil, Sanjay, Pravesh Kumar, R. K. Ram, S. K. Nayak, P. P. Srivastava and R. K. Brahmchari College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Dholi, Muzaffarpur- 843 121, Bihar, India

Abstract

Three species of the Palaemonidae family, namely Macrobrachium dayanum (Henderson, 1893), Macrobrachium lamarrei (Milne Edw., 1837) and Macrobrachium malcolmsonii (H. Milne Edw., 1844) were investigated for their length-weight relationship and exploitation status in the Burhi Gandak River between July 2020 and June 2021. A total of 907 specimens of M. lamarrei, 942 M. dayanum and 962 M. malcolmsonii were collected using trap net (locally named Ghana Jal). Saalbhar Jal, Pelni, Dhoniial and Khorial and traditional boats such as Nauka and Donga. M. lamarrei was found to be the dominant species among them in the catch composition. Peak landing was observed from June to August. The maximum length was recorded for M. malcolmsonii (16.8 cm) followed by M. dayanum (8.0 cm) and M. lamarrei (6.1 cm). The length-weight relationship of M. lamarrei, M. dayanum and M. malcolmsonii indicated negative allometric growth with slope (b) values of 2.7692, 2.6027 and 2.7513, respectively. The von Bertalanffy growth parameters viz., asymptotic length (L_m), growth coefficient (K) and age at zero length (t_a) were 5.67 cm, 2.3 y⁻¹ and -0.5913 y⁻¹ for M. lamarrei; 10.08 cm, 0.990 y^{-1} and 0.6684 y^{-1} for M. dayanum and 16.59 cm, 0.730 y^{-1} and -0.7289 y⁻¹ for *M. malcolmsonii*, respectively. Fishing mortality was lower than natural mortality which was estimated as 1.71 for M. lamarrei, 0.15 for M. dayanum and 0.18 for M. malcolmsonii. The present study revealed that the smaller length groups had higher natural mortality, whereas larger length groups had higher fishing mortality. The current exploitation rate was 0.26 for M. lamarrei, 0.06 for M. dayanum and 0.09 for M. malcolmsonii. The research fills a critical gap providing essential insights into the population dynamics and exploitation of the three prawn species in the Burhi Gandak River, revealing their underexploited status, highlighting opportunities for sustainable harvesting and informed fishery management to support biodiversity conservation and local livelihoods.

*Correspondence e-mail:

mogalekar.hs10@gmail.com

Keywords:

Bihar, Burhi Gandak River, Length-weight relationship, Macrobrachium, Stock assessment

> Received: 25.02.2023 Accepted: 29.05.2024

Introduction

The Palaemonidae family comprises a diverse range of crustacean species that live in a variety of water sources, including freshwater as well as brackishwater. Jaychandran and Joseph (1992) provided criteria for identifying Macrobrachium species from Indian water bodies. The taxonomy and distribution of freshwater prawns from Indian water bodies were previously reported by many researchers (Choprae, 1939; Choprae and Tiwari, 1949; Rajvalakshmi, 1974, 1980; Jaychandran and Joseph, 1988, 1992).

Prawns are the most common of all crustaceans from Indian waters and the most of the research has been conducted on the biology and fishery economically important prawns. Holthuis (1980) reported seven genera across the globe under the Palaemonid family. Macrobrachium is a genus with over 100 species globally and 40 species were reported from India (Jayachandran Joseph, 1992). Macrobrachium rosenbergii, Macrobrachium malcolmsonii and Macrobrachium gangeticum are the three larger varieties from Indian waters (Ling, 1969). Macrobrachium dayanum and Macrobrachium lamarrei are two smaller

and entirely freshwater varieties of *Macrobrachium* spp., which have been found in water bodies of eastern Uttar Pradesh along with *M. gangeticum* a larger, semi-migratory species (Singh and Srivastava, 1991). The prawn fishery in freshwater bodies of India forms an ecologically and economically important resource and from fisheries point of view, 15 species are significantly important and are overexploited as a result of overfishing (Jayachandran and Joseph, 1992). *M. dayanum* is a small (5-7 cm) freshwater prawn found in northern India which is an important food source for the inhabitants of the Gangetic Plain. *M. lamarrei* is a small (3-5 cm) freshwater prawn found in rivers, ponds and other wetlands in the Indian subcontinent.

The length-weight relationship is an important tool for describing growth and identifying possible changes between the same species in different populations (Lalrinsanga et al., 2012). It is useful in fisheries management for estimation of biomass and health status of fish stocks (Vivekanandan, 2005; Gerritsen and McGrath, 2007). Hopkins (1992) highlighted the significance of utilising models in growth studies, emphasising the application of morphometric measurements in fisheries research. The length-weight relationship of M. lamarrei (Ara et al., 2014), Macrobrachium assamense peninsulare (Kumar et al., 2014), M. rosenbergii (Kurup et al., 2000; Lalrinsanga et al., 2012, 2014), Macrobrachium lar (Sethi et al., 2012), Macrobrachium equidens (Jayachandran and Sebastian, 2010) and Macrobrachium assamense (Rana and Kumar, 2014) have been studied from the Indian waters. Studies on the growth and mortality parameters of different Macrobrachium species in Indian waters are limited (Khan et al., 2009; Jayachandran and Indra, 2010; Shaha et al., 2014).

Prawn species in the river Ganga have been studied for their fisheries and biology; however, there is no published information on the age, growth and mortality parameters of freshwater prawn species from the Burhi Gandak River in Bihar. These parameters of prawn species from river Burhi Gandak are intended to provide a

more precise estimate of population and fisheries characteristics to assess the state of the fishery and maximum sustainable yield (MSY) levels, which might be useful in developing management practices to ensure long-term utilisation. Therefore, the present investigation was conducted to study the length-weight relationship and stock assessment of selected prawn species from river Burhi Gandak in North Bihar.

Materials and methods

Study area

The Burhi Gandak River originates from Chautarwa Chaur in the West Champaran District in Bihar. The catchment area of the river is spreadacross 12,500 sq km. The river primarily, flows through India and it is a significant perennial river in North Bihar (Singh et al., 2018). The sampling sites comprised upstream waters Motihari (Site-1: 26°56′06″N, 85 °05′13″E), middle stream waters - Muzaffarpur (Site-2: 25°61′14″N, 85°63′70″E), and downstream waters - Khagaria (Site-3: 25°50′08″N, 86°48′12″E) along the Burhi Gandak River in Bihar. (Fig. 1).

Sampling methods and data collection

Experimental samplings for collection of the three species of Palaemonid prawns namely *M. dayanum*, *M. lamarrei* and *M. malcolmsonii* (Fig. 2) were conducted during July 2020 to June 2021, during the first week of each month. Samples were collected from all three sampling locations with the help of local fishermen using traditional boats and locally made nets such as Ghana traps and cast nets (Fig. 3). The collected samples were identified using the available literature (Jayachandran, 2001; Mariappan and Richard, 2006).

Fig. 1. Map depicting fish landing centers along the Burhi Gandak River

Fig. 2. Palaemonidae species occuring in Burhi Gandak River: (a) *M. lamarrei* (Milne Edw., 1837); (b) *M. dayanum* (Henderson, 1893) and (c) *M. malcolmsonii* (H. Milne Edw., 1844)

Fig. 3. Nets and traps used during sampling. (a) and (b) Ghana jal and (c) Pelni jal

Length-weight parameters

The total length (from the inside of the eye socket to the posterior part of the telson) and weight of prawns were measured in cm and grams, respectively. The length-weight relationship was calculated following Le Cren (1951):

W = a Lb

where W = Total body weight (g) , L=Total length (cm), a and b are constants. This equation can be linearly interpreted as:

Log W = Log a + b Log L

Growth and stock assessment parameters

The ELEFAN I module of the FiSAT II software was used to estimate the asymptotic length (L_{∞}) and growth coefficient (K) of von Bertalanffy growth (K) given by Gayanilo *et al.* (2005).

$$Lt = L_{\infty} (1 - e^{-k(t-t)})$$

where, L_{∞} = Asymptotic length, K = Growth coefficient, t = Age at given length and t_n = Age at length zero

The performance indicator for growth (Ø) was computed as phi-prime (Ø) = $\log K + 2 \log L_{\infty}$), as given by Pauly and Munro (1984) using asymptotic length (L_{∞}) and growth coefficient (K) values. The following formula was used to determine the t_{∞} value (Pauly, 1980):

$$Log(-t_0) = -0.3922 - 0.2752 log L_m - 1.038 log K$$

Using FISAT II, the length converted catch curve methods were used to calculate the total instantaneous mortality rate (Z). Pauly's (1980) equation gave the natural mortality (M) using the mean annual habitat temperature (28.5 $^{\circ}$ C), L_m and K. The formula Z = F + M

was used to determine the fishing mortality (F). The exploitation rate (E) was computed using the formula E = F/Z given by Gulland (1979).

Results

In the present study, *M. dayanum* (Henderson, 1893), *M. lamarrei* (Milne Edw., 1837) and *M. malcolmsonii* (H. Milne Edw., 1844) were found to be the most common species of the Palaemonidae family, in the catch from Burhi Gandak River and were accessible throughout the year. Among the 3 species, *M. lamarrei* had the largest representation followed by *M. dayanum* and *M. malcolmsonii*. A total of 907 *M. lamarrei*, 942 *M. dayanum* and 962 *M. malcolmsonii* specimens were sampled during the study. *M. lamarrei* ranged in total length from 1.8-6.1 cm and weighed 0.10 g-3.26 g. *M. dayanum* recorded a size range of 1.6-8.0 cm TL and 0.10-9.52 g weight.. *M. malcolmsonii* had 3.8-16.8 cm TL weighing 0.89-125.58 g The number of specimens in different length groups is shown in Fig. 4 (a, b, c).

Length-weight relationship

The relationship between total length and weight was estimated for *M. lamarrei, M. dayanum* and *M. malcolmsonii* and its parabolic and logarithmic equations are shown in Table 1. Fig. 5 (a, b, c) show the logarithmic relationship between length and weight for *M. lamarrei, M. dayanum* and *M. malcolmsonii* respectively. The study observed a negative allometric growth pattern in all three prawn species, with the 'b' values for *M. lamarrei* (2.769), *M. dayanum* (2.602) and *M. malcolmsonii* (2.751) being less than

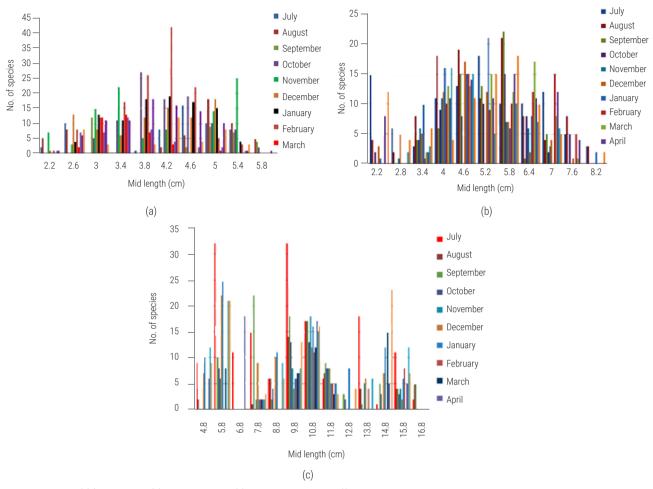


Fig. 4. Number of (a) M. lamarrei; (b) M. dayanum and (c) M. malcolmsonii in different length groups

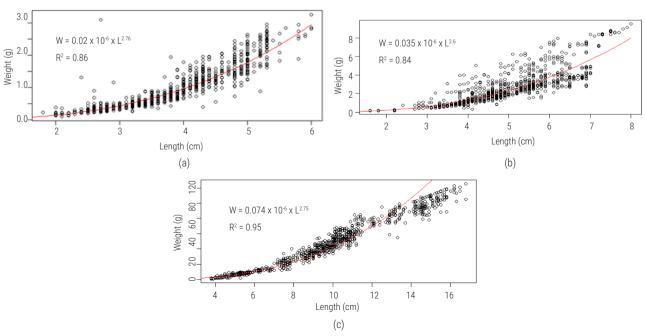


Fig. 5. Length-weight relationship of (a) M. lamarrei; (b) M. dayanum and (c) M. malcolmsonii

Table 1. Parabolic and logarithmic equations of selected *Macrobrachium* spp.

Species	Parabolic	logarithmic equations
M. lamarrei	W= 0.02*10 ⁻⁶ * L ^{2.76}	Log W= -1.68496 + 2.76 Log L
M. dayanum	W= 0.035*10 ⁻⁶ * L ^{2.6}	Log W= -1.44808 + 2.6 Log L
M. malcalmsonii	W= 0.074*10 ⁻⁶ *L ^{2.75}	Log W= -1.1257 + 2.75 Log L

the ideal value of 3. This pattern indicates that as the prawns grow in length, their weight increases at a slower rate compared to an ideal isometric growth. Negative allometric growth suggests that these species allocate more energy towards activities other than growth in weight, such as reproduction or survival strategies. This energy allocation could be a response to environmental conditions or predation pressures in the Burhi Gandak River. Species exhibiting negative allometric growth often reach reproductive maturity at smaller sizes. This can lead to higher reproductive output over their lifespan, which is beneficial in fluctuating environments. The slower weight gain relative to length might enhance survival by reducing the risk of predation, as larger, bulkier individuals are often more vulnerable. This adaptation could contribute to their resilience in variable ecological conditions. Understanding the length-weight relationship and growth patterns helps in predicting the population structure and dynamics of these species. The significant relationship between length and weight (coefficient of determination: M. lamarrei - 0.86, M. dayanum - 0.84, M. malcolmsonii - 0.95) indicates reliable data for stock assessments.

Growth and population parameters

The ELEFAN I program was used to estimate the growth parameters, asymptotic length (L_{∞}) and growth coefficient (K). The asymptotic length (L_{∞}) and growth coefficient (K) for *M. lamarrei* were 5.67 cm and 2.3 y^{-1} , respectively. The estimated value of L_{∞} and K for

 $\it M.~dayanum$ was 10.08 cm and 0.990 y¹ respectively and for $\it M.~malcolmsonii$ the values were 16.59 and 0.730 respectively. The estimated $\it t_0$ value and the von Bertalanffy equation are given in Table 2. Based on the growth parameters, the estimated lengths at different ages for all three species are given in Table 3 and growth curves of all three species fitted using growth parameters are presented in Fig. 6 (a, b, c) respectively.

Stock assessment

Mortality and exploitation rate

The estimated total instantaneous mortality (Z) of M. lamarrei. M. dayanum and M. malcalmsonii by length converted catch curve method was 6.65, 2.57 and 1.91 respectively and natural mortality (M) estimated through Pauly's formula was 4.94, 2.43 and 1.73 respectively. The fishing mortality (F) of M. lamarrei, M. dayanum and M. malcalmsonii was 1.71, 0.15 and 0.18 respectively and the estimated exploitation rate (E) of M. lamarrei, M. dayanum and M. malcalmsonii was 0.26, 0.06 and 0.09 respectively, which indicated natural mortality as higher than fishing mortality. These smaller forms prey for many carnivorous fishes, because the population of large groups of fishes is under-represented and these species are predicted to have a high natural mortality rate. Among the three species, the highest natural mortality (M) was recorded for M. lamarrei (4.94) and the lowest was 1.73 for M. malcalmsonii. The total instantaneous mortality (Z) of M. lamarrei (6.65) was the highest among the three species, whereas the lowest total mortality was observed in M. malcalmsonii (1.91). The fishing mortality of M. lamarrei (1.71) was the highest whereas the lowest fishing mortality was observed in M. dayanum (0.15). The exploitation rate (E) of M. lamarrei (0.26) was higher than M. dayanum (0.06) and

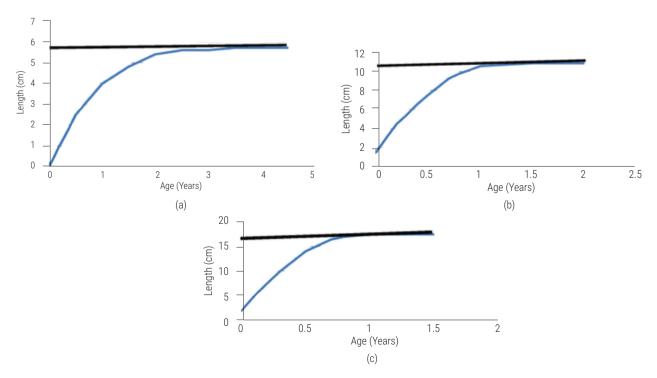


Fig. 6. Growth curve of (a) M. lamarrei; (b) M. dayanum and (c) M. malcolmsonii

Table 2. Growth parameters of selected *Macrobrachium* spp. in Burhi Gandak River

Species	Asymptotic length (L_{∞})	Growth co-efficient (K)	t _o	The von Bertalanffys Equation
M. lamarrei	5.67	2.3	-0.5913	L (t) = 5.67* [1- exp {2.3 [t - (0.5913)]}].
M. dayanum	10.08	0.990	-0.6684	L (t) = 10.08* [1- exp {0.990 [t - (-0.6684)]}].
M. malcolmsonii	16.59	0.730	-0.7289	L (t) = 16.59* [1- exp {0.730 [t - (-0.7289)]}].

Table 3. Estimated lengths at different age of M. lamarrei, M. dayanum and M. malcolmsonii by fitting von Bertalanffy growth parameters

M. lamarrei		M. dayanum		M. malcolmsonii	
Age (t) (year)	Length at given age (cm)	Age (t) (year)	Length at given age (cm)	Age (t) (year)	Length at given age (cm)
0.4	2	0.5	7.5	0.4	12
0.5	2.5	0.7	9.3	0.5	14
1	4	0.8	9.8	0.7	16.5
1.5	4.8	0.9	10.2	0.8	17
2	5.4	1	10.6	0.9	17.3
2.5	5.6	1.5	10.9	1	17.5

the estimation of natural mortality and fishing mortality of the three *Macrobrachium* species indicates that natural mortality is higher for these species than the fishing mortality.

Discussion

In the present study, the maximum size of M. lamarrei observed was 6.1 cm which is higher than the earlier reported values of 1.91 cm by Ara (2014) in Bangladesh and 5.3 cm by Purohit and Vachhrajani (2018) in pond of Dabhoi in Gujarat, India. This maximum observed length is comparatively higher than the values reported for related species Macrobrachium vollenhovenii of 5.36 cm observed by Konan et al. (2014) in rivers of Corted Ivoire and 1.47 cm reported for M. macrobrachion by Konan et al. (2017) in rivers of Corted Ivoire. The maximum length of this species was observed at 5.3 cm in Bangalore (Shakuntala, 1977) which was lesser than the observation in the present study. The maximum size of M. dayanum observed during the study was 8 cm which is higher than the previous record of 5 cm by Sarkar et al. (2012) in the ponds of different localities of West Bengal. The maximum length of this species was observed at 5.9 cm in the river Padma, Bangladesh (Bhuiyan et al., 2007) and 5.2 cm in Gho-Manhasan, Kheri and Nagri, Jammu (India) (Langer et al., 2016) which was found lesser than the present study. This maximum observed length is comparatively higher than the related species M. vollenhovenii (Konan et al., 2014) and M. macrobrachion (Konan et al., 2017) in rivers of Corted Ivoire. The maximum recorded size of *M. malcolmsonii* during the present study was 16.8 cm which is lower than the earlier recorded value of 21 cm by Soomro et al. (2012) in the Lower Indus River. Hossain et al. (2012) recorded a smaller size of M. malcolmsonii compared to the present study and the size ranged from 3.54 to 11.76 cm in the Padma River, Bangladesh. This maximum observed length is comparatively lower than the reported values for related species of M. rosenbergii by Kunda et al. (2008) from Bangladesh; Rajeevan et al. (2018) in reservoirs of Northern Province, Sri Lanka; Indarjo et al. (2021) in North Kalimantan estuary systems in Indonesia and similar length reported for Macrobrachium lar (16.7) by Sethi et al. (2012) in Andaman and Nicobar Islands.

In the present study, the estimated b value for *M. lamarrei* is 2.769 which indicates negative allometric growth pattern and similar

growth pattern in the species was observed by Ara et al. (2014) in Mymensingh, Bangladesh, Purohit and Vachhraiani (2018) in a pond in Dabhoi Gujarat and Shakuntala (1977) from Bangalore, India. In the present study, the calculated 'b' value for M. dayanum was 2.60 indicating negative allometric growth, where Bhuiyan et al. (2007), Sarkar et al. (2012) and Langer et al. (2016) stated that M. dayanum exhibited negative allometric growth along the river Padma (Rajshahi, Bangladesh), Gho-Manhasan, Kheri and Nagri, Jammu (India) and ponds of different localities of West Bengal. The calculated 'b' value for M. colmsonii was 2.751 which is lower than the ideal value of 3, indicating negative allometric growth. A Similar result was observed by Soomro et al. (2012) (2.97) for male population of M. malcolmsonii along the Lower Indus River, Pakistan. Negative allometric growth (4.2) was also reported in M. rosenbergii in Northern Province in Sri Lanka (Rajeevan et al., 2018). Hossain et al. (2012) reported isometric growth (3.00) in the Ganges River in North-Western Bangladesh.

Ara et al. (2014) reported asymptotic length (Lm) and growth coefficient (K) for M. lamarrei from north-eastern Bangladesh as 4.24 cm for males and 2.09 cm for females which is lower than that recorded in the present study. , In M. equidens from south-east Nigeria, L_m was found higher and K was observed lower than the present study (Nwosu et al., 2008). Yakub (2010) reported that L and K of M. macrobrachion were 10.02 cm and 3.76 y⁻¹ respectively which is higher than the present study. The L_{∞} and K in this study were 10.08 cm and 0.990 y⁻¹ for *M. dayanum*. Similar to other species reported by Yakub (2010) L_{∞} and Kfor M. felicinum from Ogun River (South-west Nigeria) was 6.90 cm and 1.00 y⁻¹ respectively,. Yakub (2010) found that the L_m and K for M. macrobrachion from Lower Ogun River, South-west Nigeria as 10.02 cm and 0.97 y⁻¹ respectively, which is similar to that reported in the present study. Nwosu et al. (2007), Yakub (2010) and Alhassan and Arma (2011) reported asymptotic length ($\rm L_{\infty}$) as 18.0, 21.36 and 14.2 cm and growth co-efficient as 0.91, 1.24 and 1.0 y⁻¹ for M. vollenhovenii from West Africa, Cross River Estuary, Nigeria, Ogun River (South-west Nigeria) and Dawhenya, Ghana. Studies by Khan et al. (2009) estimated the L_and K for M. malcolmsonii from Wyra, India as 20.3 cm and 0.63 y^{-1} with L_{∞} being higher and K value lower compared to the present study. The asymptotic length and growth co-efficient of M. rosenbergii (reported by Nwosu et al., (2007) from Nigeria, were higher than the present study and also Indarjo et~al.~(2021) observed growth parameters of M. rosenbergii from North Kalimantan, Indonesia to be lower than the present study. Frédou et~al.~(2010) estimated the L_{∞} and K for M. amazonicum from Combu Island, Amazon Estuary and they found the parameters to be lower than the present study. Enin (1995) reported that in M. macrobrachion from Nigeria L_{∞} is lower and K value higher than the values observed in the present study.

Ara et al. (2014) reported natural mortality (M) (1.024) higher than the fishing mortality (0.143) in M. lamarrei which is similar to the present study. Nwosu (2008) estimated the mortality parameter of M. equidens caught in Cross River Estuary, South-east Nigeria and reported a higher total mortality (4.97 y⁻¹). In these cases, the natural mortality (2.69 v⁻¹) was higher than the fishing mortality (2.28 v⁻¹) which is similar to the present study. The earlier estimation of natural mortality by Alhassan and Armah (2011) indicated that the total mortality of M. vollenhovenii was 5.36 y⁻¹ and the natural mortality (2.20 y^{-1}) was less than the fishing mortality (3.16 y^{-1}) from Dawhenya Impoundment, Ghana which agrees with the present study. Nwosu et al. (2007) estimated the mortality parameters of M. Vollenhovenii from Cross River Estuary (Nigeria) and reported that both male and female have a total mortality of 3.93 and 6.85 y⁻¹respectively and in the case of male the natural mortality (2.21 y^{-1}) is higher than the fishing mortality (1.72 y^{-1}) , while in female the natural mortality (2.27 y⁻¹) is less than the fishing mortality (4.58 per year) respectively which is similar to the observations in the present study. Total mortality of M. malcolmsonii was Z=2.23 and the natural mortality (1.50) was higher than the fishing mortality (0.73) (Khan et al., 2009), which is similar to findings of the present study. Nwosu et al. (2007) reported that M. rosenbergii from Nigeria has higher total mortality of 9.53 y⁻¹.

The exploitation rate recorded for *M. lamarrei, M. dayanum* and *M. malcolmsonii,* in the present study were 0.26, 0.06 and 0.09 respectively. The earlier reports of Nwosu (2008) and Khan *et al.* (2009) stated that *Macrobrachium species* were under-exploited along West Africa, Wyra (India) and Cross River Estuary (South-east Nigeria). Enin (1995) and Nwosu *et al.* (2007) observed that *M. macrobrachion* and *M. rosenbergii* were over-exploited along the river estuary, Nigeria. Similar observations were made by Fredou *et al.* (2010) and Alhassan and Armah (2011) for freshwater prawns along the Combu Island, Amazon Estuary and Dawhenya Impoundment, Ghana.

The study's findings have important implications for local communities that rely on prawn fishing for their livelihood. The observations from the present study, that *M. dayanum*, *M. lamarrei* and *M. malcolmsonii* in the Burhi Gandak River are underexploited suggests that there is potential to increase harvesting efforts sustainably. This can enhance local fisheries and provide economic benefits to the communities. Sustainable management practices based on data from this study can ensure long-term availability of these resources, contributing to food security and stable income for fishermen.

The observed maximum sizes and negative allometric growth patterns of these prawn species provide valuable information for aquaculture development. The maximum sizes recorded for *M. lamarrei* (6.1 cm), *M. dayanum* (8 cm) and *M. malcolmsonii* (16.8 cm) indicate that these species can reach significant sizes,

making them suitable candidates for aquaculture. The negative allometric growth patterns (b values less than 3) observed in all three species imply that as these prawns grow in length, their weight increases at a slower rate. Understanding these growth dynamics is crucial for optimising feeding practices and growth conditions in aquaculture settings. Establishing aquaculture practices for these prawns can diversify income sources for local fish farmers and reduce pressure on wild populations. Developing aquaculture for these prawn species can create employment, boost local economies, and contribute to sustainable resource management. It can also provide a controlled environment for studying and mitigating issues such as diseases and environmental impacts, promoting overall ecosystem health.

This research significantly contributes to the understanding of the population dynamics and exploitation rates of prawn species in the Burhi Gandak River, filling a crucial gap in the existing literature. Our findings indicate that the three *Macrobrachium* species studied are currently underexploited, presenting a unique opportunity for sustainable harvesting and management practices. By highlighting the potential for breeding and culturing these species, this study opens new avenues for aquaculture development, offering promising economic benefits for local communities. The insights gained from this research not only support biodiversity conservation efforts but also enhance local economic development, underscoring the importance of integrating ecological knowledge with sustainable resource management.

Acknowledgements

The authors are grateful to the authorities of the College of Fisheries, Dholi and Dr. Rajendra Prasad Central Agricultural University, Pusa for providing facilities to conduct the study.

References

- Alhassan, E. H. and Armah, A. K. 2011. Population dynamics of the African river prawn, *Macrobrachiu mvollenhovenii*, in Dawhenya impoundment. *Turkish J. Fish., Aquat. Sci.,* 11(1):113-119. https://doi.org/10.4194/trjfas.2011.0115.
- Ara, M. G., Nabi, M. N., Ahmed, Z. F. and Fatema, M. K. 2014. Length-weight relationship and growth pattern inference of a small indigenous freshwater prawn, *Macrobrachium lamarrei* (H. Milne-Edwards, 1837) in Bangladesh. *Research in Agriculture Livestock and Fisheries*, 1(1): 137-145. https://doi.org/10.3329/ralf.v1i1.22377.
- Bhuiyan, A. S, Arzu, G. and Bhuiyan, S. S. 2007. The correlation between fecundity with length and weight of *Macrobrachium dayanum* (Hall) from the River Padma, Rajshahi, Bangladesh. *J. Bio-Sci.*, 15: 173-174.
- Choprae, B. N. 1939. Some food prawns and crabs of India and their fisheries. *J. Bombay Nat. Hist. Soc.*, 41: 221 234.
- Choprae, B. N. and Tiwari, K. K. 1949. Decapod Crustacea of the Patna State, Orissa. *Rec. Indian Mus.*, 45(2& 3): 213-224.
- Enin, U. I. 1995. First estimates of growth, mortality and recruitment parameters of *Macrobrachium macrobrachion* Herklots, 1851 in the Cross River estuary, Nigeria. *Dana*, 2(1): 29-38.
- Frédou, F. L., Silva, M., Rosa, Filho, Jand, Azevedo, E. 2010. Population dynamics of the river prawn, *Macrobrachium amazonicum* (Heller, 1862) (Decapoda, Palaemonidae) on Combu island (Amazon

- estuary). Crustaceana, 83(3): 277-290. https://doi.org/10.1163/001121 609X12596543952298.
- Gayanilo, F. C., Sparre, P. P. and Pauly, D. 2005. FISAT II Users' Guide, Food and Agriculture Organisation of the United Nations, Rome, Italy, http/www.FISAT II.
- Gerritsen, H. D. and McGrath, D. 2007. Significance differences in the lengthweight relationships of neighboring stocks can result in biased biomass estimates: Examples of haddock and whiting. *Fish. Res.*, 85(1-2): 106-111. https://doi.org/ 10.1016/j.fishres.2007.01.004.
- Gulland, J. A. 1979. Report of the FAO/IOP workshop on the fishery resource of the western Indian Ocean South of Equator. *FAO.IOFC.*/DEV/79/45, Food and Agriculture Organisation of the United Nations, Rome, Italy, pp. 1-35.
- Holthuis, L. B. 1980. FAO species catalogue: Shrimps and prawns of the world. An annotated catalogue of species of interest to Fisheries. FAO Fish. Synop.,125(1): 271 p.
- Hopkins, K. D. 1992. Reporting fish growth: A review of the basics. *J. World Aquac. Soc.*, 23: 173-179. https://doi.org/10.1111/j.1749-7345.1992. tb00766.x.
- Hossain, M. Y., Ohtomi, J., Jaman, A., Jasmine, S. and Vadas, Jr, R. L. 2012. Life history traits of the monsoon river prawn *Macrobrachium malcolmsonii* (Milne-Edwards,1844) (Palaemonidae) in the Ganges (Padma) river, northwestern Bangladesh. *J. Freshwat. Ecol.*, 27(1): 131-142. https:// doi.org/10.1080/02705060.2011.633739.
- Indarjo, A., Salim, G., Nugraeni, C. D., ZeinM, Ransangan, J., Prakoso, L. Y. and Anggoro, S. 2021. Length-weight relationship, sex ratio, mortality and growth condition of natural stock of *Macrobrachium rosenbergii* from the estuarine systems of North Kalimantan, Indonesia. *Biodiversitas J. Biol. Div.*, 22(2): 846-857. https://doi.org/10.13057/biodiv/d220239.
- Jayachandran, K. V. and Indira, B. 2010. Sustainable exploitation of freshwater prawn diversity of India for food and livelihood security with emphasis on planning. *Indian J. Scient. Res.*, 1(2): 127-132.
- Jayachandran, K. V. and Sebastian, A. 2010. Morphometric and meristic studies of the spotted estuarine prawn, *Macrobrachium Equidens* (Dana) of Vembanad Lake, Kerala State. *J. Indian Fish. Assoc.*, 37: 1-6.
- Jayachandran, K. V. 2001. Palaemonid Prawns: Biodiversity, taxonomy, biology and management. *Aguac. Int.*, 9: 545-548.
- Jayachandran, K. V. and Joseph, N. I. 1988. Length-weight relationship of two palaemonid prawns *Macrobrachium idella* and *M. scabriculum*, a comparative study. *Fish. Tech.*, 25(2): 92-94.
- Jayachandran, K. V. and Joseph, N. I. 1992. A key for the field identification of commercially important *Macrobrachium* spp. of India with a review of their bionomics. In: Silas, E.G. (Ed.), *Freshwater prawns* Kerala Agricultural University, Thrissur, India, pp. 72-77.
- Khan, M. F., Panikkar, P., Das, A. K., Manna, R. K. and Singh, D. N. 2009. Population dynamics of monsoon river prawn *Macrobrachium malcolmsonii* (Milne Edwards) in Wyra, a tropical reservoir in India. *Asian Fish. Sci.*, 22: 1201-1210.
- Konan, K. M., Doumbia, L., Adepo-Gourène, A. B., Ouattara, A. and Gourene, G. 2017. Relationships between morphometric characteristics of brackishwater prawn, *Macrobrachium macrobrachion* (Herklots, 1851), of Cote d'Ivoire (West Africa). *Iranian J. Fish. Sci.*, 16(1): 275-295.
- Konan, K. M., Ouattara, A., Da, Costa, K. S., Adepo-Gourene, A. B. and Gourene, G. 2014. Allometric growth and condition factor of West African shrimp, *Macrobrachium vollenhovenii* (Herklots, 1857), in the rivers of Côte d'Ivoire. *Mar. Freshwat. Res.*,65(10): 849-856. https://doi. org/10.1071/MF13147.

- Kunda, M., Dewan, S., Uddin, M. J., Karim, M., Kabir, S. and Uddin, M. S. 2008. Length-weight relationship, condition factor and relative condition factor of *Macrobrachium rosenbergii* in rice fields. *Asian Fish. Sci.*,21: 451-456. https://doi.org/10.33997/j.afs.2008.21.4.008.
- Kumar, K., Kotnala, C. B. and Rana, A. R. 2014. Morphometric study on Macrobrachium assamense peninsulare (Tiwari, 1958) from Rawasan stream of Garhwal Himalaya, Uttarakhand, India. International Journal of Advanced Research, 2(8): 317-322.
- Kurup, B. M., Harikrishnan, M. and Sureshkumar, S. 2000. Length-weight relationship of male morphotypes of *Macrobrachium rosenbergii* (de Man) as a valid index for differentiating their developmental pathway and growth phases. *Indian J. Fish.*, 47(4): 283-290.
- Lalrinsanga, P. L., Pillai, B. R., Patra, G., Mohanty, S., Naik, N. K., Das, R. R. and Nelliyoura, R. 2014. Yield characteristics and morphometric relationships of giant freshwater prawn, *Macrobrachium rosenbergii* (de Man, 1879). *Aquac. Int.*, 22(3): 1053-1066. https://doi.org/10.1007/s 10499-013-9726-6.
- Lalrinsanga, P. L., Pillai, B. R., Mahapatra, K. D., Sahoo, L., Ponzoni, R. W., Nguyen, N. H. and Patra, G. 2012. Length-weight relationship and condition factor of nine possible crosses of three stocks of giant freshwater prawn, *Macrobrachium rosenbergii* from different agro-ecological regions of India. *Aguac.Int.*, 23:1-14.
- Langer, S., Kumari, A., Bakhtiyar, Y. and Samyal, A. 2016. Studies on the morphometry of *Macrobrachium dayanum* (Decapoda, Palaemonidae). *Biosci. Biotechnol. Res. Asia*, 6(1): 131-138.
- LeCren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and weight and condition of the perch, *Perea fluviatilis*. *J. Anim. Ecol.*, 20: 210-219. http://dx.doi.org/10.2307/1540.
- Ling, S. W. 1969. The general biology and development of *M. rosengergii* (de Man). *FAO Fish. Rep.*, 57(3): 589-606.
- Mariappan, N. and Richard, J. 2006. Studies on freshwater prawns of family Atyidae and Palaemonidae from Kanchipuram and Thiruvallur districts, Tamil Nadu, India, including one new species of the Genus *Caridina* H. Milne Edwards, 1837. *Zool. Surv. India*, 243: 1-80.
- Nwosu, F. M. 2008. Growth and mortality of the rough river prawn *Macrobrachium equidens* Dana, 1852 (Crustacea, Palaemonidae) in Cross River Estuary, Southeast Nigeria. *J. Food Agric. Environ.*, 6(1): 186.
- Nwosu, F. M., Holzlöhner, S. and Enin, U. I. 2007. The exploited population of the brackish river prawn (*Macrobrachium macrobrachion* Herklots, 1851) in the Cross River estuary, Nigeria. *Scient. Mar.* 71(1): 115-121.
- Pauly, D. 1980. On the relationship between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. *Indian J. Mar. Sci.*, 39(3): 69-73.
- Pauly, D., Munro, J. L. 1984. Once more, on the composition of growth in fish and invertebrates. *Fishbyte*, 2(1): 21.
- Purohit, B. and Vachhrajani, K. D. 2018. First record of freshwater shrimp, *Macrobrachium lamarrei* (H. Milne Edwards, 1837) from Gujarat, India. *Indian J. Fish.*, 6(3): 654-657.
- Rajeevan, R., Edirisinghe, U. and Athauda, A. R. S. B. 2018. Length-weight relationships and condition factor of giant freshwater prawn, *Macrobrachium rosenbergii* (De Man, 1879) in five perennial reservoirs in Northern Province, Sri Lanka. *Int.J. Fish. Aquat. Stud.*, 6(5): 283-287.
- Rajyalakshmi, T. 1974. The freshwater prawn, Macrobrachium malcolmsonii, for use in pond culture. Seafood Exp. J., 6: 1-5.

- Rajyalakshmi, T. 1980. Comparative study of the biology of the freshwater prawn *Macrobrachium malcolmsonii*, for Godavari and Hoogly river systems. *Proc. Indian Nat. Acad.*, 46(1): 72-89.
- Kumar. K., Kotnala, C. B. and Rana, A. R. 2014. Morphometric study on Macrobrachium assamensepeninsulare (Tiwari, 1958) from Rawasan stream of Garhwal Himalaya, Uttarakhand, India. Int. J. Adv. Res., 2(8): 317-322
- Sarkar, I., Basu, A., Dutta, S. and Roy, S. 2012. Male mating tactics and mating activity in freshwater prawn, *Macrobrachium dayanum* (Henderson, 1893) Paleomonidae: Caridae. *Int. J. Aquat. Sci.*, 3: 56-70.
- Sethi, S. N., Ram, N. and Venkatesan, V. 2012. Length-weight relationship of *Macrobrachium Iar* (Fabricius, 1798), an endemic freshwater prawn in streams and ponds of Andaman and Nicobar Islands. *Indian J. Fish.*, 59(4): 157-161.
- Shakuntala, K. 1977. The relation between body size and number of eggs in the freshwater prawn, *Macrobrachi Lamarrei* (H. Milne Edwards) (Decapoda, Caridea). *Crustaceana*, 33(1): 17-22.

- Singh, S. R. and Srivastava, V. K. 1991. On the length-weight relationship of the Ganga prawn *Macrobrachium birmanicum choprai*. ACTA- Hydrochim, *Hydrobiolgia*, 19(4): 419-423.
- Soomro, A. N., Baloch, W. A., Chandio, T. J., Achakzai, W. M. and Saddozai, S. 2012. Condition factor and length-weight relationship of monsoon river prawn *Macrobrachium malcolmsonii* (H. Milne-Edwards, 1844) (Palaemonidae) in lower Indus River. *Pakistan J. Zool.*, 44(5): 1279-1283.
- Shaha, B. K., Alam, M. M., Islam, H. M. R., Alam, L., Ghosh, A. K., Ahmed, K. K. U. and Mokthar, M. 2014. Assessment of gear efficiency for harvesting artisanal giant freshwater prawn (*Macrobrachium Rosenbergii* De Man) fisheries from the Sundarbans Mangrove Ecosystem in Bangladesh. *Res. J. Fish. Hydrobiol.*, 9(2): 1126-1139.
- Vivekanandan, E. 2005. Stock assessment of tropical marine fishes. Indian council of Agricultural Research, New Delhi, India
- Yakub, A. S. 2010. Population growth of three freshwater prawns (Macrobrachium spp.) in Lower Ogun River, Southwest Nigeria. Int. J. Biol. Chem. Sci., 4(3): 797-802.